
sensors

Article

Hybrid RSS/AOA Localization using Approximated
Weighted Least Square in Wireless Sensor Networks

SeYoung Kang 1, TaeHyun Kim 2 and WonZoo Chung 1,∗

1 Division of Computer and Communications Engineering, Korea University, Seoul 02841, Korea;
sykang0229@korea.ac.kr

2 Agency for Defense Development, Daejeon 34186, Korea; thkimc@add.re.kr
* Correspondence: wchung@korea.ac.kr

Received: 22 January 2020; Accepted: 18 February 2020; Published: 20 February 2020

Abstract: We present a target localization method using an approximated error covariance matrix
based weighted least squares (WLS) solution, which integrates received signal strength (RSS) and
angle of arrival (AOA) data for wireless sensor networks. We approximated linear WLS errors
via second-order Taylor approximation, and further approximated the error covariance matrix
using a least-squares solution and the variance in measurement noise over the sensor nodes.
The algorithm does not require any prior knowledge of the true target position or noise variance.
Simulations validated the superior performance of our new method.
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1. Introduction

Recently, localization using wireless sensor networks (WSNs) has gained considerable attention
given the emerging development of services based on location awareness [1–12] A WSN is a group of
spatially dispersed sensors (anchors) that monitor and record the physical condition of the environment.
WSN localization usually involves range or angle measurement [2–5]. However, WSNs were not
originally designed for target localization, and errors in the available data (received signal strength
(RSS) or angle of arrival (AOA)) are a major concern; the perfect position information of anchor nodes
may not be feasible. Some target localization techniques, such as the so-called range-free approaches
like in [13–16], do not rely on RSS/AOA measurements, and roughly estimate the target location
by exploiting the finite ranges of the sensors in the grid of abundant nodes. On the other hand,
in the so-called range-based approach, RSS/AOA measurements are used to estimate the target
location directly. The range-based localization assumes that each anchor node is able to have the
positions of the node and RSS as well as the AOA of the received signals and, hence, theoretically,
the exact location of the target is attainable. However, the errors in RSS/AOA measurements are
severe, and sophisticated integration of the RSS and AOA measurements has been investigated [17–23].
The challenge of the range-based localization algorithms is to overcome the limitation of the noisy
RSS/AOA measurements with a practical computational complexity.

Target position estimation using hybrid RSS/AOA data is an optimization problem of
a non-convex system [9]. To actually solve the problem, a maximum likelihood (ML) estimator
has been employed [17]. As the ML approach imposes an unacceptable computational burden,
a simplified linearization of the non-convex problem has been considered and a straightforward
least squares (LS) method for target localization has been proposed [17]. In an effort to develop
a target estimation algorithm that is almost as effective as ML but has a low computational complexity
(similar to that of the LS method), several non-convex optimization techniques, such as semidefinite
programming (SDP) relaxation [20] and second-order cone programming (SOCP) relaxation [21],
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have been proposed. However, the computational complexity of these algorithms greatly exceeds
that of the LS method. Several attempts have been made to applying weights to the simplified linear
equations. In [21], a squared-range weighted least squares (SR-WLS) algorithm was proposed, in which
the selected weighting was inversely proportional to the distance between an anchor and the target.
In [22], using a spherical representation of the target, a closed-form LS equation was derived with
selected weights based on the distance from the target (the WLS algorithm). In [23], a generalized
least squares (GLS) approach using an error covariance matrix (the WLLS algorithm) was used, but it
requires precise noise variance data that may not be available in practice. The performance comparison
study in [24] reported that the WLS algorithm exhibits state-of-art performance, with a complexity
comparable to that of the LS method but without the requirement for noise variance data. However,
the distance-related weights may not be optimal, and the performance could be improved if an error
covariance matrix was used. Unfortunately, the error covariance of the linear WLS equation is extremely
difficult to compute and no closed-form expression is available.

Here, we present an elaborate weighting scheme based on the approximated error covariance
matrix for the approximated linear equation of the WLS algorithm as a replacement for distance-based
weights. The errors in the WLS linear equation are not independent Gaussian, and it is difficult to
analyze the probability density function (PDF). Using a second-order Taylor approximation, we derived
an approximate error covariance matrix assuming perfect knowledge of the true target position and
the variance in Gaussian measurement noise. To compute the approximated error covariance matrix
without any knowledge of the target position or noise, we replaced the true target position with
an LS solution and the variance in measurement noise over the sensor nodes. The resulting algorithm,
which we term the “error covariance WLS” (ECWLS) algorithm, outperforms the WLS with only
a marginal increase in computational complexity, as confirmed by simulations. In summary, the main
contribution of this paper is the presentation of a range-based hybrid RSS/AOA target localization
algorithm that outperforms existing range-based state-of-the-art WLS without prior knowledge of the
noise level.

