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ABSTRACT

Until recently, in vivo and ex vivo experiments were the only means to determine factors and
pathways involved in disease pathophysiology. After the generation of characterized human embry-
onic stem cell lines, human diseases could readily be studied in an extensively controllable setting.
The introduction of human-induced pluripotent stem cells, a decade ago, allowed the investigation
of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have suc-
cessfully been studied, revealing novel disease mechanisms. The direct effects of various mutations
leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy,
or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease
modeling. Researchers are currently applying more advanced techniques to unravel more complex
phenotypes, resulting in state-of-the-art models that better mimic in vivo physiology. The contin-
ued improvement of tissue engineering techniques and new insights into epigenetics resulted in
more reliable and feasible platforms for disease modeling and the development of novel therapeu-
tic strategies. The introduction of CRISPR-Cas9 gene editing granted the ability to model diseases
in vitro independent of induced pluripotent stem cells. In addition to highlighting recent develop-
ments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize
limitations that remain to be addressed; including residual somatic epigenetic signatures induced
pluripotent stem cells, and modeling diseases with unknown genetic causes. STEM CELLS TRANS-
LATIONAL MEDICINE 2019;8:66–74

SIGNIFICANCE STATEMENT

Before human cardiomyocytes could be generated from stem cells, the only means to disease
mechanics was via difficult and labor-intensive methods. The introduction of human induced
pluripotent stem cells provided a new means to obtain virtually unlimited amounts of patient-
derived cardiomyocytes. Major advances in gene editing techniques enabled the targeted
mutation of specific genes, which could result in the introduction of aberrant or restored gene
function. Collectively, these novel methods formed the basis for a new era of in vitro cardiac
disease modeling. This review highlights the impact and applications of these state-of-the-art
techniques in the field of heart failure.

INTRODUCTION

Heart failure is a clinical syndrome that is caused
by a wide variety of factors, and between 2011
and 2014, an estimated 6.5 million adults were
diagnosed with heart failure [1]. The number of
heart failure patients is rising markedly. Dysfunc-
tionality of the cardiac muscle leading to heart
failure can be caused by different cardiomyopa-
thies. The most common forms are hypertrophic
cardiomyopathy (HCM) and dilated cardiomyopa-
thy (DCM), followed by arrhythmogenic cardiomy-
opathy (ACM) and left ventricular noncompaction
cardiomyopathy (LVNC) [2–5]. They result from a

complex and diverse mechanism that is often a
mix of functional, structural, and biological adap-
tions specific for each cardiomyopathy. This
makes studying heart failure pathophysiology a
daunting task.

Technological advances that were made
during the last decades enabled researchers to
noninvasively study cardiac function in detail.
Nevertheless, studying pathological molecular
mechanisms occurring in the failing heart of
patients primarily involves invasive methods.
Taking any form of biopsy from cardiac tissue
comes with the risk of perforation. The amount of
material is often insufficient for extensive
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molecular analyses and biopsies are only taken in very few patients
with severe (end-stage) cardiac pathology. Moreover, cardiomyo-
cytes are nonproliferative, whichmakes in vitro culturing of primary
cardiomyocytes complicated. Alternatively, standardized cell lines
were used (e.g., H9C2, HL-1, or immortalized cardiomyocytes),
while these cells proliferate indefinitely and resemble cardiomyo-
cytes to some extent, each line also has major disadvantages
(e.g., nonhuman cells or tumor-like properties). In addition, using
animals to isolate (neonatal) cardiomyocytes requires a large num-
ber of animals to acquire sufficient amounts of cells.

The emergence of human embryonic stem cells (hESC) and the
development of appropriate culturing techniques quickly made
them a potent tool to study previously rare tissues andmechanisms
[6]. In 2007, the pioneering methods for generating human induced
pluripotent stem cells (hiPSC) were published and provided the
means to conduct patient-specific in vitro studies [7]. The develop-
ment of these cell-based tools enabled researchers to attempt reca-
pitulating various aspects of a disease through in vitro disease
modeling.

