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Purpose: To develop a compact MR-compatible ergometer for exercise stress
and to initially evaluate the reproducibility of myocardial native T1 and myocar-
dial blood flow (MBF) measurements during exercise stress performed on this
ergometer.
Methods: The compact ergometer consists of exercise, workload, and data pro-
cessing components. The exercise stress can be achieved by pedaling on a pair
of cylinders at a predefined frequency with adjustable resistances. Ten healthy
subjects were recruited to perform cardiac MRI scans twice in a 3.0T MR scan-
ner, at different days to assess reproducibility. Myocardial native T1 and MBF
were acquired at rest and during a moderate exercise. The reproducibility of the
two tests was determined by the intra-group correlation coefficient (ICC) and
coefficient of variation (CoV).
Results: The mean exercise intensity in this pilot study was 45 Watts (W), with
an exercise duration of 5 min. Stress induced a significant increase in sys-
tolic blood pressure (from 113± 11 mmHg to 141± 12, P< 0.05) and maximal
increase in heart rate by 74± 19%. The rate pressure product increased two-fold
(P< 0.001). Excellent reproducibility was demonstrated in native T1 during the
exercise (CoV = 3.0%), whereas the reproducibility of MBF and myocardial
perfusion reserve during the exercise was also good (CoV = 10.7% and 8.8%,
respectively).
Conclusion: This pilot study demonstrated that it is possible to acquire repro-
ducible measurements of myocardial native T1 and MBF during the exercise
stress in healthy volunteers using our new compact ergometer.
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1 INTRODUCTION

For patients with various cardiac diseases, e.g., the valvu-
lar heart disease,1 congenital heart disease2 and coronary
artery disease (CAD) detection,3 stress cardiac imaging
is often used as an important tool to detect underlying
pathology that may not manifest at rest.4,5 It has been
well acknowledged that cardiovascular MR (CMR) can
accurately and reproducibly assess myocardial anatomy,
function, tissue characteristics, and vasculature without
exposure to radiation, and has great potentials for clini-
cal diagnosis of cardiac diseases.6,7 In stress CMR, phar-
macologically induced stress by the infuse of adenosine
or dobutamine remains the most widely available stress
approach.8 However, physical exercise is known to have a
higher sensitivity and better safety profile to provide func-
tional state and hemodynamic response, and has fewer
adverse events compared to pharmacological stressors.9,10

As such, current guidelines advise physical exercise as the
preferred method for stress imaging when feasible.11,12

While several exercise approaches for CMR study have
been well developed for clinical research, including exer-
cise on a MR-compatible treadmill adjacent to an MR scan-
ner,13–15 in-scanner supine cycle ergometer,4,16 and supine
stepper-stress,17 Exercise CMR (Ex-CMR) is not widely
used in clinical practice. Treadmill Ex-CMR is currently
the only Ex-CMR modality to demonstrate clinical utility
in ischemia detection of CAD patients.15 However, the rel-
atively large variability in heart rate and blood pressure
after the treadmill exercise may limit its clinical assess-
ment. In-scanner Ex-CMR with a supine cycle or step-
per ergometers overcomes this issue, but CMR scanning
suffers from increased bulk body motion and respiratory
motion, particularly when workload increases.18 Other
important limitations of these commercial exercise sys-
tems are relatively large device sizes (less convenient for
transportation, storage, and placement on an MR table)
and high cost.

Therefore, the objective of this study was to: (1) develop
a low-cost and compact MR-compatible supine pedal exer-
cise ergometer; (2) demonstrate its feasibility and repro-
ducibility to induce exercise stress for Ex-CMR in 10
healthy subjects.

2 METHODS

2.1 Study population

Ten healthy volunteers (5 males and 5 females)
were recruited in this prospective pilot study (mean
age = 25.7± 1.8 y; mean weight = 61.5± 5.4 kg; mean
height = 167.3± 10.2 cm; maximal height = 183 cm;

maximal body mass index (BMI) = 26.85). All subjects
were medically healthy and none of them had a history of
cardiovascular pulmonary or renal disease, as determined
by physical and neurological examination and laboratory
tests. All the participants underwent the Ex-CMR test and
retest (at least 5 days apart between test and retest). The
study was approved by the ethics committee of the local
institute and written informed consent was given by the
volunteers prior to the first study.

