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Abstract: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of
the cytoskeleton. Polymerized SEPTs participate in the modulation of various cellular processes,
such as cytokinesis, cell polarity, and membrane dynamics, through their interactions with
microtubules, actin, and other cellular components. The main objective of this study was to
dissect the molecular pathological mechanism of SEPT14 mutation-induced sperm head defects.
To identify SEPT14 interactors, co-immunoprecipitation (co-IP) and nano-liquid chromatography-mass
spectrometry/mass spectrometry were applied. Immunostaining showed that SEPT14 was significantly
localized to the manchette structure. The SEPT14 interactors were identified and classified as
(1) SEPT-, (2) microtubule-, (3) actin-, and (4) sperm structure-related proteins. One interactor,
ACTN4, an actin-holding protein, was selected for further study. Co-IP experiments showed that
SEPT14 interacts with ACTN4 in a male germ cell line. SEPT14 also co-localized with ACTN4 in
the perinuclear and manchette regions of the sperm head in early elongating spermatids. In the cell
model, mutated SEPT14 disturbed the localization pattern of ACTN4. In a clinical aspect, sperm with
mutant SEPT14, SEPT14A123T (p.Ala123Thr), and SEPT14I333T (p.Ile333Thr), have mislocalized and
fragmented ACTN4 signals. Sperm head defects in donors with SEPT14 mutations are caused by
disruption of the functions of ACTN4 and actin during sperm head formation.
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1. Introduction

1.1. Male Infertility and Mutations

Male sterility occurs in up to 7% of men of reproductive age worldwide, and in as many
as half of these cases, the cause cannot be determined [1,2]. The known major causes of male
infertility include anatomic abnormalities, endocrine defects, immunologic dysfunction, infection,
Y chromosome deletion, environmental exposure, and gene mutations [3–5]. Semen analysis is a
critical tool for identifying the cause of infertility, and semen can be classified as normozoospermia,
oligozoospermia, asthenozoospermia, teratozoospermia, or azoospermia [6]. Teratozoospermia is
frequently accompanied by sperm DNA defects and can have negative effects on pregnancy outcomes
and embryo progress, including recurrent spontaneous abortion, pregnancy failure, and lower live
birth rates [7–13]. Several mutations in certain genes have been linked to teratozoospermia, including
PROTAMINE, SPATA16, AURKC, PICK1, SEPT12, DPY19L2, and SEPT14 [14–17].

1.2. Septins and Male Reproduction

Septins (SEPTs) are highly conserved GTP-binding proteins that are the fourth component of
the cytoskeleton [18,19]. SEPT proteins polymerize into hetero- and homo-oligomeric structures and
modulate various cellular processes, including cell polarity, cytokinesis, and membrane dynamics,
via their interaction with microtubules, actin, and phospholipid membranes [18–22]. Dysregulation
of human SEPTs has been linked to the molecular pathology of several diseases, including leukemia,
neurological illnesses, and male sterility [23,24]. SEPT4 and SEPT7 are biomarkers for human
asthenozoospermia and teratozoospermia, respectively [25–27]. In addition, Sept4-null male mice
are infertile, with immotile sperm and defective sperm tails [28,29]. Our previous studies revealed
that SEPT12 is a testis- and post-meiotic-specific gene, and sperm from Sept12-defective mice showed
sperm head and tail defects [30]. Furthermore, the development of murine embryos fertilized with
Sept12-deficient sperm through ICSI was arrested at the early morula stage [31]. Mutated SEPT12 also
causes impaired sperm heads, bent tails, and DNA damage [16,30,32].