The rest of the paper is organized as follows. In Section 2, the target localization problem when
RSS and AOA measurements are used is introduced with related works, along with the existing
solutions. Section 3 presents the new algorithm. We derived an approximated error covariance matrix
using a second-order Taylor approximation and developed a practical matrix computation. In Section 4,
we provide the computational complexity of all algorithms. In Section 5, we evaluate the performance
of our algorithm via simulations and compare it to existing methods. Section 6 concludes the paper.

2. System Model and Related Works

2.1. System Model

Consider a wireless sensor network (WSN) with N sensor (anchor) nodes located at
ai = [aix, aiy, aiz]

T ∈ R3 for i = 1, · · · , N. Here, xo = [xox, xoy, xoz]T is the unknown target
location and di, φi, and αi are the distance from the target (di =‖xo − ai‖) and the associated azimuth
and elevation angles, respectively (Figure 1). Each anchor obtains an RSS from the target, denoted as
Pi [25], and measures the AOA of the signal, specifically the azimuth angle φ̂i and the elevation angle
α̂i. Measurement error may occur in relation to the target location, xo, as follows:

P̂i = P0 − 10γ log10
‖xo − ai‖

d0
+ ni

φ̂i = tan−1
( xoy − aiy

xox − aix

)
+ mi

α̂i = cos−1

(
xoz − aiz
‖xo − ai‖

)
+ vi

, for i = 1, · · · , N, (1)
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where P0(dBm) is the calibrated (reference) received power at a reference distance d0 (di ≥ d0)

and γ is the path loss exponent (PLE). The measurement noises, ni ∼ N(0, σ2
ni
), mi ∼ N(0, σ2

mi
),

and vi ∼ N(0, σ2
vi
), are assumed to be independent white zero mean Gaussian noise.

Figure 1. Anchor node and target location in a 3-D space.

2.2. Related Works

Using the Gaussian noise measurement model, the ML estimator for the target location, x̂ML,
is derived as follows [17]:

x̂ML = arg max
x ∑

i
ln P(P̂i, φ̂i, α̂i|xo) = arg min

x ∑
i

fi(P̂i, φ̂i, α̂i, xo) (2)

where

fi(P̂i, φ̂i, α̂i, xo) =
1

σ2
ni

(P̂i − P0 + 10γ log10
‖xo − ai‖

d0
)2

+
1

σ2
mi

(φ̂i − tan−1
( xoy − aiy

xox − aix

)
)2

+
1

σ2
vi

(α̂i − cos−1

(
xoz − aiz
‖xo − ai‖

)
)2

for i = 1, · · · , N. (3)

In the absence of noise, the observation-target Equation (1) can be transformed into

λiuT
i (xo − ai)− ηd0 = 0

cT
i (xo − ai) = 0

(ui cos(αi)− 1)T(xo − ai) = 0,

(4)

where λi = 10
Pi

10γ , η = 10
P0

10γ , ci =
[
− sin

(
φi
)
, cos

(
φi
)

, 0
]T

, 1 = [0, 0, 1]T , and ui is the unit direction,

ui =
[
cos

(
φi
)

sin (αi) , sin
(
φi
)

sin (αi) , cos (αi)
]T

. In the presence of noise, by approximating the

true angles in ci and ui according to the observation angle as ci = [− sin
(
φ̂i
)
, cos

(
φ̂i
)

, 0]T and
ui = [cos

(
φ̂i
)

sin (α̂i) , sin
(
φ̂i
)

sin (α̂i) , cos (α̂i)]
T , we obtain the following system of linear equations

of the target location based on the observations proposed in [21].