2.2 MR-compatible ergometer

2.2.1 Mechanical design

The ergometer consists of exercise (piston cylinder appa-
ratus, sponge pads, etc.), workload (electronic and gas
source control modules to control air pressure within
the piston cylinder), and data processing components
(Figure 1A). The materials used include high-density
rubber, aluminum alloy, nylon, etc., all of which are com-
patible with 3T MR scanners. The exercise component
dimensions were 450 mm in width, 600 mm in length,
and 300 mm in height, whereas the weight is 25 kg and
the maximum static load is 200 kg. The entire ergome-
ter system can be stored in a compact container for easy
transportation (Figure 1B). The base of the exercise com-
ponent is a 1.27 cm (1/2 in.) thick HDPE sheet, with two
sponge pads placed on. These base and sponge pads allow
both the device and subject to slide on the MR table as
needed to ensure the torso is inside the MR bore while the
legs are free to move.

The pedaling motion is accomplished through the use
of two piston cylinder apparatuses which is composed of a
foot pedal, a cylinder fixing plate, a plastic bearing, an air
cylinder, a foot pedal, and a pedal slide rail. Structurally,
the air cylinder is composed of a cylinder tube, a cylin-
der head, a piston, a piston rod, and a cylinder damper
(Figure 1C). One foot pedal is 25.40 cm (10 in.) in length,
12.7 cm (5 in.) in width, and 1.27 cm (1/2 in.) in thickness.
To reduce bulk movement by the subject, a nylon belt,
horizontal bars, and a shoulder harness are used to secure
the subject to the device (Figure 1D). The shoulder har-
ness and nylon belt have quick releasing clips that allow
the subject to be removed quickly in case of a medical
emergency.

2.3 Air pressure adjustment
components and data processing
components

The resistance of the equipment can be adjusted (0–5 bar)
by the workload component through the pressurized
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F I G U R E 1 General view and the experimental demonstration of the MR-compatible pedal ergometer. A, The ergometer consists of
motion components, air pressure adjustment components and data processing components with relatively small size (height = 300 mm,
width = 450 mm, length = 600 mm). B, The device can be placed in one packing box. C, Piston cylinder apparatus is composed of a cylinder
tube, a cylinder head, a piston, a piston rod and a cylinder damper. D, A nylon belt, horizontal bars, and a shoulder harness are used to secure
the subject to the device to reduce bulk movement. E, Healthy subject protocol and supine pedal exercise was performed with a
customer-made MR-compatible ergometer onto the MR Table. F, The workload was measured and displayed by monitors in real time (F).

airway. The current design can provide a wide range of
resistance suited to subjects with different ages, muscle
strength, and health status. Data processing components
included air pressure sensor within the air cylinder, elec-
tronic feedback system and monitors. The data obtained by
the sensor are transmitted to an electronic feedback system
through the external communication bus for data process-
ing (Figure 1E). The processed data can be displayed in real
time (Figure 1F).

2.4 Ex-CMR protocol

The Ex-CMR protocol consisted of CMR scans during a
30-s baseline rest, a 5-min ramped exercise or to exhaus-
tion and a 15-min recovery periods. The subject was
placed supine in the MR bore with ECG patches on the
chest. To do exercise stress, the subject placed both feet
on a pair of pedals to perform a leg-stepping movement
and an auditory beeping sound was provided through a
headset to help the subject maintain the stepping fre-
quency at 60 steps/min. The exercise protocol consisted
of 5 min exercise at an average workload of 45 W. The
work power was calculated based on the ideal gas law
and the stepping frequency. During the entire Ex-CMR
scans, heart rate and blood pressure were continuously
measured by an MR-compatible physiological monitoring
system.