1.3. SEPT14

SEPT14 was originally identified as a testis-enriched protein that interacts with SEPT9 [33].
SEPT14 is required for cortical neuronal migration through its interaction with SEPT4 [34]. In addition,
two genetic variants of SEPT14 have been identified as associated with a reduced risk of Parkinson’s
disease [35]. In the male reproductive system, SEPT14 is mainly localized at the sperm head and
tail [36]. SEPT14 expression in testicular tissues is lower in infertile men with hypospermatogenesis,
maturation arrest, and Sertoli cell-only syndrome than in fertile men [37]. Recently, we identified
two mutations of SEPT14 in teratozoospermia donors, SEPT14A123T (p.Ala123Thr) and SEPT14I333T

(p.Ile333Thr). Sperm from the mutated donors showed a high percentage of defects in the sperm-head
(90 ± 4%) and high levels of sperm nuclear damage [38]. In addition, the mutant SEPT14 proteins
disturbed the polymerization ability and co-localization of F-actin filaments in vitro [38]. In this study,
the main objective was to dissect the molecular mechanism underlying the pathological effects of
mutated SEPT14 leading to sperm-head defects.

2. Materials and Methods

2.1. Separation and Isolation of Testicular Germ Cell Populations

The animal study was approved by the Institutional Animal Care and Use Committee of Fu-Jen
Catholic University (A10577, approved date: 17 March 2017). Testes were isolated from adult mice
(C57BL/6, n = 3; postnatal day > 80). The isolation and separation protocols used were similar to those
used in previous studies [39,40]. After de-capsulation of the testes, the seminiferous tubules were
handled in DMEM/F12 medium with a mixture of digestion enzymes. The samples were incubated



Biomedicines 2020, 8, 518 3 of 16

for 1.5 h at 37 ◦C with rotation at 140 rpm. The samples were filtered through 35 µM nylon filters
(Falcon; Becton Dickinson) and centrifuged. After centrifugation at 700× g, 400× g, 200× g, and 100× g,
four suspension solutions were collected. Finally, the cells were collected from these suspensions
by centrifugation at 3000× g. The pellets were suspended in 1× PBS and spread on a slide. Mature
spermatozoa were collected from the cauda epididymis of adult mice. After air-drying, the slides were
stored at −80 ◦C for immunofluorescence assays.

2.2. Human Sperm Collection and Immunofluorescence Assay

This study was approved by the Ethics Committee of Cathay General Hospital (IRB Approval No.:
CGH-P102031). All the collected protocols have been described in our previous study. All recruited
participants signed an informed consent form. Semen samples were obtained by masturbation
after 3–5 days of sexual abstinence. After liquefying the semen at room temperature, routine
semen analysis was performed according to the WHO 2010 criteria. After washing with 1XPBS,
the sperm were spread on the slides and air-dried. The slides were treated with 0.1% Triton X-100,
washed twice with Tris-buffered saline (TBS), and then incubated with SEPT14 (Proteintech, Cat No,
24590-1-AP) and α-tubulin (GeneTex, Cat No. GTX628802), and ACTN4 (GeneTex, Cat. No. GTX15648;
Abcam, Cat. ab108198) antibodies for 60 min at 25 ◦C. After washing with TBS, the sections were
incubated with secondary antibodies for 60 min at room temperature and then washed again with TBS.
4′,6-Diamidino-2-phenylindole (DAPI) was used to stain the nuclei. The Leica DM 2000 microscope
was used for observation, and the images were acquired using the SPOT 5.0 software. All steps were
performed according to our previous studies [41,42].

2.3. Cloning and Transfection

To generate human testicular complementary DNA (cDNA), human testicular RNA was obtained
from a human RNA panel (Clontech, Mountain View, CA, USA). Total testicular cDNA was generated
from this RNA by Superscript™ III Reverse Transcriptase (Invitrogen), which was stored at −20 ◦C
until use, as described in our previous study [39]. Full-length SEPT14 transcripts were amplified and
cloned into the pFLAG-CMV2 plasmid. The construct was confirmed by Sanger sequencing. Next,
NTERA-2 cl.D1 (NT2D1) cells (ATCC, Manassas, VA, USA), a pluripotent human testicular embryonal
carcinoma cell line, or HeLa cells were transfected with these plasmids using Lipofectamine reagent
(Cat No.: 11668; Invitrogen, Carlsbad, CA, USA). The protocols used were published in our previous
studies [38,43]. Total cell lysates were then collected for co-immunoprecipitation (co-IP).