This review aims to highlight the current status of in vitro
cardiomyopathy models while focusing on tissue engineering
and gene editing to recapitulate human cardiomyopathies.

CARDIAC DISEASE MODELING—TRANSLATION TO THE CLINICAL
SETTING

Cellular Sources for in vitro Cardiomyopathy Models

Early in vitro cardiac tissue models were based on either
immortalized human cell lines or cells isolated from animals.
The immortalized human ventricular AC16 cell line was devel-
oped using fusion of primary ventricular cardiomyocytes with
an SV-40 transformed fibroblast cell line [8]. These cells
resemble human cardiomyocytes to great extent (e.g., these
cells contract and express main cardiac genes), but the prolif-
erative capacity of these cells remains the main disadvantage
as proliferating cardiomyocytes cannot maintain stable
myofibrils.

Primary cardiomyocytes isolated from neonatal mice, rats, and
chicken embryos were popular cell sources for in vitro cardiac
models [9–11], but research based on these primary cells demon-
strated that animal cell-based models cannot truly recapitulate
human physiology. Consequently, more sophisticated cell models
were developed to create human-like tissue models [12, 13].
However, establishing human models proved to be challenging as
cardiac tissue or isolated cardiomyocytes from patients are difficult
to obtain and cannot survive long-term culture [14].

Human Pluripotent Stem Cells

Cardiomyocytes were considered a rare cell type for in vitro stud-
ies, until hESC-derived cardiomyocytes (hESC-CM) were the first
source of human heart cells for large-scale experimental set-ups
[15]. Since the introduction of hESC-CM in 2001, the use of hESC
as a source for in vitro cardiac disease modeling has been copious
[16]. Additionally, hiPSC-derived cardiomyocytes (hiPSC-CM) were
found to recapitulate phenotypic characteristics caused by genetic
variations [17], which render these cells an suitable source for
human disease models. Furthermore, hiPSC-CM was found to be a
powerful tool for patient stratification in regard to drug safety and
responsiveness [18]. To date, artificially matured patient-derived

hiPSC-CM proved to be similar in to isolated primary human cardi-
omyocytes molecular, mechanical, electrophysiological, metabolic,
and ultrastructural properties [19, 20]. However, hiPSC-CM exhibits
various fetal characteristics as opposed to mature (isolated) cardi-
omyocytes. To resolve these issues, hiPSC-CM can be cultured for
extended periods or subjected to specific bioengineering
approaches. Protocols using hormone stimulation [19] or condi-
tioning with mechanical stress and electrical pacing [21, 22] have
collectively led to a more mature phenotype, but the exact mecha-
nisms that induce maturation remain only partially understood
[23–26]. Diverse epigenetic processes, including long-noncoding
RNA (lncRNA) [27], microRNAs [28], chromatin, and histone pro-
teins [29], and DNA methylation [29] have been suggested as cru-
cial mediators in both developmental processes and in disease.

