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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for Hepatocellular carcinoma

(HCC), but he transition from NAFLD to HCC is poorly understood. Feature selection algo-

rithms in human and genetically modified mice NAFLD and HCCmicroarray data were ap-

plied to generate signatures of NAFLD progression and HCC differential survival. These

signatures were used to study the pathogenesis of NAFLD derived HCC and explore which

subtypes of cancers that can be investigated using mouse models. Our findings show that:

(I) HNF4 is a common potential transcription factor mediating the transcription of NAFLD

progression genes (II) mice HCC derived from NAFLD co-cluster with a less aggressive

human HCC subtype of differential prognosis and mixed etiology (III) the HCC survival sig-

nature is able to correctly classify 95% of the samples and gives Fgf20 and Tgfb1i1 as the

most robust genes for prediction (IV) the expression values of genes composing the signa-

ture in an independent human HCC dataset revealed different HCC subtypes showing dif-

ferences in survival time by a Logrank test. In summary, we present marker signatures for

NAFLD derived HCCmolecular pathogenesis both at the gene and pathway level.

Introduction
Nonalcoholic fatty liver disease (NAFLD) is a condition where fat deposits in the liver. NAFLD
refers to a wide spectrum of liver diseases such as fatty liver (steatosis) and inflammation de-
rived nonalcoholic steatohepatitis (NASH). This condition can advance to fibrosis and cirrho-
sis producing a progressive, irreversible liver scarring that in the 15% of the cases progress into
a liver hepatocellular carcinoma (HCC)[1]. The factors implicated in this progression are poor-
ly understood.

NAFLD is believed to be the hepatic manifestation of the metabolic syndrome, which includes
central obesity, insulin resistance, dyslipidemia and hypertension [1]. The two-hit hypothesis [2]
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states that in a first hit an imbalance in fatty acid metabolism occurs producing the hepatic tri-
glyceride accumulation (steatosis). The second hit results from efforts to compensate for altered
lipid homeostasis and consist of oxidative/metabolic stress and deregulated cytokine production.
In addition, Jou et al. [1] have proposed a third fibroinflammatory repair hit due to overwhelmed
hepatocyte survival mechanisms and increased hepatocyte death rates. This drives progression
from NASH to cirrhosis as these regenerative responses activate the hepatic stellate cells to myo-
fibroblasts that cause liver fibrosis. Regenerative responses are responsible for the expansion of
the hepatic progenitor populations that produce chemoattractants to recruit various types of im-
mune cells into the liver.

Steatosis and NASH develop as a result of excessive pro-inflammatory factors. The etiology
of NASH has a necro-inflammatory component modulated by interactions among various fac-
tors that regulate the biological activity of TNFα. Faced with excessive TNFα and fatty acids he-
patocytes store lipids and activate NF-κB within hepatocytes. Hepatocyte oxidative stress and
eventual apoptosis is promoted by the local increase in TNFα which also recruits inflammatory
cells from the immune system into the liver signifying the emergence of NASH [3]. In 25% of
the cases there is a progression from NASH to cirrhosis where leptin inducible factors that reg-
ulate the activity of profibrogenic cytokines, such as TGF-β, dictate the extent of fibrosis that
occurs during liver injury [3]. When tissue homeostasis is chronically perturbed, interactions
between innate and adaptive immune cells can be disturbed. Then cells from the innate im-
mune system immediately release soluble mediators, such as cytokines, chemokines, matrix re-
modeling proteases and reactive oxygen species. These are factors that induce mobilization and
infiltration of additional leukocytes into damaged tissue resulting in a chronic inflammation
[4]. This results in excessive tissue remodeling, loss of its architecture due to tissue destruction,
protein and DNA alterations due to oxidative stress and under some circumstances, increased
risk of cancer development [3]. See S1 Table in S1 File for a review of the most established bio-
logical processes and biomarkers for NAFLD.

HCC is the fifth most common cancer in the world. The variability in the prognosis of indi-
viduals with HCC suggests that HCC may comprise several distinct phenotypes [5]. These phe-
notypes may result from the activation of different oncogenic pathways during tumorigenesis
as the development of an oncogenic state is a complex process involving the accumulation of
multiple independent mutations that lead to deregulation of cell signaling pathways central to
the control of cell growth and cell fate [6]. Hepatitis B (HBV), hepatitis C virus (HCV) [7],
smoking [8], reproductive and hormonal factors [9], liver cirrhosis [10], primary biliary cirrho-
sis [11], diabetes [12], NAFLD [13] and the metabolic syndrome [14], alcohol intake [15] and
overweight and obesity [16] are causes of HCC.

The glycine N-methyltransferase knockout (GNMT KO) [17] and the methionine adenosyl
transferase knockout (MAT1A KO) mouse models develop NAFLD stages. These models have
altered the S-adenosyl methionine (SAMe) production. SAMe is a cofactor involved in methyl
group transfers, process which is involved in the epigenetic silencing of gene expression by
methylating promoter regions [18]. The MAT1A KO suffer from lack of SAMe [19] while the
GNMT KO has an excess of SAMe leading to aberrant methylation patterning of the DNA that
results in liver disease phenotype [18].

For medical diagnostics, a major task is to find a set of genes correlated with given pheno-
types designated as signatures [20]. These signatures may reveal insights to biological processes
and may be used to classify new samples. Different genes may be present in different signatures
when different training sets of samples and different statistical tools are used. This is because
many genes have correlated expression, especially the genes involved in the same biological
process [21]. Reproducibility in gene signatures identified in different datasets is rare [22].
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Therefore a major challenge for application of gene expression profiling is stability of the
signature.

Robust signatures can be found using feature selection techniques meaning a selection of a
subset of features which values maximize the classification performance. Therefore feature se-
lection is a combinatorial optimization problem used to reduce the dimensionality in classifica-
tion tasks. Reducing the dimensionality of the data by deleting unsuitable attributes improves
the speed and also the performance of the learning algorithms that ultimately will be used for
classification. Feature selection process has two main steps: search and evaluation of subsets
of features.

In this study, a representative set of feature selection methods were adapted and imple-
mented for microarray data. In order to build the feature selection models we adapted different
search strategies including sequential methods and intensive search algorithms such as those
based on evolutionary approaches (S1-S3 Figs. in S1 File). We also used various kinds of super-
vised evaluation criteria based on induction algorithms and supervised clustering. Resampling
techniques were used to assess both an approximately unbiased evaluation criteria and the sta-
bility of the feature selection models. This resulted in running the feature selection methods on
different random partitions of the input data and then, an ensemble solution based on frequen-
cy aggregation of the resulting subsets was generated [23] in order to improve the stability
while avoiding overfitting.

By applying these feature selection algorithms in human and genetically modified mice
HCC and NAFLD two kinds of robust signatures in form of pathways and genes were defined.
The first type, NAFLD progression signatures are common for human and mice and hold the
mechanisms of disease progression. The second kind is a signature of HCC survival containing
the molecular features that discriminate individuals of a poor from a good prognosis.