2.4. Co-Immunoprecipitation

Co-IP was performed according to the manufacturer’s protocol and the methods used in our
previous study [43–45]. Total cell lysate containing 4 mg of protein in 1 mL of lysis buffer was
precleared by incubation with 50 µL of protein A/G beads (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) for 1 h at 4 ◦C on a rotator (15 rpm). Next, the precleared supernatants were collected by
centrifugation at 1000× g for 30 s at 4 ◦C. The supernatants were incubated with either the control
IgG or a FLAG antibody (Cat No.: A5441; Sigma) at 4 ◦C on a rotator (15 rpm) overnight. Next, the
samples were centrifuged at 1000× g for 30 s at 4 ◦C. The immunoprecipitated samples were collected
and washed twice with 1× phosphate-buffered saline (PBS). Then, the immunoprecipitated samples
were immunoblotted (IB) using a primary FLAG antibody (Cat No.: 8127; Cell Signaling Technology,
Boston, MA, USA). After confirming the IB results, the immunoprecipitated samples were transferred
to the proteomic core (Tzong Jwo Jang Mass Spectrometry Laboratory, School of Medicine, Fu Jen
Catholic University) for MS analysis.

2.5. Mass Spectrometry Analysis

The immunoprecipitated mixtures were reduced with dithiothreitol, S-alkylated with
iodoacetamide, and treated with Lys-C and trypsin as described in our previous study [46]. The digested
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peptides were desalted with SDB-XC StageTip (3M Company, MN, USA), followed by SCX StageTip (3M
Company) [47]. Then, the products were examined by liquid chromatography-mass spectrometry/mass
spectrometry (LC-MS/MS) using a Dionex Ultimate 3000 RSLC nanosystem (Thermo Fisher Scientific,
Waltham, MA, USA) and an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific). Finally,
protein identification was performed as described in our previous studies [44,48].

3. Results

3.1. Dynamic Expression of SEPT14 during Murine Sperm Head Formation

Our previous study revealed that sperm from patients with SEPT14A123T and SEPT14I333T

mutations exhibited severely malformed heads and DNA fragmentation [38]. However, the expression
patterns of SEPT14 during sperm head formation remain unknown. To determine the detailed and
dynamic localization of SEPT14 during sperm head formation, murine spermatids were obtained from
testicular tissue, and sperm heads from different stages of development were isolated and analyzed by
IFA. SEPT14 was initially mainly localized to the perinuclear rim, and manchette structure, a transition
structure for sperm head shaping that consists of tubulin and actin in early elongating spermatids
during murine spermiogenesis (Figure 1A). Over the course of sperm head shaping, SEPT14 gradually
became concentrated in the narrow manchette (Figure 1B,C). These findings suggest that SEPT14 is
involved in sperm head shaping during spermiogenesis.
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Figure 1. Immunofluorescence detection of SEPT14 during murine sperm head shaping. SEPT14 
signals showed multiple co-localizations with the manchette marker, α-Tubulin, in spermatids at step 
8 (A), 9 (B), and 10 (C). SEPT14 (green), α-Tubulin (red), and DAPI (blue) stained images are shown, 
as well as merged images of SEPT14, α-Tubulin, and DAPI signals in spermatids. More than 10 male 
germ cells have been detected at different stages. Magnification, 1000×. Scale Bar: 10 μm. 

3.2. Identification of SEPT14 Interactors in Male Germ Cells 

To dissect the possible molecular mechanism underlying mutated SEPT14-caused sperm head 
defects, SEPT14 interactors were identified by co-IP and nano-LC-MS/MS. After the male germ cell 
line (NT2D1) was transfected with the pFLAG-SEPT14 plasmid, cell lysates were co-
immunoprecipitated with the FLAG antibody or mouse immunoglobulin G (IgG). The specific 

Figure 1. Immunofluorescence detection of SEPT14 during murine sperm head shaping. SEPT14
signals showed multiple co-localizations with the manchette marker, α-Tubulin, in spermatids at step
8 (A), 9 (B), and 10 (C). SEPT14 (green), α-Tubulin (red), and DAPI (blue) stained images are shown,
as well as merged images of SEPT14, α-Tubulin, and DAPI signals in spermatids. More than 10 male
germ cells have been detected at different stages. Magnification, 1000×. Scale Bar: 10 µm.