INHERITED CARDIOMYOPATHIES—hiPSC TO MODEL GENETIC

CAUSALITY

A plethora of genetic mutations have been associated with the
pathogenesis of genetic heart diseases, including the main
inherited cardiomyopathies (i.e., HCM, DCM, ACM, and LVNC).
Investigating how genetic mutations explain causality in the
pathophysiology of cardiomyopathies and how they interact
with secondary genetic and environmental factors is impera-
tive to improving diagnosis and decision-making regarding
treatment strategies. The introduction of patient-specific
hiPSC-CM provides a versatile new tool that may tremendously
improve our understanding of the disease mechanisms. Conse-
quently, these cells have been widely applied to study the
complexity of cardiac disease. However, cardiomyopathies are
divided into four classes, each with a distinct pathophysiology,
resulting in various types of heart failure. The most common
cardiomyopathy, HCM, is characterized by increased cardiac
mass due to left ventricular wall thickening (hypertrophy) that
most often is asymmetric, with particular involvement of the
interventricular septum, myocytes disarray, and cardiac fibrosis
[30]. DCM is characterized by left ventricular chamber enlarge-
ment and systolic dysfunction, which often leads to heart fail-
ure, arrhythmia, and sudden death. ACM predominantly
affects right ventricular cardiomyocytes and occurs due to
defects in the cardiac desmosome as a consequence of muta-
tions in key desmosomal components, but also because of ion
channel defects. Consequently, ACM hallmarks include right
ventricular dilation, scarring, exaggerated lipogenesis and lipid
infiltration, and arrhythmias. Finally, LVNC is characterized by
cardiac noncompaction, primarily resulting in trabeculation
and deep recesses in the left ventricle. Many studies per-
formed in patient-derived hiPSC-CM have often recapitulated
these respective hallmarks of inherited cardiomyopathies and
thereby markedly increased our understanding of underlying
molecular mechanisms, as summarized in Table 1. In addition
to cardiomyopathies, inherited arrhythmias are generally
caused by a pathological mutation in a gene encoding an ion
channel or an associated protein. However, this review
focusses on cardiomyopathies, whereas arrhythmias are
beyond the scope of this review. A recent review highlights
the recent advances in the use genome editing to study cardi-
otoxicity and model inherited arrhythmia [31].
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DISEASE MODELING UTILIZING KNOWN VERSUS UNKNOWN

GENETIC VARIATIONS

In vitro disease modeling has proven to be a valuable tool to
study molecular pathophysiological mechanisms and disease
etiology for diseases with a known genetic cause. Indeed,
modeling disease without a known genetic defect is challeng-
ing. Nevertheless, these in vitro models have also been suc-
cessfully applied to cardiac diseases that develop without a
known causing genetic variant. For example, Burridge
et al. have recently demonstrated that it is possible to deter-
mine the underlying genetic aberrations found in heart failure
patients that experienced doxorubicin-induced cardiotoxicity
[52]. Furthermore, hiPSC were used to screen for cardiovascu-
lar toxicity of anticancer tyrosine kinase inhibitors using multi-
ple healthy controls and two patients receiving cancer
treatment [53]. Additionally, studies have identified genetic
targets in hypoplastic left heart syndrome in hiPSC with previ-
ously unknown mutations [54, 55]. These examples show that
the use of hiPSC for in vitro cardiac disease modeling without
the presence of a known genetic defect are thus challenging,
albeit not impracticable. This has also been demonstrated for
other fields of disease, where hiPSC have been used to model
noncardiac diseases like sporadic Alzheimer’s disease [56],
chemotherapy-induced neuroticxicity [57], and was shown as a
valuable tool in cancer research and precision oncology [58].

In vitro modeling of multifactorial diseases that are mechanis-
tically complex or diseases that arise because of environmental
causes is challenging and unrealistic. HiPSC are patient-derived
and harbor all relevant genetic factors that may contribute to the

disease. Hence, even when the exact underlying mechanisms of a
disease are unknown, hiPSC provide a reliable platform for dis-
ease modeling. A disease of the heart is often assumed to arise
from cardiomyocytes themselves. However, due to tightly regu-
lated cell-autonomous versus noncell-autonomous responses
(e.g., interactions between cardiomyocytes and neighboring fibro-
blasts and endothelial cells), this may not be the case. A disease
may very well originate in a nonmyocyte cell type and functionally
disrupt cardiomyocyte function (for example: endothelial dys-
function and subsequent disturbed perfusion). As hiPSC can dif-
ferentiate toward virtually all cell types, researchers can quickly
change protocols and obtain these other relevant cell types based
on hiPSC derived from a single patient. This potential of plasticity
highlights the significance of hiPSC as a platform for disease
modeling.