λ̂iuT
i (xo − ai)− ηd0 = εi1

cT
i (xo − ai) = εi2

(cos(α̂i)ui − 1
T)T(xo − ai) = εi3

, for i = 1 · · ·N, (5)

where εij is the error term attributable to the Gaussian noise. In a matrix form

Axo − b = ε, (6)
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where

A =



λ̂1uT
1

...
λ̂NuT

N
cT

1
...

cT
N(

cos (α̂1)u1 − 1
)T

...(
cos (α̂N)uN − 1

)T



, b =



λ̂1uT
1 a1 + ηd0

...
λ̂NuT

NaN + ηd0

cT
1 a1
...

cT
NaN(

cos (α̂1)u1 − 1
)T a1

...(
cos (α̂N)uN − 1

)T aN



, (7)

and ε =
[
ε11 ε21 · · · εN1 ε12 · · · εN2 ε13 · · · εN3

]T
. When ε is a zero-mean Gaussian

random vector, the generalized LS solution [26], i.e.,

x̂GLS = (ATW−1 A)−1 ATW−1b, (8)

becomes an ML solution for (4), where W = Cov(ε|A). However, the PDF of ε is not Gaussian and is
difficult to compute given the nonlinear transform from (1) to (4). In [22], an alternative weighting
approach was proposed; W was replaced with the weights inversely proportional to the distance from
the target: W = I3 ⊗ diag(w), w = [wi], where

wi = 1− di

∑j dj
. (9)

This WLS algorithm exhibits the best performance among the various localization algorithms
based on hybrid RSS/AOA measurements [24].

On the other hand, the spherical coordinate system yields a direct estimation of the target position
from the RSS and AOAs:

x̂x = aix + d̂i cos(φ̂i) sin(α̂i),

x̂y = aiy + d̂i sin(φ̂i) sin(α̂i),

x̂z = aiz + d̂i cos(α̂i),

for i = 1, · · · , N. (10)

The LS solution described above (10) is termed the LS algorithm [17]. The error covariance matrix
for LS is simple to compute (see Appendix A, which corrects the missing terms in the correlation
matrix presented in [24]). The weighted LS algorithm using the covariance matrix is termed the
WLLS algorithm [23]. Although the LS method is intuitive and simple, the performance comparisons
in [24] and in Section 6 in this paper showed that the WLS method outperforms the LS method,
while the WLS method is, in turn, outperformed by the WLLS algorithm due to the introduction of
error covariance weights.

3. The Proposed Method

In this section, we develop an approximated weighted least squares approach for WLS by
(i) computing an approximated error covariance matrix using second-order Taylor approximation,
(ii) approximating the true target information in the covariance matrix to that of the LS solution,
and (iii) approximating the noise variance to the sample noise variance over anchors. Figure 2 shows
the overall flowchart of the proposed method.
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Figure 2. The flowchart of the error covariance weighted least squares (ECWLS) algorithm.

3.1. Approximated Covariance Matrix

The errors in (5) contain nonlinear transforms of observations that are the sums of the true
parameters and noise, as the straightforward evaluation of (5) shows:

εi1 =λ̂i cos
(

ϕ̂i
)

sin (α̂i) (x̂x − aix) + λ̂i sin
(

ϕ̂i
)

sin (α̂i)
(

x̂y − aiy

)
+ λ̂i cos2(α̂i)(x̂z − aiz)− η̂d0,

εi2 =− sin
(

ϕ̂i
)
(x̂x − aix) + cos

(
ϕ̂i
)
(x̂y − aiy),

εi3 =
1
2

sin(2α̂i) cos(ϕ̂i)(x̂x − aix) +
1
2

sin (2α̂i) sin
(

ϕ̂i
) (

x̂y − aiy

)
+ sin2 (α̂i)(x̂z − aiz).

(11)

Assuming that the noise is small enough, we consider a second-order Taylor approximation of
the nonlinear terms of observations as follows:

λ̂i = 10
Pi+ni

10γ = λi10
ni

10γ ≈ λi(1 + γ̄ni +
1
2

γ̄2n2
i ), (12)

sin(φ̂) = sin
(
φi + mi

)
≈ sin(φi) + cos(φi)mi −

1
2

sin(φ)m2
i , (13)

cos(α̂) = cos (αi + vi) ≈ cos(αi)− sin(αi)vi −
1
2

cos(αi)v2
i , (14)

where λi := 10
Pi

10γ is the true power exponent and γ̄ := ln(10)
10γ . The approximated errors, denoted by

ε̂ij, are derived directly from (11) by using (12), (13), and (14) as follows:

ε̂i1 =ηd0γ̄ni + λi
(
ri cos (αi)− sin (αi) diz

)
vi +

1
2

ηd0γ̄2n2
i −

1
2

λiri sin (αi)m2
i

− 1
2

λi
(
ri sin (αi) + cos (αi) diz

)
v2

i

ε̂i2 =− rimi

ε̂i3 =
(
cos (2αi)ri − sin (2αi)diz

)
vi −

1
4

sin (2αi)rim2
i −

(
sin (2αi)ri − cos (2αi)diz

)
v2

i

+
1
2

sin (2αi)ri − sin2 (2αi)diz,

(15)

where diz := xoz − aiz, ri :=
√
(xox − aix)2 + (xoy − aiy)2.