Materials and Methods

Samples, microarray platforms and GEO accession numbers
RNA samples for microarray experiments of GNMT KOmouse were extracted at 3 and 8
month time when they were histologically determined to develop NASH and HCC respectively
and samples from MAT1A KOmouse are extracted at 3–8 and 15 month time when they de-
velop steatosis, NASH and HCC. The mice samples were collected specifically for this study.
Animals were treated humanely, and all procedures were in compliance with our institution’s
guidelines for the use of laboratory animals. The condition of the animals was monitored daily.
The animals were anesthetized with 4% of isofluorane and sacrificed by cervical dislocation at
the time points indicated above. The liver was frozen and paraffin samples were collected to an-
alyze the status of the liver. The health conditions of the mice were not compromised in this
study. Gene expression microarray experiments were done on the Affymetrix GeneChip
Mouse Genome 430 2.0 Array and 430A 2.0 Array.

Previously published human samples of steatosis and NASH were used [24]. These were hy-
bridized with the Affymetrix HG-U133_Plus_2.na22 platform. Publicly available human HCC
samples from the GEO GSE1898 [5] and GSE364 [25] series with the GPL1528 and GPL257
microarray platforms respectively were used. GSE1898 series has HCC samples for which sur-
vival data is available and these were integrated with NAFLD derived HCC from genetically
modified mice to create signatures distinguishing HCC subtypes characterized because of hav-
ing a different prognosis. The survival analysis is based solely on the publicly available human
survival data. GSE364 dataset was used as a test set because human HCC survival data is also
available. See Table 1 for an overview on the samples, microarray platforms and GEO accession
numbers.
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We performed a RMA normalization where the log2 ratios (M values) of knockout versus
wild type or disease vs control were calculated according to [26]. Probes belonging to the same
genes were averaged.

The Institutional Animal Care and Use Committee (IACUC) that approved specifically this
study were the Bioethical and Animal Welfare Committee of the CIC bioGUNE. Codes: Breed-
ing of MAT1A: P CBG CBBA 1412. Breeding and expansion of GNMT KO: P CBG CBBA
1512. Characterization of mouse lines GNMT and MAT1A KO: P CBG CBBA 2010. The Insti-
tutional Review Board that approved this specific study using human samples was the Human
Research Review Committee of the Hospital de Alcalá de Henares de Madrid. All subjects gave
their signed consent to liver biopsy and to participate in this study.

Feature selection methodologies
In order to carry out the signature based analysis, a versatile series of feature selection algorithms
was adapted and implemented (Table 2). According to the search procedure the multivariate algo-
rithms make use of a genetic algorithm (GA) (S3 Fig in S1 File) that uses an evolutionary approach
which applies the evolutionary operators to guide the moves along the space of solutions, as well as
three different heuristic sequential methods for feature selection. These include a backward multi-
variate method with recursive feature elimination (RFE) (S1 Fig in S1 File), a multivariate forward

Table 1. Microarray samples (biological replicates), platforms and GEO accession numbers.

Microarray samples,
platforms and GEO
accession numbers

Steatosis NASH HCC

Samples-
biological
replicates

Platforms samples-biological
replicates

Platforms samples-
biological
replicates

Platforms and
GEO accession
numbers

Signatures of
NAFLD
progression

Mice -5 biological
replicates of 3
month MAT1A
KO mouse

Affymetrix
Mouse430_2.
na21 platform

-5 biological
replicates of 3
month GNMT
KO-5 biological
replicates of 8
month MAT1A
KO mouse

Affymetrix
Mouse430_2.na21
platform

-4 biological
replicates of 8
month GNMT KO-
5 biological
replicates of 15
month MAT1A KO
mouse

Affymetrix
Mouse430_2.
na21 platform

human -9 human
biological
replicates

Affymetrix
HG-U133_Plus_2.
na22 platform

Survival
signature

Mice -4 biological
replicates of 8
month GNMT KO-
5 biological
replicates of 15
month MAT1A KO
mouse

Affymetrix
Mouse430_2.
na21 platform

human
training

-91 human
biological
replicates

GPL1528 human
microarray
platform in
GSE1898 series

human
validation

-87 human
biological
replicates

GPL257 human
microarray
platform in
GSE364 series

Differentially
expressed
genes in
steatosis and
NASH

human -2 human
biological
replicates

Affymetrix
HG-U133_Plus_2.
na22 platform

-9 human
biological
replicates

Affymetrix
HG-U133_Plus_2.
na22 platform

doi:10.1371/journal.pone.0124544.t001
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feature selection method called minimum redundancy maximum relevance (MRMR) (S2 Fig in S1
File) [27], an hybrid approach of these last two methods called recursive feature elimination mini-
mum redundancy (RFE_MR) (S1 Fig in S1 File) and the knowledge-driven approaches of this last.
Some of these knowledge-driven approaches minimize the correlation among the selected genes
(RFE_MinR_MinGO). As a high degree of redundancy can suppose that two genes belong to the
same pathway, are coexpressed or are on the same chromosome, other knowledge-driven ap-
proaches tackle the redundancy in opposite way, so they maximize correlation (REF_MaxR_-
MaxGO). The univariate search methods explained in [28] were also adapted resulting in forward
feature selection search methods (GS1, GS2 and F-TEST).

The evaluation of the feature subset was done in three ways in all these
search methods:
(1) Operating over the distance matrix that would be ultimately used by a hierarchical cluster-
ing algorithm to test the subset of selected features given the classification. The procedure re-
lied on selecting the feature subsets that maximize the inter-cluster distance while minimize
the intra-cluster distance using a predetermined classification. (2) Using three supervised in-
duction algorithms to evaluate the selected subsets (Support Vector Machines and two configu-
rations of Naïve Bayes). (3) Based on supervised clustering and external validation: at each
iteration the output of an optimal unsupervised clustering algorithm among a representative
set of clustering strategies is compared with the dataset’s real partitioning to evaluate the sub-
sets of features. Instead of using a single classification method to perform the evaluation of the
subsets, this evaluation procedure chooses the optimal method among a set of clustering proce-
dures. The optimal method was chosen in two ways: the clustering algorithm maximizing the
Dunn index (DUNN) or the clustering algorithm minimizing the Figure of Merit (FOM). The

Table 2. The 26 feature selection methods.