GENE EDITING IN CARDIOMYOPATHIES

Traditional genome editing methods have been mostly based
on zinc-finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs). Both ZNFs and TALENs use DNA
binding motifs that can be designed and combined to target
any nucleotide sequence for cleavage. ZNFs target trinucleo-
tide sequences, while TALENs can recognize a single nucleo-
tide. This makes the use of TALENs generally more
straightforward. Recent technological breakthroughs for tar-
geted gene editing using site-specific nucleases primarily
related to clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems

Table 1. Summary of cardiomyopathy-associated mutations that have been studied in hiPSC-based in vitro models

Gene Mutation Main phenotype Ref

HCM MYH7 p.R442G Enlarged cellular size, disorganized myofibrils, disrupted sarcomere structure,
dysfunctional ion channel homeostasis.

32

p.R663H Enlarged cellular size, contractile arrhythmia, dysfunctional Ca2+-handling, increased
[Ca2+]i

33

MYBPC3 c.1358-1359insC Enlarged cellular size, disrupted gene expression profile 34
p.Q1061X Enlarged cellular size, aberrant electrophysiological properties, dysfunctional Ca2+

-handling, and disrupted gene expression profile
35

p.G999-Q1004del Enlarged cellular size, disorganized myofibrils 36
c.2373dupG Aberrant electrophysiological properties, reduced contractile force generation, aberrant

bioenergetics
37

TPM1 p.D175N Enlarged cellular size, aberrant electrophysiological properties, dysfunctional Ca2+

-handling, disrupted gene expression profile
35

DCM TTN p.A22352fs+/−
p.P22582fs+/−
p.W976R+/−

Reduced contractile force generation, disrupted sarcomere structure, impaired response
to mechanical and β-adrenergic stress

38

LMNA p.R225X
p.Q354X
p.T518 fs

Nuclear blebbing, increased senescence, increased apoptosis 39

TNNT2 p.R173W Dysfunctional Ca2+-handling, reduced contractile force generation, disrupted sarcomere
structure

40,41

DES p.A285V Disrupted sarcomere structure, ultrastructural disarray 42
RBM20 p.R636S Sarcomeric remodeling, dysfunctional Ca2+-handling, increased [Ca2+]i, disrupted gene

expression profile
43,44

PLN p.R14del Dysfunctional Ca2+-handling, aberrant electrophysiological properties, increased
hypertrophy markers

45,46

ACM PKP2 c.2484C > T
c.2013delC

Increased lipogenesis, increased apoptosis, dysfunctional Ca2+-handling, disrupted
desmosome structure

47

c.1841 T > C Increased lipogenesis, disrupted desmosome structure 48
c.972InsT/N Increased lipogenesis, disrupted desmosome structure 49

SCN5A p.R1898H Dysfunctional Na+-handling 50
LVNC TBX20 c. 951C > A Reduced proliferative capacity, disrupted gene expression profile 51
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allow for genome engineering, reverse genetics, and targeted
transgene integration experiments that can be performed in
an accurate and reproducible fashion [59]. The CRISPR/Cas9
system is based on site targeting based on guide RNA design
and results in improved efficiency compared to earlier
methods [60, 61]. Furthermore, site targeting is more flexible
with the CRISPR/Cas9 system than with ZNFs and TALENs and
offers the possibility to introduce multiple mutations at the
same time by injecting different guide RNAs. By applying these
tools, genes have been functionally removed from specific loci,
thereby creating disease-causing mutations in hiPSC-CM or
other cardiovascular disease models in vitro [62]. Vice versa,
genetic mutations could be corrected in patient-derived cells,
resulting in the generation of an isogenic control cell line by
exclusively eliminating the disease-causing genetic variation.