CMR imaging was performed on a 3.0T clinical MR
scanner (Skyra; Siemens Healthcare) with a phase-array
surface coil. In this pilot study, myocardial native T1 and
first-pass perfusion imaging were performed to study the
rest-stress differences. Native T1 maps at mid-ventricular
short-axis locations were acquired with free breathing
using a MOLLI 5(3)3 sequence (MyoMaps; Siemens
Healthcare) with inline motion-correction. Typical param-
eters included slice 8.0 mm thick, FOV 306× 360 mm, flip
angle 35◦, minimum T1 120 ms, TI increment 80 ms, and
acquisition time 14 s. Native T1 maps during the exercise
stress were acquired at the first and and third minute after
the start of the exercise.

The first-pass perfusion imaging during the exer-
cise was performed immediately after the second stress
T1 imaging with a bolus injection of gadolinium (Gd)
(gadopentetate dimeglumine) at a dose of 0.05 mL/kg
body weight, followed by a saline flush with a power
injector at a flow rate of 4 mL/s. The subjects were
instructed to hold their breath after the start of the per-
fusion scan for approximately 20 s. Contrast agent pas-
sage was imaged by using a saturation-recovery Turbo
fast low angle shot (turboFLASH) sequence provided
by the vendor. The imaging parameters were as fol-
lows: TR/TE = 147.78 ms/0.99 ms; FOV = 260× 337 mm2;
matrix size: 108× 192 mm2; flip angle = 10◦; and 80
dynamics per slice. The saturation recovery time (from
the saturation pulse to the middle of the readout) was
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95 ms. Rest perfusion images were acquired 15 min after
the exercise stress to allow sufficient time for clearance
of the contrast agent. This Ex-CMR protocol took a total
of 30 mins. In all subjects, a retest scan using the same
Ex-CMR protocol was performed to assess test–retest
reproducibility.

2.5 Ex-CMR data analysis

All CMR images were reviewed offline by two independent
experienced observers (Dr Gao and Dr Chen with 20 and
5 y of experience, respectively) blinded to the subject infor-
mation to ensure that these images had sufficient diagno-
sis quality to be included for further analysis. Observers
manually draw contours to outline the endocardium and
epicardium on the native T1 maps using a commercially
available cardiac software CVI41 (Version 5.3.2; Circle Car-
diovascular Imaging). T1 reactivity was expressed in abso-
lute terms:ΔT1(ms)= T1stress–T1rest and as percentages:
δT1(%) = ΔT1÷T1rest× 100.

For perfusion analysis, all perfusion images were first
corrected for both respiratory and cardiac motion using
a robust motion correction (MoCo) technique.19 The
arterial input function was retrospectively corrected for
the saturation effect using a model validated by perfu-
sion measurements with positron emission tomography
(PET).20 Pixel-wide myocardial blood flow (MBF) maps
at short-axis view were then created in mL/min/g at rest
and during the exercise stress using a custom-made soft-
ware.21 Myocardium in each map was divided into six seg-
ments and the mean MBF of each segment was obtained.
The global MBF was calculated from the mean MBF of
six segments at the mid-ventricular short-axis location.
As resting MBF is determined by cardiac workload,13

we corrected resting MBF for the rate-pressure product
(RPP), an index of myocardial oxygen consumption: Nor-
malized MBF = (MBF/RPP)× 104. MPR was defined as
the ratio of stress MBF to rest MBF, and normalized
MPR = (MPR/RPP)× 104.

2.6 Statistical analysis

Normality of the data was assessed using the Shapiro–Wilk
test. Continuous normal data are expressed as mean± SD,
and differences between rest and stress were analyzed with
the two-sample t-test. Reliability (test–retest) and validity
were assessed using the intraclass correlation coefficients
(ICCs) to control for operator variance. Bland–Altman
analysis and coefficient of variance (CoV) were also
obtained. P values were considered statistically significant

when< 0.05. Statistical analysis was performed using SPSS
version 24 (IBM Corp).

3 RESULTS

3.1 MR compatibility testing

Inspection via a hand magnet demonstrated no percep-
tible magnetic attraction from any ergometer component
individually or from the fully assembled device. There
was no any indication that the presence of the ergome-
ter device within the MR bore induces image artifacts and
field inhomogeneity.