The covariance of
{

ε̂ij

}
has the following property:

Cov(ε̂ik, ε̂ jk′) = E
(
(ε̂ik − E[ε̂ik])(ε̂ jk′ − E[ε̂ jk′ ])

)
= 0, (16)

for i 6= j or k = 2, given the independence of ni, mi, and vi, where E(·) denotes the expectation operator.
A straightforward computation yields non-zero covariances:
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Var(ε̂i1) = E((ε̂i1 − E[ε̂i1])
2)

=
(
ηd0γ̄

)2
σ2

ni
+
(

λi
(
ri cos (αi)− sin (αi) diz

))2
σ2

vi
+

1
2

(
ηd0γ̄2

)2
σ4

ni

+
1
2
(
λiri sin (αi)

)2
σ4

mi
+

1
2

(
λi
(
ri sin (αi) + cos (αi) diz

))2
σ4

vi

(17)

Var(ε̂i2) = E((ε̂i2 − E[ε̂i2])
2) = r2

i σ2
mi

(18)

Var(ε̂i3) = E((ε̂i2 − E[ε̂i2])
2)

=
(
cos (2αi)ri − sin (2αi)diz

)2
σ2

vi
+

1
8
(
sin (2αi)ri

)2
σ4

mi

+ 2
(
sin (2αi)ri − cos (2αi)diz

)2
σ4

vi

(19)

Cov(ε̂i1, ε̂i3) = E
(
(ε̂i1 − E[ε̂i1])(ε̂i3 − E[ε̂i3])

)
=
(

λi
(
ri cos (αi)− sin (αi) diz

)) (
cos (2αi)ri − sin (2αi)diz

)
σ2

vi

+
1
4

λir2
i sin (αi) sin (2αi)σ

4
mi

+ λi
(
ri sin (αi) + cos (αi) diz

) (
sin (2αi)ri − cos (2αi)diz

)
σ4

vi
.

(20)

Let C(xo,
{

σmi

}
,
{

σvi

}
,
{

σni

}
) denote the covariance matrix of ε̂ =[

ε̂11 ε̂21 · · · ε̂N1 ε̂12 · · · ε̂N2 ε̂13 · · · ε̂N3

]T
given the true target location xo and noise

level
{

σmi

}
,
{

σvi

}
,
{

σni

}
. Each entry of C is given above, i.e., Cij = Cov(ε̂i ε̂j). Note that,

when computing C, the exact target position xo and noise variances are required. Below, we discuss
approximation of C in the absence of prior knowledge of the true target position and noise variances.

3.2. Computation of Approximated Covariance Matrix

To compute C, we replace the true target position with the LS solution of (5),

xLS_WLS = (AT A)−1 ATb, (21)

which is termed the LS_WLS solution, and is equivalent to the LS solution in (4) and does not require
any prior knowledge of the true target position or noise level. The simulations in Section 6 show that
the LS_WLS method already outperforms the LS algorithm. Using this approximation, we obtain:

Pi = P0 − 10γ log10

∥∥xLS_WLS − ai
∥∥

d0
,

φi = tan−1

(
xLS_WLSy − aiy

xLS_WLSx − aix

)
,

αi = cos−1

(
xLS_WLSz − aiz∥∥xLS_WLS − ai

∥∥
)

,

for i = 1, · · · , N. (22)

All secondary constants are approximated as follows:

λi = 10
Pi

10γ = 10
P0−10γ log10(‖xLS_WLS−ai‖/d0)

10γ ,

ηd0 = λi
∥∥xLS_WLS − ai

∥∥ ,

diz = xLS_WLSz − aiz,

ri =

√(
xLS_WLSx − aix

)2
+
(

xLS_WLSy − aiy

)2
.