Correcting or silencing a pathological genetic variant can
be used to develop future therapies. However, when applying
this to human cardiomyopathies, many different, site-specific
corrective strategies need to be designed and tested. This feat
is challenging from a clinical trial and regulatory perspective.
Each antisense oligonucleotide or guide RNA can only target a
very specific nucleotide sequence and is therefore useful for a
very small number of patients, which makes placebo-
controlled trials, the regulatory standard, nearly impossible.
This has prompted the evaluation of the possibility of broader
genetic therapeutic avenues that can target normal genes to
enhance cardiac function. For example: gene therapy
(i.e., induced overexpression) has been applied to upregulate
SERCA2a and as a result enhances myocardial contraction in
heart failure patients with reduced ejection fraction [63–65].
However, with respect to disease models, various studies have
been successful in recapitulating specific diseases in vitro as
well as reverting disease phenotypes by correcting a genetic
variant as presented in Figure 1. These studies have been sum-
marized in Table 2.

Generation of hESC-Based Disease Models

While hiPSC are currently a popular choice for many cell-based
studies, recent advances in the CRISPR-Cas9 technology have

rendered hESC a valid and feasible alternative as well. Any
wild-type cell can be altered to harbor a specific mutation
using CRISPR-Cas9 mediated gene editing. Indeed, CRISPR-Cas9
can be applied to create the perfect experimental controls in
hiPSC and hESC: a pathogenic mutation can be corrected in
patient-derived hiPSC, while a putative pathogenic mutation
can be inserted in otherwise wild-type hESC. As result, geneti-
cally edited stem cells are the same as their original cell line
in all aspects except the edited genes. It is important to note
that any method facilitating gene editing can result in off-
target effects in various genomic regions. Following its intro-
duction, studies demonstrated that this was also relevant for
CRISPR-Cas9 [74, 75]. However, in recent years, new nucle-
ases have been discovered and have been verified to induce
no off-target effects [76–78]. These new techniques allow for
the generation of edited cell lines from a single source that
only differ in the edited gene. This way, difference found
between those cell lines can directly be attributed to a single
mutation and can then be further studied in more complex
models (e.g., patient-derived hiPSC-based models with famil-
ial controls).

Epigenetics and Environmental Influence
In contrast to a disease resulting from genetic variants, dis-
eases can also arise from environmental factors, such as mal-
nutrition, drug-related effects, exogenous toxins, or maternal
disease during gestation [79–85]. Some of these environmen-
tal factors can lead to epigenetic changes, like DNA methyla-
tion. In this case, chances of obtaining a phenotype will be
extremely small in a hiPSC-based experimental setup. During
reprogramming of somatic cells to hiPSC, most epigenetic fea-
tures characteristic for a specific cell type are removed while
cell type-specific marks remain [86]. More specifically, every
cell type has a unique DNA methylation pattern. Importantly,
epigenetic profiles that are linked to disease progression are
lost during reprogramming. While losing disease-causing epige-
netic marks due to reprogramming may result in a model with-
out a phenotype, which directly emphasizes the need to focus

Figure 1. Schematic representation of cell types as a basis for human in vitro models. Primary cells, cell lines and stem cells can be utilized as
a basis for in vitro disease models to study cardiomyopathies. State-of-the-art gene editing techniques allow for the introduction of specific
disease-causing mutations. Alternatively, gene editing can also be harnessed to generate isogenic control lines from patient-derived cells.
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on (and possibly attenuate) the epigenetics factors in a specific
patient [87].

To conclude, the patient-derived aspect of hiPSC-based dis-
ease models enables studies to be designed that may unravel
pathological mechanisms caused by genetic as well as epige-
netic anomalies. Due to the precision with which all other
(in vitro and in vivo) models are designed, it can be expected
that not all disease-causing factors, for example, DNA methyla-
tion, are included and are therefore overlooked.