Search strategies

Sequential Evolutionary
approach

Backward Elimination Forward feature selection

Evaluation
criteria

Wrapper -5 fold crossvalidation of
the specified based
classifier

RFE-SVM (nr,m)RFE-NB(nr,m)
RFE-BN(nr,m)

Filter-
wrapper
hybrid

-Clustering-distance
matrix

RFE (nr,m)RFE_MR(r,m)
RFE_MinR_MinGO(r,m)
REF_MaxR_MaxGo(r,m)

MRMR(r,m) GA(nr,m)

-Clustering-distance
matrix-10 fold
crossvalidation of SVM
based classifier

GS1(nr, h)GS2(nr, h)F-TEST(nr, h)

-Clustering-External
validity-Clustering choice:
FOM

RFE_clust_FOM (nr,m)
RFE_MR_clust_FOM (r, m)

MRMR_clust_FOM (r, m)
GS1_clust_FOM (nr,h)
GS2_clust_FOM(nr,h)
F-TEST_clust_FOM(nr,h)

GA_clust_FOM
(nr,m)

-Clustering-External
validity-Clustering choice:
DUNN

RFE_clust_ DUNN (nr,m)
RFE_MR_clust_ DUNN (r, m)

MRMR_clust_ DUNN (r, m)
GS1_clust_ DUNN (nr,h)
GS2_clust_ DUNN (nr,h)
F-TEST_clust_ DUNN(nr,h)

GA_clust_ DUNN
(nr,m)

The methods are described in terms of the search and evaluation procedure they use, whether they tackle redundancy (r, redundant; nr, non-redundant),

the name feature selection method and whether they are univariate (u), multivariate (m) or a hybrid of these two (h).

doi:10.1371/journal.pone.0124544.t002
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set of clustering algorithms include k-means, Diana, sota, pam, clara and average, complete,
single and ward linkage criterion for hierarchical clustering and agnes.

Redundancy was measured as the gene average pairwise mutual information or as the average
gene ontology (GO) term pairwise similarity in the selected gene subset. The inclusion of the
gene GO term pairwise similarity as a redundancy measure to guide the search resulted in knowl-
edge-driven feature selection methodologies (RFE_MinR_MinGO and REF_MaxR_MaxGO).

As recent advances include the development of therapies targeting specific signalling path-
ways, these feature selection methods were adapted for microarray analysis by classifying dis-
ease based not only on the activity of individual genes but also on the deregulated over-
represented signalling pathways to obtain further biological insight. We identified KEGG path-
way maps enriched in each of the subset of genes resulting from the five-fold crossvalidation
procedure whose combined expression delivers optimal discriminative power for the class vari-
able, obtaining the overrepresented deregulated pathways that distinguish the different condi-
tions. These pathways are deregulated because it was applied a preprocessing step where only
those genes that were deregulated in a 20% of samples were selected, while significant over rep-
resentations of genes in functional categories were defined based on the hypergemetric test.

Linear lowpass filtering also called smoothing data of time series was applied as a prepro-
cessing step where the expression values were decomposed into random variation, cyclic varia-
tion and trend component. This preprocessing step aimed at stabilizing the feature selection
algorithms and consisted in using the trend component to feed the feature selection algorithms
removing random and cyclic variation. This approach also tried to avoid over-fitting of the
classifiers.

Two further approaches were taken to avoid overfitting: the use of both adequate evaluation
criteria and stable and robust feature selection models. Resampling techniques were used to es-
timate the approximately unbiased classification performance and assess the robustness or sta-
bility of the feature selection technique, indicating how sensitive the output of a feature
selection method is to random perturbations in the input data [29]–[30]. This made possible to
define the stability of selected feature subsets, individual features (genes) and over-represented
deregulated pathways.

Five-fold crossvalidation scheme was used because it preserves a reduced bias in comparison
with resubstitution, it estimates the error with lower variance and uses less computational time
compared to the leave-one-out crossvalidation [29]. The feature selection process is external in
training the classification rule at each stage of the accuracy estimation procedure. It results in
running the feature selection algorithm five times and recording the selected set of features on
each run to introduce variability, this way ensuring that the feature selection algorithms start in
different locations in the search space and choose different initial subsets to begin the search
process from [23] (Fig 1).

To assess the stability of a feature selection technique, variation in the distribution of fea-
tures present in the subsets selected under different partitioning of the training/input data was
calculated. The measure used to assess the stability of the selected subsets was the Normalized
Average Hamming distance (NAHD) [23, 31] between the five subsets resulting from the five-
fold crossvalidation. NAHDmeasures the average of the minimum number of substitutions re-
quired to change one into the other. Another stability indicator is the frequency with which a
given gene is selected across subsamples. The frequency of each of the deregulated KEGG path-
ways showing overrepresentation [32–34] as tested by the hypergeometric test for each of five
runs of the selection algorithms was also recorded.

This analysis design where there are five runs of each of the different methods allowed to
further explore the produced signatures in each of the algorithms in terms of their gene compo-
sition frequency and frequency of the enriched deregulated KEGG pathways. By selecting the
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minimum amount of genes and overrepresented KEGG pathway which expression patterns
maximized the classification performance of the phenotypes in their corresponding classes,
each of the feature selection runs in the external five-fold crossvalidation procedure produced a
genomic signature of genes and another one of pathways. These expression signatures showed
phenotype and sample discrimination capabilities. To provide more robust feature subsets it
was made a solution to the instability of the feature selection method based on the frequency
aggregation of the five subsets resulting from the five runs of the crossvalidation which is essen-
tially an ensemble solution that can be called rank summation [23]. Finally the same frequency
based aggregation procedure to combine the genomic signatures produced by the different
methods to further maximize the classification performance and find unique convergent en-
semble signatures was applied.

Clustering analysis
Bootstrap resampling techniques were used to assess the uncertainty in hierarchical cluster
analysis by calculating probability values (p-values) for each cluster in the dendrogram that
represents the possibility that the cluster is the true cluster. Two types of p-values were avail-
able: bootstrap probability (BP) value and approximately unbiased (AU) p-value. In both cases
thousands of bootstrap samples were generated by randomly sampling with replacement ele-
ments of the data and bootstrap replicates of the dendrogram were obtained by repeatedly ap-
plying cluster analysis to them. BP is biased as discussed in [35–39] and multiscale bootstrap
resampling was used for the calculation of AUp-value [38, 40–42] which has superiority in bias
over BP value calculated by the ordinary bootstrap resampling.

Fig 1. Data partition and aggregation procedures. A random partition of the data into mutually exclusive
sets P1, P2, P3, P4 and P5 is done. Feature selection is performed in each partition. It results in a feature
subset for each partition. We perform frequency based aggregation by individually adding the most frequent
features from the subsets and stop adding features when the performance of a mining algorithm starts to
decrease. It results in a unique ensemble subset.

doi:10.1371/journal.pone.0124544.g001
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Clusters with AU larger than 95% were highlighted by rectangles, which are strongly sup-
ported by data as in a cluster with AU p-value> 95%, the hypothesis that "the cluster does not
exist" is rejected with significance level 0.05 (Figs 2, 3 and 4 & S5 and S6 Figs. In S1 Fie).

Signatures of NAFLD progression
For the signatures of NAFLD progression microarray samples from different stages of the dis-
ease from human and mouse were collected to perform a time course analysis. Using a battery

Fig 2. Tree structure where each of the stages of the disease has been clustered in a single cluster
using the RFE_clust_Dunn algorithm to select the variables used as input in pvclust [43] used to
perform hierarchical clustering.

doi:10.1371/journal.pone.0124544.g002

Fig 3. Mouse and human HCC clustering. the gene expression data of the human HCC of mixed etiologies
has been integrated with HCC samples from GNMT and MAT1Amouse KOmodels of HCC derived from
NAFLD by selecting the orthologous genes using the homologene database. The integrated data holds 1691
genes obtained frommatching the orthologous genes between the genes having at least 9 samples of two
fold regulation in the human HCC series, the 15 month MAT1A KO and 8 month GNMTmouse KOmodels.
Using complete hierarchical clustering and Pearson correlation it is possible to distinguish cluster A and B
with significant differences of survival length and the mouse models laying together cluster A.

doi:10.1371/journal.pone.0124544.g003
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of 14 newly adapted feature selection approaches (Table 3) robust signatures of NAFLD pro-
gression were defined. Mouse and human data was integrated by selecting the orthologous
genes using homologene database [44]. Only genes having twofold regulation or more in 20%
of the samples were selected (470 genes).