(23)
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Precise knowledge of the noise variances σ2
ni

, σ2
mi

, and σ2
vi

is essential when computing C.
Although sample variance over time should be used to estimate noise variance, we use sample variance
over anchors to avoid undesirable delays and the complexity associated with sample accumulation;
we assume that the anchors (i.e., sensors) in the network are homogeneous:

σ̂2
ni
=

1
N

N

∑
i=1

(
P̂i − P0 + 10γ log10

∥∥xLS_WLS − ai
∥∥

d0

)2

σ̂2
mi

=
1
N

N

∑
i=1

φ̂i − tan−1

(
xLS_WLSy − aiy

xLS_WLSx − aix

)2

σ̂2
vi
=

1
N

N

∑
i=1

α̂i − cos−1

(
xLS_WLSz − aiz∥∥xLS_WLS − ai

∥∥
)2

.

, (24)

Finally, let C̄ = C(x̄,
{

σ̂mi

}
,
{

σ̂vi

}
,
{

σ̂ni

}
) denote the approximated covariance matrix computed

using (22)–(24). The estimated target position becomes:

xECWLS = (ATC̄−1 A)−1 ATC̄−1b. (25)

Our algorithm does not require any prior knowledge of the true target position or noise level,
but approximates the generalized LS outcome with a complexity of O(N). Simulations show that our
ECWLS method outperforms the WLS method and shows robust performance, even when each anchor
node shows different noise variances and the number of such nodes is small.

We improve the performance of the WLS method by using approximate error covariance and
estimating the variance of noise. The existing WLLS method assumed that the variance of noise is
known. However, we can localize the target without noise levels.

4. Complexity Analysis

The desired complexity for a localization algorithm in a WSN is O(N), where N is the number
of anchors. The proposed algorithm requires computation of a least square solution x̂LS_WLS in (21),
approximated errors, an approximated error covariance matrix C̄, estimations of noise variance, and a
computation of a weighted least square xECWLS in (25). All of the listed processes basically have O(N)

complexity, except the computations involving C̄, which may require O(N2) complexity. In particular,
computation of xECWLS requires inversion of a 3N × 3N matrix, while computation of xLS_WLSx does
inversion of a 3× 3 matrix. However, since C̄ has the following sparse structure,

C̄ =

D11 0 D13

0 D22 0
D31 0 D33

 (26)

where D11, D22, D33, D31, D13 are diagonal matrices,

D11 = diag(Var(ε̂i1)), D22 = diag(Var(ε̂i2)), D33 = diag(Var(ε̂i3)), D13 = D31 = diag(Cov(ε̂i1, ε̂i3)), (27)

building up C̄ and computing its inversion takes only O(N);

C̄−1 =

 Q−1 0 −Q−1D13D33

0 D−1
22 0

−Q−1D31D33 0 D−1
33 + D−1

33 D13Q−1D31D−1
33

 , (28)
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where

Q = D11 − D−1
33 D13. (29)

Therefore, the total computational complexity of the proposed algorithm is O(N). Table 1
summarizes the complexities of the existing algorithms.

Table 1. Complexities of all algorithms.

Algorithm Description Complexity

LS The LS method in [17] O(N)
LS_WLS The LS method in [22] O(N)

WLS The WLS method in [22] O(N)
WLLS The WLLS method in [23] O(N)

ECWLS The proposed ECWLS method O(N)

Table 1 shows the computational complexities of all algorithms. The computational complexities
of all algorithms depend on the network size, N. This feature is common to methods operating in
a centralized manner [5], since all information is transferred to a central node (processor). From Table 1,
we can see that the computational complexity of the proposed method is the same as that of the
LS method.

5. Performance Results

In this section, we verify the performance of our method in numerical simulations that use
the experimental settings employed in most previous studies. The target and anchors are randomly
deployed inside a box with an edge length B for each Monte Carlo run. The reference distance, d0,
is set to 1 m, and the reference power, P0, is assumed to be −10 dBm. The PLE changes according to
the environmental conditions and is considered to exhibit a uniform distribution within the interval
[2.2, 2.8] for each trial (i.e., γi ∼ Unif(2.2, 2.8) for i = 1, · · · , N, as in [22]). Performance is evaluated by

calculating the root mean square error (RMSE), defined as RMSE =
√

1
Mc

∑Mc
i=1‖xoi − x̂i‖2, where Mc

is the run number and x̂i is the estimate of the true target location, xoi, during the ith run.
We compare the performance of our algorithm to that of the LS method in [17], WLLS algorithm

in [23], and LS_WLS and WLS method in [22]. We also evaluate the performance of the real ECWLS
algorithm, which replaces the estimated noise with the true noise variances in the ECWLS algorithm.
Note that the real ECWLS should have better performance than the ECWLS.