3.2. Identification of SEPT14 Interactors in Male Germ Cells

To dissect the possible molecular mechanism underlying mutated SEPT14-caused sperm head
defects, SEPT14 interactors were identified by co-IP and nano-LC-MS/MS. After the male germ cell line
(NT2D1) was transfected with the pFLAG-SEPT14 plasmid, cell lysates were co-immunoprecipitated



Biomedicines 2020, 8, 518 5 of 16

with the FLAG antibody or mouse immunoglobulin G (IgG). The specific binding was determined by IB
using the FLAG antibody (Figure 2A). Next, the interactors were subjected to nano-LC-MS/MS analysis.
The interacting proteins were filtered and grouped as follows: (1) SEPT-, (2) microtubule-, (3) actin-, and
(4) sperm structure-related proteins, based on the possible cytoskeletal and spermatogenic functions
of SEPT14 (Table 1). The interaction networks of these proteins were subsequently generated using
STRING (Figure 2B). The interaction networks of SEPT14 revealed a dense and connective relationship
when constructed using data from either the previous database (green lines) or experimental analysis
(pink lines). Based on these results, we concluded that the SEPT14-interactors were successfully
identified; these results show a solid and mutual interaction elucidated using co-IP, LC-MS/MS,
and bioinformatics assays.
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Figure 2. Identification of SEPT14 interactors through co-IP and nano-LC-MS/MS. (A) Co-IP analysis of
lysates from cells transfected with the pFLAG-SEPT14 plasmid. Lysates were immunoprecipitated with
either a nonspecific immunoglobulin G (IgG) control (control IgG) or FLAG antibody (Anti-FLAG).
Input protein (5%) was used as an IB control (input). IB revealed a FLAG-SEPT14 signal. The transfected
cells have been performed Co-IP and nano- LCMS/MS, triplicate. (B) Clustering of SEPT14 interactors.
The interaction network of SEPT14 interactors includes (1) SEPT-, (2) actin-, (3) microtubules-, and
(4) sperm structure-related proteins, and was generated using STRING software. Green and pink
lines indicate interactions elucidated from the previous curated database and the current experimental
analysis, respectively.
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Table 1. SEPT14-interacting proteins identified by co-IP and nano-liquid chromatography-mass spectrometry/mass spectrometry.

Symbol Gene Functions

SEPT-related proteins

SEPT2 Septin 2 Cell division, cilium assembly
SEPT7 Septin 7 Cytokinesis, cilium morphogenesis
SEPT9 Septin 9 Cell division

SEPT11 Septin 11 Cytokinesis, vesicle trafficking

Microtubule-related proteins

TUBB2A Tubulin beta 2A Mitosis, intracellular transport
TUBB2B Tubulin beta 2B Mitosis, intracellular transport
TUBB4B Tubulin, beta 4B Mitosis, intracellular transport
STMN1 Stathmin Microtubule depolymerization, axonogenesis
KIF5B Kinesin family member 5B Cytoskeleton-dependent intracellular transport

DYNC1LI1 Dynein, cytoplasmic 1, light intermediate chain 1 Cell division, microtubule-based movement

Actin-related proteins

ACTA1 Actin, alpha 1 Cell motility, structure, and integrity
ACTN2 Actinin, alpha 2 Actin filament binding, muscle filament sliding, cell adhesion
ACTN3 Actinin, alpha 3 Crosslinking actin containing thin filaments, focal adhesion assembly
ACTN4 Actinin, alpha 4 Binding actin to the membrane, vesicle transport along actin filament
CTTN Cortactin Regulation of adherens-type junctions, organization of the actin structure
CFL2 Cofilin 2 Actin filament depolymerization, regulation of dendritic spine morphogenesis
ITGB1 Integrin beta-1 Cell adhesion, embryogenesis