Initially raw expression values were used for the 14 supervised clustering feature selection
algorithms (Table 3). Then, to cancel the effect due to random variation and stabilize the algo-
rithms, weighted moving averages a kind of linear lowpass filtering preprocessing was applied
(Table 3). Four samples of each of the human and mouse disease stages representing the

Fig 4. Survival signature common for human andmouse in an independent HCC dataset using
complete hierarchical clustering and Pearson correlation as a similarity measure over the expression
values of the genes composing renders 3 main clusters (A, C and B) representing HCC subtypes of
differential survival.

doi:10.1371/journal.pone.0124544.g004

Table 3. 5 fold cross-validation classification performance, stability calculated as the Average Normalized Hamming Distance (ANHD) and number
of selected genes in the signatures of NAFLD progression from smoothed and raw data.

Method 5 fold
crossvalidation
classification
performance
smoothed data

5 fold
crossvalidation
classification
performance
raw data

Genes smoothed
data

Genes smoothed
data

ANHD
smoothed
data

ANHD
raw
data

Ensemble
error
smoothed
data

Ensemble
error raw
data

GS1 0.065±0.009 0.084±0.016 28 39 0 6.577 0.08 0.092

GS2 0.070±0.010 0.087±0.019 39 39 0 8.156 0.061 0.093

F-TEST 0.077±0.012 0.086±0.019 43 54 0 8.020 0.054 0.095

RFE 0.033±0.015 0.043±0.011 28 61 0 3.955 0.054 0.067

RFE_MR 0.067±0.009 0.085±0.020 50 373 0 5.065 0.061 0.093

RFE_SVM 0.135±0.048 0.232±0.130 11 26 0 0.756 0.144 0.091

RFE_BN 0.042±0.044 0.072±0.036 58 84 0 5.678 0.064 0.101

RFE_NB 0.217±0.082 0.217±0.061 49 70 0 3.152 0.054 0.051

GA 0.027±0.009 0.042±0.007 111 67 0 5.665 0.058 0.058

MRMR 0.060±0.020 0.076±0.015 35 371 0 5.140 0.08 0.097

RFE_MinR_MinGO 0.070±0.014 0.090±0.021 50 85 0 4.582 0.067 0.092

REF_MaxR_MaxGo 0.068±0.026 0.088±0.017 218 93 0 5.658 0.077 0.085

doi:10.1371/journal.pone.0124544.t003
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progressive NAFLD stages were used as a smoothing parameter. These time course profiles
were treated as time series and the raw data were replaced by the trend component to feed the
feature selection procedures. To generate more robust solutions the signatures produced by the
different methods were aggregated by rank summation.

For the genes composing these signatures enrichment of transcription factor binding sites
were explored by the OPPOSUM program using a Fisher exact test (p<0.05) [45] (S1 Table in
S1 File). The positional gene enrichment analysis using PGE program [46] was used to explore
co-localisation of genes in the signatures in the same chromosome band (S4 Fig in S1 File).

Survival signature for human and mouse
By selecting the orthologous genes using homologene database [44] the mouse KOHCCmodels
data were integrated with 91 samples of human HCC gene expression data [5] where clustering
analysis previously revealed two HCC subtypes A and B in the prognosis of the individuals re-
sulting from the activation of different tumorigenic pathways (S5 Fig in S1 File). Clustering anal-
ysis of the integrated human and mouse microarray data again showed the two cancer subtypes
A and B (Fig 4). Using feature selection methodologies gene expression signatures derived from
integrated data were generated. To construct the unique common survival signature for human
and mouse 297 differentially expressed genes (DEGs) between cluster A and B were identified
(two sample t test; p<0.001). This list of genes was then introduced in five of the feature selection
methodologies (GS1, GS2, F-TEST, RFE_SVM and MRMR) (S3 Table in S1 File) and by rank
summation [23] of the signatures a unique signature was obtained.

Venn diagrams were defined to capture genes that were differentially expressed in human
steatosis and NASH when comparing cases and controls (two-sample t-test; p<0.05). Then we
identified the common genes in the prognostic signature present between the differentially ex-
pressed genes in human steatosis and NASH.

The signature holding the genes determining statistical differences in survival length was
further validated by a Logrank test with an independent human HCC dataset having a HBV
etiology and for which survival data was available [25]. Hierarchical clustering analysis on the
expression values of the genes composing the signature in the independent dataset was applied
to define different HCC subtypes (Fig 4). Survival analysis was done to check whether there
were statistical differences in survival length among the subtypes by Logrank test and Kaplan-
Meier plots (Fig 6).

Results and Discussion
In this study a series of newly adapted feature selection approaches was used to define different
robust signatures holding the pathways and genes involved in NAFLD progression as well as a
signature of differential survival in HCC common for human and mouse.

Signatures of NAFLD progression hold convergent pathways regulated
by HNF
The NAFLD progression signatures were used to study the pathogenesis of NAFLD derived
HCC. Gene expression and pathway deregulation signatures with the genes and pathways that
can distinguish different disease stages in human and mice were found using as input 471
genes having twofold regulation or more in 20% of the samples. The signatures produced by
the 14 supervised clustering feature selection algorithms described in material and methods
were aggregated to generate more robust solutions (Table 3). Weighted moving averages linear
lowpass filtering was also applied to remove random variation from the data and run the fea-
ture selection algorithms. The performance, stability and variance of the feature selection
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procedures developed using raw data and smoothed data were compared (Table 3). It was ob-
served that filtering the expression profiles using weighted moving averages produced a huge
positive impact on the stability of all the feature selection methodologies as NAHD was re-
duced to 0. This preprocessing step also reduced the variance (Table 3).

Using this preprocessed data the 14 supervised clustering and external validation feature
selection algorithms were run in order to find signatures which produce the optimal cluster
(Fig 2). Both the RFE_clust_Dunn, that maximizes the Dunn index and the GS1_clust_FOM
that minimizes the FOM are examples of stable optimal clusters (Fig 2 & S6 Fig in S1 File & S4
Table in S1 File).