Figure 3 shows the RMSE according to the number of anchor nodes, N, for the edge length
B = 15 m. The noise level is set to σn = 6 (dB), σmi = σvi = 10 (deg), and γi ∼ Unif[2.2, 2.8],
P0 = −10 (dBm), d0 = 1 m, and Mc = 50,000. The simulations show that the LS_WLS method
outperforms the LS method. The WLLS method, which uses true noise variance, is markedly superior
to the LS method, while the WLS method is only slightly better than LS_WLS method and the WLLS
method outperforms the WLS method. Furthermore, the proposed ECWLS method that uses estimated
noise variance is better than the WLLS method, which uses true noise variance. Finally, the real ECWLS,
the ECWLS with true noise variance that is not available in practice, shows the best performance.

The RMSE of the proposed algorithm was investigated under conditions of inhomogeneous noise
variance among the anchor nodes. The noise variances in each node were not constant, but were
assumed to have a uniform distribution. Figure 4a shows a case with slight deviation in noise variance.
The noise variances are set to σni ∼ Unif[3, 9] (dB), σmi ∼ Unif[6, 12], and σvi ∼ Unif[6, 12] (deg).
The other settings are the same as in the previous experiment, i.e., B = 15 m, γi ∼ Unif[2.2, 2.8],
P0 = −10 (dBm), d0 = 1 m, and Mc = 50000. Figure 4b increases the differences in noise variance.
The noise variances are set to σni = Unif[1, 10] (dB), σmi ∼ Unif[1, 20], and σvi ∼ Unif[1, 20] (deg).
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Figure 3. Root mean square error (RMSE) vs. the number of anchor nodes.
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Figure 4. RMSE vs. the number of anchor nodes under noise dispersion with (a) slight differences in
noise variance and (b) large differences in noise variance.

In both plots, the proposed ECWLS algorithm outperforms the WLLS algorithm (which requires
the exact noise variance of all anchor nodes), even in the severe noise estimation error due to the
deviation of noise variances among nodes. The proposed ECWLS algorithm is outperformed only by
the real ECWLS, which requires the true noise variance data, as clearly illustrated by Figure 4b.

Figure 5 compares the RMSE of the proposed ECWLS algorithm with those of the LS and WLS
algorithms at various noise levels for a fixed anchor number N = 4. The settings in Figure 5a are
σmi = 10 (deg), σvi = 10 (deg), γi ∼ Unif[2.2, 2.8], P0 = −10 (dBm), d0 = 1 m, and Mc = 50,000.
Figure 5a shows that the LS method is sensitive to RSS noise, but the WLS and ECWLS methods are
not. The settings in Figure 5b are σni = 6 (dB), σvi = 10 (deg), γi ∼ Unif[2.2, 2.8], P0 = −10 (dBm),
d0 = 1 m, and Mc = 50,000. The settings in Figure 5c are σni = 6 (dB), σmi = 10 (deg), γi ∼ Unif[2.2, 2.8],
P0 = −10 (dBm), d0 = 1 m, and Mc = 50000. For various noise levels, the proposed method performed
better than all of the other methods.

Finally, we evaluate the performance of the proposed algorithm on a large scale. Figure 6 shows
the RMSE according to the number of anchor nodes, N, for the edge length B = 150 m. The noise
level is set to σn = 6 (dB), σmi = σvi = 10 (deg), and γi ∼ Unif[2.2, 2.8], P0 = −10 (dBm), d0 = 1 m,
and Mc = 50000. The proposed method performed better than all of the other methods on a large scale.
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Figure 5. (a) RMSE vs. standard deviation of received signal strength (RSS) noise; (b) RMSE vs.
standard deviation of azimuth angle noise; (c) RMSE vs. standard deviation of elevation angle noise.
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Figure 6. RMSE vs. the number of anchor nodes on a large scale.

6. Conclusions

We present a novel target localization algorithm based on hybrid RSS/AOA measurements,
termed the ECWLS algorithm. The distance-based weights of the WLS algorithm are replaced by
an approximated error covariance matrix that can be computed easily without prior knowledge
of the noise level. The superior performance of our ECWLS algorithm was confirmed by
numerical simulations.
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Appendix A. 3-D Error Covariance Matrix of the Least Squares LS Method
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