MYO1C Myosin IC Membrane binding, lipid raft trafficking
MYL6B Myosin light chain 6B Muscle myosin
MYH14 Myosin, heavy chain 14 Cytokinesis, cell motility, cell polarity, axon guidance
TPM3 Tropomyosin 3 Provide stability to actin filaments and regulate access of other actin-binding proteins

LAMA2 Laminin subunit alpha 2 Major component of the basement membrane
ZYX Zyxin Modulate the cytoskeletal organization of actin bundles

Sperm-related proteins

ODF2 Outer dense fiber of sperm tails 2 Spermatid development, maintaining the elastic structure and recoil of the sperm tail
FSIP2 Fibrous sheath interacting protein 2 AKAP4-interacting protein
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3.3. SEPT14 Interacts and Co-Localizes with ACTN4

In our previous study, we found that overexpressed SEPT14 co-localized with polymerized actin
in cells [38]. We also identified actin-regulator proteins, which were SEPT14-interactors (Table 1).
We looked at three actin holding proteins (ACTN2, ACTN3, and ACTN4) and found that one, ACTN4,
was localized to the sperm head, with only a slight presence along the flagella [49,50]. Furthermore,
ACTN4 transcripts have been found to be related to the DNA integrity of boar sperm through RNA
sequencing analysis [51]. To evaluate whether SEPT14 interacts with ACTN4, a co-IP assay was
performed in a male germ cell line (NT2D1). The cells were transfected with the pFLAG-SEPT14
plasmid and subjected to IP with either an IgG control (Figure 3A, Lane 2) or a FLAG antibody
(Figure 3A, Lane 3). Next, the IP samples were immunoblotted with FLAG (Figure 3A, FLAG-SEPT14)
and ACTN4 (Figure 3A, ACTN4) antibodies. As shown in Figure 3A, FLAG-SEPT14 was pulled down
with the FLAG antibody (Figure 3A, Lane 3, FLAG-SEPT14). The IP sample was also immunoblotted
with an ACTN4 antibody (Figure 3A, Lane 3, ACTN4). To confirm whether SEPT14 co-localized with
ACTN4 during sperm head formation, IFA was performed. Figure 3B shows that SEPT14 was mainly
co-localized with ACTN4 between the perinuclear and manchette regions (Figure 3B, white arrows),
as well as in the manchette structure (Figure 3B, red arrows), in early elongating spermatids during
murine spermiogenesis (Figure 3B). These findings suggest that SEPT14 interacts and co-localizes with
ACTN4 and is involved in murine sperm head formation.
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Figure 3. SEPT14 interacts with ACTN4 in male germ cells. (A) Co-IP of FLAG-SEPT14 with ACTN4.
Lysates from cells transfected with a pFLAG-SEPT14 vector were immunoprecipitated with either a
nonspecific control IgG (Lane 2) or FLAG antibody (Lane 3), followed by immunoblotting with an
ACTN4 or FLAG antibody. Light chain was used as a loading control. Input protein (5%) was used as
an immunoblotting control (Input). (B) SEPT14 was co-localized with ACTN4 in murine spermatids.
DAPI staining (blue), SEPT14 (green), ACTN4 (red), and a merged image of the DAPI, SEP14, and
ACTN4 signals in murine spermatids are shown. SEPT14 signals are near the perinucleus rim (white
arrows) and manchette structure (red arrows). More than 10 elongating spermatids have been stained.
Magnification, 1000×. Scale Bar: 10 µM.
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3.4. Mutant SEPT14 Proteins Disturb the ACTN4 Localization Pattern but Do Not Affect the Binding Ability
of ACTN4