The signatures produced by the 14 supervised feature selection methods for raw and
smoothed data were aggregated separately and then the resulting pathway signatures were
compared with the two feature selection methods which produced the optimal clustering result.
It was possible to investigate the functional convergence in these signatures in terms of the
overrepresented deregulated pathways whose expression levels can distinguish different disease
stages and it was found that the different methods converge in similar functional solutions
(Fig 5). The activity of a signaling pathway may currently be best characterized by the expres-
sion levels of its target genes. This approach is a simplification as it omits the fact that the ex-
pression levels of the components of the pathway are not necessarily affected when a pathway
is activated. For example, a mutation or post translational modification of a transcription factor
can change the expression levels of its target genes, without affecting the expression levels of
the transcription factor itself or other components of the pathway. Below follows a description

Fig 5. Enriched KEGG pathway signatures selected by the two supervised clustering based feature
selectionmethods which produced the optimal clustering result on smoothed data and the two
ensemble signatures derived from 14 feature selection algorithm from raw and smoothed data used
to build the signatures of NAFLD progression. KEGG enrichment analysis was performed on the genes
selected in the 5 feature selection runs of the external 5 fold crossvalidation procedure and those pathways
having a significant p-value (p<0.05) were selected.

doi:10.1371/journal.pone.0124544.g005

Fig 6. Kaplan-Meier plots showing the survival probability over time (days) of the 3 main clusters
representing HCC subtypes of differential survival found in the independent HCC dataset when
performing clustering analysis over the expression values of the genes composing the survival
signature common for human andmouse.

doi:10.1371/journal.pone.0124544.g006
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of the mechanisms that were found to be disregulated (S11-S23 Figs. in S1 File & Fig 5) and to
contribute to disease progression in NAFLD [1]:

Implications of the adipose tissue in NAFLD pathogenesis and
progression
Hepatocyte accumulation of triglyceride is known to be a key component in the development
of steatosis and NASH. Hepatic steatosis results from abnormal hepatocyte lipid metabolism
that was found to be altered along the disease progression (Fig 5). Triglyceride storage itself is
not hepatotoxic, but it is a marker of increased exposure of hepatocytes to potentially toxic
fatty acids. Within this context stearoyl-CoA desaturase that catalyzes a rate-limiting step in
the synthesis of unsaturated fatty acids was found to be upregulated in human steatosis, NASH
and 3 month mouse KO models while downregulated in 8 month mouse KO models and with
members up and downregulated in 15 month KO mouse model (S11 Fig in S1 File & S12 Fig in
S1 File). It was also found that tyrosine metabolism in human steatosis and NASH samples as
well as in the 8 month GNMT KOmouse model was downregulated (S13 Fig in S1 File). This
metabolism ends by liberation of acetoacetate that can be connected to lipid synthesis. It has
been hypothesized that altered unsaturated fatty acids could mediate PTEN down-regulation
which triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism [47]. Our
study also suggests the importance of androgen and estrogen metabolism central to fat accu-
mulation and the metabolic syndrome as the pathways of these hormones have different mem-
bers up and downregulated in human samples, downregulated in GNMT KO and upregulated
in MAT1A KO (S14 Fig in S1 File).

Lipotoxicity and progression from steatosis to NASH. The arachidonic acid metabolism
was upregulated in all mouse KO HCC samples and in all human samples (S15 Fig in S1 File).
This metabolism is implicated in formation of prostanoids (Fig 5). The cyclooxygenase 2
(COX-2) catalyzes their rate-limiting step (S16 Fig in S1 File). Hepatocyte COX-2 facilitates
the development of steatohepatitis and this effect may involve PPAR alpha as COX-2 increases
the accumulation of PPAR alpha which promotes fatty acid β-oxidation [48]. PPAR signalling
pathway was upregulated along the disease progression in human samples while decreases in
mice (S17 Fig in S1 File). PPARγ activates pathways leading to fatty acid uptake (via CD36)
and triglyceride synthesis [49–51]. The retinol metabolism was altered and hepatic loss of reti-
noic acids function leads to the development of steatohepatitis and liver tumors as retinoids
downregulate the enzymes that are involved in mitochondrial β-oxidation of fatty acids while
in contrast, upregulate the enzymes that are involved in peroxisomal β-oxidation [52]. There-
fore it is possible to suggest that oxidative stress, depletion of hepatic long-chain polyunsaturat-
ed fatty acids and accumulation of excessive fat in the liver may underlie the pathophysiology
of non-alcoholic steatohepatitis [53]. A consequence of this might be the observed general
upregulation of P450s in fat-overloaded hepatocytes (S18 Fig in S1 File) [54], as well as im-
pairment in the glutathione metabolism which is implicated in redox and detoxification [55].
P450 cytochromes are upregulated in both mouse KO models and human steatosis and NASH
samples and HNF4a is responsible for the constitutive activity of the major P450 cytochromes
in human liver [56]. It is also possible that NASH alters the xenobiotic activation of transcrip-
tion factors that are known to induce the expression of cytochromes as this pathway is upregu-
lated in human steatosis and HCCs from both mouse KO models (S19 Fig in S1 File) [57].

Implications of gut bacteria in the development of NASH. An upregulation of the Toll-
like receptors along the disease progression was detected (S20 Fig in S1 File). This might be a
consequence of the activation of the innate immune system response which receptors are typi-
cally Toll-like receptors. Alcohol has been shown to increase gut-derived lipoprotein
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component of endotoxin levels from Gram-negative bacteria as well as Gram-positive organ-
isms in portal blood, activating toll-like receptors during alcohol-induced liver injury. Toll-like
receptor activation may also play a role in steatohepatitis [58].

Possible insulin resistance in NAFLD. Both obesity and NAFLD are strongly associated
with insulin resistance and hyperinsulinemia. Insulin is a key hormone in regulating lipogene-
sis and lipolysis in adipose depots. Insulin resistance in peripheral adipose tissues enhances li-
polysis and increases delivery of adipose-derived fatty acids to the liver. We suggest that insulin
resistance upregulates the renin-angiotensin system deregulated in our study (Fig 5) [59] de-
creasing energy expenditure, with augmented fat mass and affecting glucose clearance [60].

Linking hepatocellular carcinoma (HCC) with NAFLD. Hepatocyte DNA damage has
been demonstrated in early stages of steatosis/NASH increasing formation of reactive oxygen
intermediates that might damage DNA, overexpress p53 and increase Fas expression by hepa-
tocytes [61]. This has been shown to increase with liver injury in animal models. Interestingly,
we found p53 pathways to be upregulated in the progression of NAFLD (S21 Fig in S1 File).
This finding suggests that steatosis/NASH provides a favourable ground for malignant
transformation.

Related to the mechanisms involved in the progression of HCC in our animal models Clade
B ovalbumin serpins (SERPINB1: serpin peptidase inhibitor, member 1. SERPINB6: serpin
peptidase inhibitor, member 6. SERPINB9 serpin peptidase inhibitor, member 9) were upregu-
lated in all HCC cases (S4 Fig in S1 File) and it has been reported that tumor is evaded against
immunosurveillance by transcriptionally upregulating proteinase inhibitors which prevents the
immune system from destroying the cancer cells [62].

Many mechanisms that might counteract malignant transformation (Fig 5) are found:
MAPK pathways were upregulated in this study, such as Jun N-terminal kinase and p38 (S22
Fig in S1 File). The activation of p38 MAPK results in cancer cell apoptosis known to be initiat-
ed by retinoids, cisplatin and other chemotherapeutic agents [63]. Hepatic injury might be im-
proved by bile acids which are also upregulated in 3 month mouse KO models, downregulated
in 8 month ones and up and downregulated in 15 month MAT1A KO (S23 Fig in S1 File). It
has been shown that they induce apoptosis in HepG2 cells [64]. Genes affecting monoterpe-
noids, also deregulated along the disease progression, are known to induce apoptosis in liver tu-
mors [65]. Lastly α-linolenic acid was found to be deregulated along the disease progression. It
is known to reduce COX-2 expression and to induce apoptosis of hepatoma cells [66].