3.2 Baseline characteristics of the
subjects

All the subjects underwent the resting and exercise stress
scans successfully without any premature termination
of tests. The participants can perform sufficiently vigor-
ous exercise without knee touching the inside surface of
the scanner bore. One patient was excluded because the
motion artifacts were not corrected adequately (Support-
ing Information Figure S1). The characteristics and hemo-
dynamics of the 10 subjects are summarized in Table 1.

During the exercise test, the mean heart rate, systolic
blood pressure, and RPP significantly increased with exer-
cise (Figure 2). The peak heart rate was 136± 10 bpm,
corresponding to 70± 5% of the age-predicted maximal
heart rate (APMHR) in healthy subjects. The maximal
RPP increased significantly by 121± 33%. Between test and
retest, there were strong agreement (intra-class correla-
tion coefficient = 0.88 and 0.81, respectively) and good
reproducibility (CoV = 6.10% and 6.16%, respectively) in
the heart rates at the first and third minute during the
exercise. Bland–Altman plots for stress heart rate, systolic
blood pressure, and RPP from the two tests are shown in
Figure 3.

3.3 Changes in myocardial native T1
and perfusion during the exercise

Stress real-time native T1 and first-pass perfusion imag-
ing were successfully completed in 10 subjects dur-
ing the exercise. Compared with resting native T1
(1257± 38 ms), stress native T1 values increased signif-
icantly to 1301± 62 ms at first minute (P< 0.05) and
1319± 59 ms at third minute (P< 0.05) (Figure 2). Dur-
ing the stress, MBF increased significantly (P< 0.05) in
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T A B L E 1 General characteristics of the 10 healthy subjects

Variable Value

Female, n (%) 5 (50%)

Age (y) 25.7± 1.8

BMI (kg/m2) 21.6± 3.8

Height range (m) 1.52–1.83

Resting blood pressure (mm Hg)

Systolic 113± 11

Diastolic 73± 9

Resting heart rate (beats/min) 72± 6

Resting RPP (beats/min×mm Hg) 8158± 1082

Stress systolic pressure during first
minute (mm Hg)

142± 9

Stress diastolic pressure during first
minute (mm Hg)

82± 8

Stress heart rate during first minute
(beats/min)

125± 13

Stress RPP during first minute (beat-
s/min×mm Hg)

17 814± 2181

Stress systolic pressure during third mins
(mm Hg)

141± 12

Stress diastolic pressure during third
mins (mm Hg)

80± 6

Stress heart rate during third mins (beat-
s/min)

119± 3

Stress RPP during third mins (beat-
s/min×mm Hg)

16 840± 2463

Recovery systolic pressure (mm Hg) 112± 13

Recovery diastolic pressure (mm Hg) 72± 9

Recovery heart rate (beats/min) 71± 6

Recovery RPP (beats/min×mm Hg) 7930± 1192

Note: Values are mean± SD, n (%).

both test and retest (1.49± 0.30 and 1.59± 0.30 mL/min/g,
respectively, Table 2) in comparison with the resting MBF
(0.96± 0.29 and 0.96± 0.20 mL/min/g).

3.4 Reproducibility of stress native T1
and perfusion

For the global exercise native T1 at the first and third
minute, there was a strong agreement (intra-class corre-
lation coefficient = 0.75 and 0.89, respectively) and excel-
lent reproducibility (CoV = 3.05% and 2.02%, respectively,
Table 2). Reproducibility between test and retest was good
for stress global MBF (CoV = 10.7%, ICC = 0.84). The

variability of MPR was the lowest, represented by the high-
est ICC (0.92) and strong CoV values (8.8%). Mean values
of MBF and MPR at rest and stress for both tests are shown
in Table 2. Figure 3 shows the Bland–Altman plots in stress
native T1 at the first and third minute, as well as stress
MBF.

4 DISCUSSION

This study demonstrates a new compact MR-compatible
exercise device and examined its feasibility for Ex-CMR in
terms of myocardial native T1 and MBF. The heart rate,
systolic blood pressure, and RPP increased significantly
during the exercise stress. Both myocardial native T1 and
MBF increased significantly during the exercise stress in
young healthy subjects. Furthermore, the reproducibility
of measurement for native T1 is excellent and is good for
stress MBF and MPR. The pilot testing demonstrated that
this compact ergometer successfully induced cardiac stress
for diagnosis purpose while simultaneously allowing high
quality MR imaging during the exercise stress.