In our previous study, we found that the mutant SEPT14 variants, SEPT14A123T (p.Ala123Thr) and
SEPT14I333T (p.Ile333Thr) caused teratozoospermia [38]. Here, we showed that SEPT14 interacts with
the actin-holding protein ACTN4 (Figure 3). To determine whether the SEPT14A123T and SEPT14I333T

mutations interfere with ACTN4 localization, constructs expressing these mutant proteins were
transfected into HeLa cells, which lack endogenous SEPT14 expression, to avoid interference by
IFA. The cells transfected with wild-type pFLAG-SEPT14 showed filamentous localization patterns
(Figure 4A). Co-immunostaining with an ACTN4 antibody showed that the ACTN4 localization pattern
was similar to wild-type FLAG-SEPT14 (Figure 4A). In addition, cells transfected with constructs
expressing mutated SEPT14A123T and SEPT14I333T showed similar patterns, indicative of a loss of
polymerization ability (Figure 4B,C; Left panels). Expression of the mutant SEPT14 disturbed the
ACTN4 localization pattern (Figure 4B,C; Right panels). To determine whether the SEPT14A123T and
SEPT14I333T mutations affect the binding ability with ACTN4, co-IP analysis was performed. Cells
were co-transfected with wild-type and mutant pFLAG-SEPT14 vectors, and cell lysates were subjected
to co-IP assay. Figure 5 shows that the binding ability of the mutant SEPT14 variants (SEPT14A123T and
SEPT14I333T; Figure 5B,C; marked region) with ACTN4 were comparable with that of the wild-type
FLAG-SEPT14 (Figure 5A; marked region). These results indicate that these SEPT14 mutations affect
ACTN4 expression patterns, but do not affect the binding ability of ACTN4.
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Figure 4. Mutated SEPT14 affects the filament structure of ACTN4. (A–C) Immunofluorescence 
staining of cells transfected with plasmids encoding WT FLAG-SEPT14 (WT panel), FLAG-
SEPT14A123T (A123T panel), and FLAG-SEPT14I333T (I333T panel) with FLAG and ACTN4 antibodies. 
From left to right: Images of FLAG antibody (FLAG-SEPT14), ACTN4 antibody (ACTN4), and DAPI 
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well as an enlarged image (Enlarge). Magnification, 1000×. Scale Bar: 10 μM. 

Figure 4. Mutated SEPT14 affects the filament structure of ACTN4. (A–C) Immunofluorescence staining
of cells transfected with plasmids encoding WT FLAG-SEPT14 (WT panel), FLAG-SEPT14A123T (A123T
panel), and FLAG-SEPT14I333T (I333T panel) with FLAG and ACTN4 antibodies. From left to right:
Images of FLAG antibody (FLAG-SEPT14), ACTN4 antibody (ACTN4), and DAPI staining and merged
images with FLAG antibody, ACTN4 antibody, and DAPI staining (Merge), as well as an enlarged
image (Enlarge). Magnification, 1000×. Scale Bar: 10 µM.
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Figure 5. Mutated SEPT14 does not affect the formation of SEPT14/ACTN4 complexes. Co-IP analysis
of the binding between SEPT14 and ACTN4. SEPT14-WT, SEPT14-A123T, and SEPT14-I333T are
shown in Figures (A, B, and C), respectively. Lysates of HeLa cells transfected with pFLAG-SEPT14
(WT or mutant) were subjected to IP with nonspecific control IgG (Control IgG) or a FLAG antibody
(Anti-FLAG) and then immunoblotted with a FLAG (α-FLAG) or ACTN4 (α-ACTN4) antibody. Input
protein (5%) was used as a control for immunoblotting of the transfected cell lysates (Input). The light
chain was used as a loading control.

3.5. ACTN4 Patterns Are Disturbed in Human Spermatozoa Bard with the Mutated SEPT14

To determine whether the SEPT14 mutations affect ACTN4 in vivo, spermatozoa from donors
with mutated SEPT14A123T (p.Ala123Thr) and SEPT14I333T (p.Ile333Thr) were immunostained with
the ACTN4 antibody. Figure 6 shows that sperm with mutated SEPT14 had defective sperm heads
(Figure 6B,C) compared to wild-type SEPT14 sperm (Figure 6A). Staining with an ACTN4 antibody
showed fragmented and mislocalized ACTN4 signals in sperm with mutant SEPT14 (Figure 6B,C,
red arrows). These data demonstrate that mutated SEPT14 also interrupts the localized patterns of
ACTN4 in vivo.
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Figure 6. Immunofluorescence staining of ACTN4 in sperm from donors with SEPT14 mutations.
(A–C) From left to right: bright field (BF), ACTN4 antibody staining (green), and merged DAPI and
ACTN4 antibody staining. The figures from top to bottom show spermatozoa from donors with (A)
WT-SEPT14 (Control), (B) SEPT14A123T (A123T), and (C) SEPT14I333T (I133T). The black and red dashed
lines around the sperm indicate normal and abnormal sperm head morphologies, respectively. The red
arrows indicate fragmented ACTN4 signals. Scale Bar: 50 µM.