The regulation of the expression of the genes in the signatures is often governed by tran-
scription factors. Therefore the enriched transcription binding sites among the genes in the sig-
natures factors were explored and HNF4 alpha was found to be the common transcription
factor mediating the transcription of the genes composing the signatures (S1 Table in S1 File).
This gene controls the development and metabolic homeostasis of the organism [67]-[68] and
in agreement with previous studies the HCCs derived from two mouse KO models showed a
strong downregulation of HNF4 [69, 70] (S7 Fig in S1 File). In human, HNF4 alpha was found
to be downregulated in some NASH cases (S8 Fig in S1 File). HNF4 alpha is a zinc-coordinat-
ing group transcription factor. Overall, in mice NAFLD progression genes having transcription
factor binding sites enriching HNF4 alpha are regulated in opposite direction (S7-S10 Figs. in
S1 File). Examples of single zinc-sensitive transcription factors regulating gene expression in
opposite directions exist [71].

Most of the other transcription factors controlling the expression of the genes in the differ-
ent signatures (S2 Table in S1 File) are associated with liver disease where they are thought to
play a role in the development of HCC. For example, the nk-2-related transcription factor is as-
sociated with human fetal liver and HCC since Nkx2.5 is involved in alpha fetoprotein tran-
scription in HCC [72]. The proto-oncogenes c-fos is involved in cell cycle progression and
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cellular proliferation [61]. The gene has been associated to adenocarcinoma, carcinoma and
liver neoplasms, DNAmethylation and inflammatory response. The encoded protein by the
Cebpa gene has been shown to bind to the leptin promoter and modulate its expression. The
Cebpa protein can interact with CDK2 and CDK4, and thereby inhibiting these kinases and
causing growth arrest. Functionally, the gene is associated with carcinoma and HCC. Pdx1 is
associated to diabetes mellitus, glucose intolerance and early onset of diabetes in young people.
The proto-oncoprotein Gfi regulates of SOCS gene expression by Gfi-1B inducing STAT5-tar-
get gene.

HCC prognosis markers in the survival gene expression signature for
human and mouse is validated by a test dataset

Identification of the two subtypes of HCC. HCC derived from genetically modified mice
that spontaneously develop HCC arising from NAFLD was integrated with human HCC of dif-
ferent etiologies. This made it possible to investigate in what extent the mouse models repro-
duced features observed in the corresponding human conditions, as well as to understand the
common molecular mechanisms between human HCCs derived from mixed etiologies and ge-
netically modified mice HCCs derived from NAFLD. Unsupervised clustering procedures dis-
criminated human microarray HCC samples of a less aggressive from a more aggressive
phenotype and the mouse models co-clustered with the less aggressive of these HCC subtypes,
possibly because mouse KO models do not develop metastasis (Fig 4 & S6 Fig in S1 File). Then,
using different feature selection methods gene expression signatures were generated. These re-
flect the differential deregulation of biomarker genes and cell signaling pathways between the
previously published two molecular HCC prognostic subtypes [5] with the integrated human
and mouse microarray data (S3 Table in S1 File). Lastly a unique ensemble survival signature
was generated by rank summation of the signatures produced by the different methods
(Table 4). This signature was used to characterize and explore which cancers can be investigat-
ed using NAFLD derived HCC from genetically modified mouse models.

Performance of the unique survival signature for human and mouse. The resulting en-
semble survival signature for human and mouse has an accurate classification performance
and is quite stable as it classifies correctly 95% of the instances with a NAHD of 0.773. The fre-
quency based aggregation procedure used to generate the ensemble solution produced a strong
positive impact on stability and performance (S3 Table in S1 File).

Gene composition stability of the ensemble signature for human and mouse. The re-
sulting gene subset composing the ensemble survival signature can be used as the prognostic
markers that explain the differences in gene expression values among these two phenotypes of
HCC. Here we described the most interesting patterns that classified the two molecular HCC
subtypes (Table 4). There was great degree of functional convergence of pathways in the surviv-
al signature common for human and mouse resulting from pathways enrichment analysis of
each of the 25 signatures produced by the five runs of the five feature selection methods
(Table 5). The most stable genes for prediction in the ensemble signature were the fibroblast
growth factor 20 (Fgf20) and the transforming growth factor beta 1 induced transcript 1
(Tgfb1i1). Fgf20 controls the extent of angiogenesis in liver disease [73]. Tgfb1i1 was upregu-
lated in the cluster A and downregulated in cluster B. It is involved in the development of fibro-
sis in various processes of chronic inflammation in liver. It can promote invasion and
metastasis during the tumor growth [74]. Other genes in the signature were 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 2 (Pfkfb2), Ubiquitin-conjugating enzyme E2G 2
(Ube2g2) and tumor necrosis factor ligand superfamily, member 13b (Tnfsf13b). The Pfkfb2
protein is involved in both the synthesis and degradation of fructose-2,6-bisphosphate, a
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regulatory molecule that controls glycolysis in eukaryotes. It induces glycolysis and is altered in
both clusters. It can be speculated that this mutation in tumor cells can increase the energy-
level of the fast growing tumor cells. Alterations in this pathway would also cause surface mem-
brane alteration such as a decrease in glycoproteins that are important parts of adhesion

Table 5. Survival signature of pathways common for human andmouse resulting from the signatures produced by the 5 runs of the 5 feature se-
lectionmethods.

Enriched KEGG pathways Hypergeometric tests p-value Standard deviation of p-value Frequency

Regulation of autophagy 0.0103 0.0076 7

Reductive carboxylate cycle (CO2 fixation) 0.0257 0.0029 6

Neuroactive ligand-receptor interaction 0.0260 0.0020 4

Hematopoietic cell lineage 0.0272 0.0077 4

Folate biosynthesis 0.0382 0.0138 2

Starch and sucrose metabolism 0.0204 0.0109 2

Leukocyte transendothelial migration 0.0145 0.0028 2

Cell adhesion molecules (CAMs) 0.0081 0.0040 2

The frequency of appearance of the selected pathways among the 5 runs of the 5 feature selection methods is recorded as a measure of stability. Another

measure of stability is the Hypergeometric test´s p-values standard deviation.

doi:10.1371/journal.pone.0124544.t005

Table 4. Ensemble unique gene survival signature common for human andmouse resulting from the frequency based aggregation of the signa-
tures produced by the 5 feature selectionmethods.