CARDIAC TISSUE ENGINEERING

The heart is a complex organ composed of various cell types
(e.g., cardiomyocytes, fibroblasts and endothelial cells) in a
three-dimensional (3D) organization. While many studies are
performed with two-dimensional (2D) in vitro cultures, previ-
ous studies showed that cells better recapitulate in vivo physi-
ology when cultured in a 3D system [88, 89]. Additionally,
generation of cardiac tissue containing an appropriate mix of
cell types improved feasibility of studies that were previously
challenging, such as studies involving electrophysiology,
cell–cell or cell-extracellular matrix (ECM) interactions, cocul-
tures, or drug screening [90]. Subsequently, it provides an
adaptable platform with the ability to replace various animal-

based studies, ultimately reducing the number of laboratory ani-
mals. To achieve such tissues for cardiac disease modeling, vari-
ous techniques have been employed. Seminal work by Moscona
in 1959 demonstrated that embryonic chicken cardiomyocytes
spontaneously form beating cardiospheres. This was the basis
for the currently most commonly used and adapted model: the
engineered heart tissue model [91, 92], where hESC-CM are
seeded in a hydrogel. The hydrogel matrix casted in a mold,
which can be cultured under mechanical strain between fixed
anchoring points [92]. The effects of various growth factors,
cyclic uniaxial or multiaxial mechanical stretching, cardiomyo-
cyte maturation, and electrical pacing [93] were studied using
this model. The finding that nonmyocytes promote contractile
force generation while also better reflecting the composition of
the human heart, compared to tissue consisting of purified car-
diomyocytes, has led to the standardization of adding various
nonmyocytes to the tissue [94].

A second model of engineered cardiac tissue is based on
the same principle demonstrated by Moscona in which various
cell types can aggregate into spheroids (or microtissues) under
the right conditions. Nonadhesive surfaces, hanging droplets and
rotation systems are used to generate spheroids [95]. While
spheroids are generally small and challenging to physically manip-
ulate, they are very suitable to study 3D behavior of cells and

Table 2. Studies that have generated in vitro disease models and studies that have repaired and rescued in vitro disease phenotypes

Gene Mutation Strategy Ref

Gene repair SCN5A p.R1898H CRISPR/Cas9-mediated gene repair 66
PRKAG2 c.905G > A (p.R302Q) CRISPR/Cas9-mediated gene repair 67
PRKAG2 p.R302Q CRISPR/Cas9-mediated gene repair 68
DMD Exon 3–6 del CRISPR/Cas9-mediated exon deletion 69
CALM2 p.D130G CRISPR interference 70
CALM2 p.N98S CRISPR/Cas9-mediated allele knock out 71

Introduction of mutation ADRB2 GRK5
RYR2 ACTC1

Multiple
c.122A > T
c.6737C > T
c.301G > A

PiggyBac-mediated gene editing 72

TNNT2 p.I79N CRISPR/Cas9-mediated gene editing 73

Figure 2. Summary of different technical approaches to cardiac tissue engineering. Cardiac tissues can be generated by allowing cardiac
cells to spontaneously form a tissue by self-assembly. Other approaches include the introduction of a decellularized matrix as a basis for
reconstituted cardiac tissue, injecting human cardiac precursor cells into the murine kidney and machine-guided generation of cardiac tis-
sue on a chip.
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cell–cell interactions, drug testing, and can be used as building
blocks to create larger tissues [96]. A third and alternative
approach to make tissues is the formation of cell sheets. By utili-
zation of a coating, that dissolves at room temperature, intact
detached cell-monolayers that can be stacked to create thicker
tissues for transplantation or drug screening [97].