4. Discussion

In our previous study, through screening of male infertility cases, we showed that SEPT14
mutations result in sperm head defects and the mutated SEPT14 disturbed the polymerized patterns of
F-actin. In this study, we identified SEPT14 interactors through co-IP and nano-LC-MS/MS. ACTN4,
an actin regulator, was also identified. During sperm head formation, ACTN4 co-localizes with SEPT14.
In addition, mutated SEPT14 disturbed the filamentous localization patterns of ACTN4. In clinical
aspects, the human sperm with the mutated SEPT14 also interrupts ACTN4 localization in vivo. Based
on these findings, we propose that SEPT14/ACTN4 complexes play a critical role in sperm head
formation during human spermiogenesis.

4.1. Identification of the SEPT14 Interactor ACTN4 through a Proteomic Assay

This is the first study, to our knowledge, to characterize a possible pathological mechanism
of mutated SEPT14-induced sperm head defects by identifying SEPT14 interactors through co-IP
and nano-LC-MS/MS. Four categories of interactors, which were based on their molecular functions
in sperm head development, were: (1) SEPT-, (2) microtubule-, (3) actin-, and (4) sperm-related
proteins [52,53]. As we showed that SEPT14 proteins formed actin-like filament structures in our
previous study, we focused on actin-related interactors [38]. There are two groups of actin-related
interactors: (1) regulators of actin polymerization (CFL2, TPN3, and ZYX) and (2) ACTN group proteins
(ACTN2–4; Table 1). In this study, we identified more than twenty SEPT14-interactors through co-IP and
LC-MS/MS; the sensitivity of this method limited the identified number of interactors. The identified
SEPT14-interactors include direct interactors, and those which interact indirectly, through the formation
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of protein complexes. The primary function of ACTN proteins is to hold actin filaments together [50,54],
and several studies have indicated that ACTN4 is significantly correlated with sperm morphology.
In guinea pig sperm, ACTN4 was found to be localized to the sperm head, with only a slight presence
along the flagella [49]. In addition, RNA sequencing has shown that ACTN4 transcripts are related to
DNA integrity in the sperm head of boars [51]. Third, mutations and abnormally elevated expression
levels of actinin-4 have been linked to kidney disorders (e.g., focal segmental glomerulosclerosis and
minimal-change nephrotic syndrome), and a large number of these cases (6/8, for minimal-change
nephrotic syndrome) were accompanied by high levels of teratozoospermia [55–57]. Based on these
characteristics of ACTN4, we selected it for further study.

4.2. SEPTs Interact with ACTIN in Cells

SEPTs interact with actin, microtubules, and phospholipid membranes [18,58]. These interactions
affect various cell processes, including cell cytoskeleton modulation, cytokinesis, and cell
compartmentalization. Several proteins are involved in regulating the interaction between SEPTs
and actin. (1) The filamentous structure of SEPT2/6/7 complexes is associated with actin stress fibers
through anillin [20,59]. Moreover, depletion of SEPT2 and 7 by siRNA disturbs actin stress fibers in
NIH3T3 cells. (2) In interphase and dividing cells, SEPT2 interacts with myosin II, and loss of this
interaction also disturbs actin stress fibers, leading to mitotic arrest in CHO-K1 cells [60]. (3) SEPT2/6/7
regulates actin organization through the SOCS7/NCK pathway in HeLa cells [61]. Knockdown of
SEPT2, 6, and 7 in cells disrupts stress fibers and cell polarity. However, whether and how SEPT14
regulates actin is currently unknown. In our previous study, SEPT14 was found to co-localize as a long,
thin filament with actin, and mutated SEPT14 disturbed actin stress fibers in HeLa cells [38]. In this
study, ACTN4, an actin-holding protein, was shown to be associated with the interaction between
SEPT14 and actin (Table 1 and Figure 3). Mutated SEPT14 damaged the stress fiber-like pattern of
ACTN4, which was similar to that of actin stress fibers (Figure 4) [38]. Importantly, damaged patterns
were also observed in SEPT14-mutated sperm (Figure 6). Based on these results, we propose that
SEPT14 may regulate actin stress fibers through ACTN4 in male germ cells.