Gene ID Gene name Frequency

Tgfb1i1 transforming growth factor beta 1 induced transcript 1 1

Fgf20 fibroblast growth factor 20 1

Kcnk2 potassium channel, subfamily K, member 2 0.8

Pfkfb2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 0.8

Kcnk3 potassium channel, subfamily K, member 3 0.8

Pigr polymeric immunoglobulin receptor 0.8

Egr4 early growth response 4 0.8

Kera keratocan 0.8

Foxf2 forkhead box F2 0.8

Adprh ADP-ribosylarginine hydrolase 0.4

Cecr6 cat eye syndrome chromosome region, candidate 6 homolog 0.2

Slco1b2 carrier organic anion transporter family, member 1b2 0.2

Slc5a6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 0.2

Xkr4 X Kell blood group precursor related family member 4. 0.2

Camk1g calcium/calmodulin-dependent protein kinase I gamma 0.2

Brd7 bromodomain containing 7 0.2

Mdfic MyoD family inhibitor domain containing 0.2

D3Bwg0562e DNA segment, Chr 3, Brigham & Women's Genetics 0562 expressed 0.2

Tnfsf13b tumor necrosis factor (ligand) superfamily, member 13b 0.2

Muc13 mucin 13, epithelial transmembrane 0.2

Elf1 E74-like factor 1 and similar to claspin homolog 0.2

Ube2g2 ubiquitin-conjugating enzyme E2G 2 0.2

Ddx46 DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 0.2

The frequency of appearance of the selected genes among the 5 feature selection methods is recorded as a measure of stability.

doi:10.1371/journal.pone.0124544.t004
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molecules, in which abnormalities can result in acquisition of the metastatic phenotype. Sup-
porting this, a positional gene enrichment analysis for the identification of chromosomal re-
gions that were significantly enriched in the ensemble gene subset found 40% of enrichment in
the q31 region of chromosome 1 that holds 6-phosphofructo-2-kinase and polymeric immuno-
globulin receptor. Ube2g2 was downregulated in cluster A and upregulated in cluster B. These
differences might explain the extent of apoptosis, which is limiting the proliferation and the ac-
cumulation of genetic and epigenetic alterations in the tumor, meaning that cancer cells have
found a selective advantage in altering the apoptosis controlling enzymes [5]. Tnfsf13b acts as
a potent B cell activator. This protein may be able to induce apoptosis through its interaction
with other TNF receptor family proteins. TNF-induced cell death plays only a minor role com-
pared to its overwhelming functions in the inflammatory process. Tnfsf13b was downregulated
in cluster B while it was upregulated in cluster A. We only identified Tnfsf13b as a differentially
expressed gene in steatosis and NASH together of being responsible of activating different tu-
morigenic pathways leading to differential survival of the individuals with HCC.

Validation of the survival signature using an independent dataset. The survival signa-
ture is composed of the common genes between human HCC from mixed etiologies and
mouse HCCs derived from NAFLD that correlate with a differential prognosis. This is because
it was built using feature selection methods to find the genes which the expression values dis-
criminated between both HCC subtypes. The mixed etiologies from which the human HCCs
are derived in the majority of the cases are HBV, HCV and alcohol. This survival signature was
validated with an independent human HCC dataset with a HBV etiology having 87 samples
[25]. Hierarchical clustering analysis was performed on the expression values of the gene fami-
lies composing the signature and three different HCC subtypes were found (Fig 5) having sta-
tistical differences in survival length by Logrank test (p = 0,05) and Kaplan-Meier plots (Fig 6).
Thus the survival signature was validated for discriminating between HCC prognostic subtypes
of different etiologies including HBV, HCV, alcohol and NAFLD, as it was able to predict in an
independent HCC different prognostic subtypes showing significant differences in
survival time.

Conclusion
From signatures generated by feature selection algorithms markers of HCC and targets for
mechanistic studies were identified. These provide new insights into the molecular pathogene-
sis of NAFLD derived HCC. First the signatures of NAFLD progression common for human
and genetically modified mouse models were generated to identify many of the known mecha-
nisms of NAFLD progression. Most of the signatures have HNF4 as a common transcription
factor controlling the transcription of their genes. Second, NAFLD derived HCC from geneti-
cally modified mouse models were integrated with human HCCs of mixed etiologies where
previously unsupervised classification revealed two prognostic subtypes. The mouse HCC co-
clustered with the less aggressive subtype. Possibly this is because the mouse KO models do not
develop metastasis, which is the main feature of aggressiveness in a tumor. Indeed the most ro-
bust genes for prediction of prognostic subtypes are Fgf20 and Tgfb1i1 involved in angiogene-
sis, invasion and metastasis. HCC differential survival signature common for human and
mouse was developed to allow for reliable identification of tumor type based on gene expres-
sion. This showed prognostic discrimination and prediction capabilities and reflected the dif-
ferential deregulation of signaling pathways and genes between two molecular HCC prognostic
subtypes. Importantly, the survival discrimination capabilities of the signature were validated
with an independent human HCC dataset of HBV etiology. Cluster analysis on the expression
values of the genes composing the signature in the independent human HCC dataset revealed
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different HCC subtypes showing differences in survival length, meaning that the survival signa-
ture can be extrapolated to other datasets of HCC with different etiologies. Improving the clas-
sification of individuals with HCC coming from diverse etiologies would create a basis for
improving therapeutic strategies. Additionally, finding common processes between mice HCC
derived from the progression of NAFLD stages and human HCC arising from diverse etiologies
support the use of mouse models. Overall this analysis of data obtained from mouse models
provide novel insight into the early development of HCC and point to novel therapeutic
options.