However, the main limitation to these methods is the lack
of vascularization and consequently low perfusion of oxygen
and nutrients. Prefabricated channels and tubes have been
incorporated in tissue constructs to address to improve tissue
perfusion [98]. As opposed to using self-assembly and artificial
matrices as a basis for tissue engineering, decellularized
explanted hearts were also demonstrated to be viable scaf-
folds [99]. Although, the main goal was to create fully func-
tional hearts for transplantation, this has been largely
unsuccessful to date. However, decellularized tissues retain
hierarchical large and smaller vascular structures [100]. These
studies have set a precedent to use decellularized explanted
tissues (i.e., small pieces of tissue) as a scaffold for tissue engi-
neering. Remarkably, this can also be done with plant-derived
scaffolds, as was recently demonstrated by Gerschlak
et al. [101]. The overarching goal is to develop a high through-
put screening platform with highly representative cardiac tis-
sue. Aforementioned, there have been many advances in this
field recently. To reach this goal, there have been various semi-
nal studies published recently. The study by Mills et al. has ele-
gantly demonstrated a procedure to generate high throughput
screening platform based on human cardiac organoids [102].
Additionally, to induce maturation in these organoids, Mills
et al. have activated the proliferation pathways mediated by
β-catenin and Yes-associated protein 1 (YAP1). As a result,
matured human cardiac organoids can be applied for high
throughput screening. Alternatively, Foo et al. have recently
introduced a method for the generation of vascularized cardiac
tissues by transplanting human stem cell-derived cardiac pre-
cursors subcapsularly onto kidneys in mice [13]. Furthermore,
Lind et al. demonstrated that the popular “Heart-on-a-chip”
concept can now be obtained by a combination of a 3D printed
flexible chip and tissue engineering [103]. These state-of-the-art
tissue engineering techniques are summarized in Figure 2.

CONCLUSIONS AND FUTURE PERSPECTIVES

In summary, to study a disease with incredible detail, target cells
from various sources can be collected and cultured in 2D or 3D.
These in vitro cultures can be manipulated very precisely, allowing
researchers to pinpoint key factors of disease origin and progres-
sion. Building on these findings, novel drugs can be discovered
and tested, driving the progression toward personalized medicine.

Depending on the field of study, in vitro disease models
can be based on any cell type and source. However, to study
cardiomyocytes, the cell sources are largely limited to pluripo-
tent stem cells. An argument against the use of hiPSC is the
residual epigenetic landscape that remains after reprogram-
ming of any somatic cell type to hiPSC. Indeed, hiPSC can be
cultured in pluripotent states similar to hESC and can be differ-
entiated to virtually any cell type, but the effects of these

residual epigenetic marks are unknown and depend to great
extent on the source. This is a strong argument to use edited
hESC instead of patient-specific hiPS cells, especially since each
patient-derived cell line has a very different genetic back-
ground from any other hiPSC line. Therefore, a familial control
has to be used for every patient line, as was indicated by
Matsa et al. [18]. In contrast, a single well defined hESC line
(e.g., H9, H1, or HUES9) can be used as a basis for studies
based on known mutations in which the unedited line can be
a control for all introduced mutations.

Diseases often manifest as the result of one or multiple
organs failing with a complex pathophysiology. A single organ
contains various cell types with different functions, which
often makes studying a disease challenging. By using in vitro
disease models, it is possible to study specific cell types, study
cocultures of involved cell types, and manipulate tightly regu-
lated mechanisms. Consequently, this approach disregards con-
founding factors and all systemic effects (i.e., interorgan
signaling) as seen with in vivo models. In contrast, this also
entails that every aspect of the in vitro culturing method must
be optimal for the specific model to be representative. Ulti-
mately, it is no longer a near-impossible task to recapitulate
patient-specific cardiomyopathies in vitro. As described in this
review, recent technological advances have paved the way to
more accessible culturing and engineering methods that will
drive the field toward crucial insights into disease mechanisms
and treatment options.

Presumably safe drugs have been withdrawn from the
market more than once due to toxic effects in patients that
were unobserved in the respective animal studies. Reasons
vary from false negative results to off- and on-target toxicity
(including unexpected cardiotoxicity). Typically, drug safety
assessment and efficacy testing are performed in animal
models followed by expensive clinical trials. To make drug dis-
covery and testing more cost-effective, it is imperative that
reliable alternative strategies are developed; human in vitro
disease modeling will improve this process greatly.
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