4.3. Molecular Roles of SEPT14/ACTN4 Complexes during Sperm Head Shaping

During sperm head shaping, the manchette structure supports the processes of nucleus shaping
and cytoplasm removal [52,53]. The manchette is a transient structure organized by cytoplasmic
microtubules, and actin that starts developing in step 8 and disappears in step 16 of murine
spermiogenesis [62]. By screening the coding region of SEPT14 in donors of male infertility (n = 254)
and normal controls (n = 116), six donors with SEPT14 mutations, SEPT14A123T (n = 3), and SEPT14I333T

(n = 3) were identified, which showed morphological defects of the sperm head [38]. In this study,
the dynamic localization of SEPT14 in the manchette structure was observed during murine sperm
head formation (Figure 1). During the process of sperm head shaping, SEPT14 and ACTN4 showed
the same patterns (Figure 3B). From a clinical perspective, sperm from donors with SEPT14 mutations
also showed ACTN4 disruption (Figure 6). Possible working models are proposed in Figure 7. During
sperm shaping in spermatids, SEPT14 interacts with ACTN4 and may modulate actin function,
which facilitates sperm head shaping. If sperm with mutated SEPT14 disrupt ACTN4 function and
actin polymerization, sperm head formation defects occur.
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Figure 7. Graphical illustration of the molecular roles of SEPT14, ACTN4, and ACTIN in sperm
head formation. During sperm head formation, the manchette structure, which consists primarily of
microtubules and actin, assists with sperm head shaping. Filamentous SEPT14 binds to ACTN4/ACTIN
complexes, which are involved in sperm head shaping. In sperm with SEPT14 mutations (e.g., A123I or
I333T), mutated SEPT14 affects ACTN4-ACTIN function, resulting in abnormal sperm head morphology.

4.4. Genetic Changes of SEPT14 in Parkinson’s Disease and Cancer

Mutations in human SEPTs have been linked to the molecular pathology of several cancers,
such as leukemia, ovarian, and breast cancers [24,63]. Three research groups had previously found
that genetic alterations of SEPT14 were involved in different diseases. (1) Two SEPT14 SNPs,
rs11981883, and rs10241628, were found to be associated with a reduced risk of Parkinson’s disease
(PD through sequencing of 720 PD patients and 740 controls [35]. Hence, SEPT14 has been assigned
a protective role, while SEPT14 SNPs have been suggested to play a role in Parkinson’s disease
pathogenesis. (2) EGFR-SEPT14 fusion has been identified in human glioblastoma through RNA-seq [64].
The EGFP-SEPT14 fusion deregulates downstream STAT3 signaling and affects the sensitivity of
inhibitors in this signaling pathway. (3) A rare EGFR-SEPT14 fusion has been identified in colorectal
cancer and highlights a new target for therapeutic intervention [65]. In both this and a previous
study, we identified two SEPT14 mutations (SEPT14A123T and SEPT14I333T) in teratozoospermia
cases. Furthermore, the mutation disrupts ACTN4 function, actin polymerization, and subsequently
results in sperm head formation defects. However, whether these two mutations induce or promote
carcinogenesis-related processes still needs to be studied.
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5. Conclusions

In this study, we provided evidence that the molecular pathological mechanism of
SEPT14-mutation-induced sperm head defects involves disruption of ACTN4-actin function during
mammalian spermiogenesis.
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