Supporting Information
S1 File. S1 Fig. Flow diagram of the steps performed by the RFE and RFE_MRmethod.
Stage1: As it is a backwards procedure starts from the full matrix of selected genes. The process
is iterative where the number of iterations either for first selection (x = number of selection iter-
ations) or posterior refinement selection around the selection solution (y = number of refine-
ment iterations) should be specified. It uses the class vector as input. Stage2: Evaluate the
selected gene subset. Stage3a. If the process does not take into account the redundancy of the
features (RFE): calculates the sample by sample MI excluding each gene. For each excluded
gene defines a coefficient I as the difference of the sum of the sample by sample MI between
classes and the sum of the sample by sample MI within groups. Stage 3b1: If the process takes
into account the redundancy of the features (RFE_MR): for each gene calculates the average
gene pairwise mutual information. Stage3b2: For each gene calculates the Coefficient II value
by adding the average gene pairwise MI to the coefficient II. Stage4: Remove the m worst coeffi-
cient values and their corresponding genes and expression values. Stage5: Find the minimum
error rate along the iterations and get the selected genes. S2 Fig. Flow diagram of the steps
performed by the MRMRmethod. Stage1: As it is a forward search procedure, it starts from
an empty set of selected genes. The process is iterative where the number of iterations should
be specified and uses the class vector as input. Stage2: Calculate the normalized mutual infor-
mation of the class vector with the vector containing each gene expression values along the
samples. Stage3: a. For each gene calculate the average gene pairwise mutual information. b.
For each gene in the subset of selected genes calculate the average gene pairwise mutual infor-
mation. Stage4: For each gene define a coefficient value by dividing the value of the normalized
mutual information with the average gene pairwise mutual information. Stage5: Store the gene
having the maximum coefficient value and remove from the matrix the corresponding gene.
Stage6: Evaluate. Stage7: Find the minimum error rate along the iterations and get selected
genes. S3 Fig. Flow diagram of the GA procedure. Stage 1: The procedure initially creates a
number of random variable sets (chromosomes). These variable sets form a population of chro-
mosomes. Each random set is created with an initialization that randomly selects 70 genes
from the total 504. Stage 2: Each chromosome in the population is evaluated for its ability to
predict the group membership of each sample in the dataset (fitness function). Stage 3: Elitism:
select the fittest individual intact for the next generation. Stage 4: The population of chromo-
somes is replicated. The roulette wheel selection ensures that chromosomes with a higher fit-
ness score will generate a more numerous offspring. Stage 5: The genetic information
contained in the replicated parent chromosomes is combined through genetic crossover with a
crossover probability (For the parameters see supplementary Table 4 and “Parameters in the
Genetic Algorithm” supplementary section). The chromosomes are ranked according to their
fitness value. Above the crossover probability the best chromosomes are maintained intact for
the next generation. Below the crossover probability two randomly selected parent chromo-
somes are used to create two new chromosomes. This crossover mechanism allows a better
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exploration of possible solutions recombining good chromosomes. Stage 6: Mutations are then
introduced in the new chromosomes generated by crossover randomly with a mutation proba-
bility. These mutations produce that new genes are used in chromosomes. Stage 7: The process
is repeated from stage 2 until the number of generations exceeds certain threshold (100) and
the regression between the population of chromosome’s minimum error rate and the genera-
tion is less than 0.05. The cycle of replication (stage 3), genetic crossover (stage 4) and muta-
tions (stage 5) is called generation. S4 Fig. Tree structure where each of the stages of the
disease has been clustered in a single cluster. Tree structure where each of the stages of the
disease has been clustered in a single cluster using the GS1_clust_FOM algorithm to select the
variables used as input in pvclust used to perform hierarchical clustering. S5 Fig. A: Ovalbu-
min serpin expression along the NAFLD progression.B: Positional gene enrichment. A: Ov-
albumin serpin expression along the NAFLD progression. MAT1A_15 and GNMT_ko8 are
HCC mice samples where the serpins are overexpressed.B: Positional gene enrichment analysis
using PGE program [46] shows that all the genes in ensemble chromosome band 6 p24.3 are
overexpressed giving rise to the possibility a common mechanism of gene regulation. S6
Fig. 91 human HCC data clustering. Using complete hierarchical clustering using the Pearson
correlation as a similarity measure it is possible to distinguish two stable clusters, cluster A and
B that show statistical significant differences of survival length using by Kaplan-Meier plots
and log-rank statistics analysis. S7 Fig.HNF4 alpha expression (log2 mouse KO vs wild type)
in 3 and 8 month GNMT and MAT1A; and 15 month MAT1A (tumoral tissue, T). S8 Fig. Ex-
pression trend (log2 mouse KO vs wild type) of NAFLD progression genes regulated by
HNF4a in 3 and 8 month GNMT and MAT1A; and 15 month MAT1A (tumoral tissue, T). S9
Fig.HNF4 alpha expression (log2 disease vs control) in human steatosis and NASH. S10 Fig.
Expression trend (log2 mouse KO vs wild type) of NAFLD progression genes regulated by
HNF4a in human steatosis and NASH. S11 Fig. Expression trend (log2 mouse KO vs wild
type) of biosynthesis of unsaturated fatty acids in human steatosis and NASH; in 3, 8 month
GNMT; and MAT1A KOmice and 15 month MAT1A tumors. S12 Fig. Expression (log2
mouse KO vs wild type) of stearoyl-CoA desaturase in human steatosis and NASH in 3, 8
month GNMT; and MAT1A KOmice and 15 month MAT1A tumors. S13 Fig. Expression
trend (log2 mouse KO vs wild type) of phenylalanine, tyrosine and tryptophan biosynthesis in
human steatosis and NASH; in 3, 8 month GNMT; and MAT1A KOmice and 15 month
MAT1A tumors. S14 Fig. Expression trend (log2 mouse KO vs wild type) of androgen and es-
trogen metabolism in human steatosis and NASH; in 3, 8 month GNMT; and MAT1A KO
mice and 15 month MAT1A tumors. S15 Fig. Expression trend (log2 mouse KO vs wild type)
of arachidonic acid metabolism in human steatosis and NASH; in 3, 8 month GNMT; and
MAT1A KOmice and 15 month MAT1A tumors. S16 Fig. Expression (log2 mouse KO vs
wild type) of cyclooxygenase in human steatosis and NASH; in 3, 8 month GNMT; and
MAT1A KOmice and 15 month MAT1A tumors. S17 Fig. Expression trend (log2 mouse KO
vs wild type) of PPAR signaling pathway in human steatosis and NASH; in 3, 8 month GNMT;
and MAT1A KO mice and 15 month MAT1A tumors. S18 Fig. Expression trend (log2 mouse
KO vs wild type) of drug metabolism cytochrome P450 in human steatosis and NASH; in 3, 8
month GNMT; and MAT1A KOmice and 15 month MAT1A tumors. S19 Fig. Expression
trend (log2 mouse KO vs wild type) of metabolism of xenobiotics by cytochrome P450 in
human steatosis and NASH; in 3, 8 month GNMT; and MAT1A KOmice and 15 month
MAT1A tumors. S20 Fig. Expression trend (log2 mouse KO vs wild type) of toll-like receptor
signaling pathway in human steatosis and NASH; in 3, 8 month GNMT; and MAT1A KO
mice and 15 month MAT1A tumors. S21 Fig. Expression trend (log2 mouse KO vs wild type)
of p53 signaling pathway in human steatosis and NASH; in 3, 8 month GNMT; and MAT1A
KOmice and 15 month MAT1A tumors. S22 Fig. Expression trend (log2 mouse KO vs wild
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type) of MAPK signaling pathway in human steatosis and NASH; in 3, 8 month GNMT; and
MAT1A KOmice and 15 month MAT1A tumors. S23 Fig. Expression trend (log2 mouse KO
vs wild type) of bile acid biosynthesis in 3, 8 month GNMT; and MAT1A KOmice and 15
month MAT1A tumors. S1 Table. Summary of the most established biomarkers in NAFLD.
S2 Table. Dunn and FOM indexes of the Signatures of NAFLD progression. Dunn and
FOM indexes of the Signatures of NAFLD progression resulting from the 14 different super-
vised clustering based feature selection methods on smoothed data; Ensemble error rate and
stability in terms of Hamming distance of the Signatures of NAFLD progression resulting from
the 7 different supervised clustering based feature selection methods that minimise the FOM
index on smoothed data. S3 Table. Enriched Transcription Factor binding sites. Enriched
Transcription Factor binding sites by means of Fisher exact test (p<0.05) in the signatures of
NAFLD progression resulting from the two supervised clustering based feature selection meth-
ods which produced the optimal clustering result and the two ensemble signatures from raw
and smoothed data. S4 Table. Ensemble error rate and the number of the different feature
selection methods used to build survival signature. Ensemble error rate and the number of
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