The present pedal ergometer uses an up/down pedal
motion, which has the benefit of reduced upper body
motion, thus reduced motion artifact in comparison with
supine cycle ergometer. It is noted that the dimension
of this equipment is relatively small, which is different
from another similar commercial supine stepper.17 Fur-
thermore, in comparison with the traditional equipment
that provides only a limited number of resistance adjust-
ments,17 this equipment has a variety of workload that can
be adjusted tailored to the imaging protocol and the need
of individual subjects.

Given the relatively narrow bore diameter in MR
scanners (approx. 70 cm), some typical limitations with
bicycle-style ergometers are that tall participants would
not be able to achieve a sufficient level of supine exer-
cise22 and it may be difficult to establish a steady state
workload.23 Pedal ergometer in this study overcame the
above limitations. With the help of adjusting the patient
flat (lying) body position and knee height, participant’s
knee did not hit/touch the inside of the magnet bore dur-
ing the vigorous pedaling. In addition, unlike the previous
similar commercially available device which is often used
for skeletal muscle exercise testing,24,25 our equipment can
accomplish other exercise tasks (e.g., isometric exercise)
for organs such as the thigh, the calf, and the feet.

Perhaps the most significant finding is the heart rate
in current study increased by 74%, which is similar to
70± 5% of the APMHR. This finding differs from that of
Thomas et al. (2020) who showed that it is more diffi-
cult to reach the maximal heart rate with supine exercise
than with upright exercise.26 Previous studies have shown
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F I G U R E 2 The effects on heart rate (HR) (A), systolic blood pressure (SBP) (B), RPP (C), native T1 (D), and MBF (F) in all subjects
underwent the Ex-CMR. All mean values of the respective parameters increased significantly during the exercise stress, compared to
counterparts at rest.

F I G U R E 3 The Bland–Altman plots. Test–retest reproducibility of heart rate (HR) (A), systolic blood pressure (SBP) (B), RPP (C), and
native T1 using exercise stress with motion correction in all healthy young subjects at first (D) and third (E) minute and stress MBF (F).

a couple of reasons. First, compared with upright exercise,
supine exercise can lead to muscle fatigue more quickly
and can strongly reduce the musculature of the recruited

lower extremities.27 Second, supine exercise may raise sys-
tolic blood pressure much higher than upright exercise
does, thus resulting in similar increases like in RPP.10,28
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T A B L E 2 Reproducibility of rest and stress native T1 and myocardial blood flows

Parameter Test 1 Test 2 CoV (%) ICC (95% CI) P value

Global T1

Rest 1248 (34) 1266 (42) 1.68 0.87 (0.57; 0.96) 0.001**

Stress 1 min 1302 (76) 1302 (51) 3.05 0.75 (0.22; 0.92) 0.009**

Stress 3 min 1316 (57) 1314 (67) 2.02 0.89 (0.64; 0.97) 0.001**

Recovery 1057 (50) 1042 (27) 2.84 0.62 (−0.67; 0.92) 0.095

Global perfusion

Rest MBF 0.96 (0.29) 0.96 (0.20) 15.13 0.77 (−0.02; 0.95) 0.027*

Normalized Rest MBF 1.15 (0.30) 1.20 (0.26) 13.88 0.77 (0.00; 0.95) 0.025*

Stress MBF 1.49 (0.30) 1.59 (0.30) 10.70 0.84 (0.28; 0.96) 0.010*

Normalized stress MBF 0.94 (0.10) 0.99 (0.14) 9.39 0.66 (−0.69; 0.93) 0.087

MPR 1.69 (0.45) 1.72 (0.41) 8.80 0.92 (0.68; 0.98) 0.001**

Normalized MPR 1.32 (0.28) 1.35 (0.21) 8.35 0.87 (0.39; 0.98) 0.006**

* P< 0.05.
** P< 0.01.

Like multiple exercise studies have reported,29 our exercise
intensity reached its sub-maximum. The increased heart
rate and RPP are consistent with recent observations by
another study that used Lode BV (Up/Down) ergometer
in which image acquisition is at moderate workload inten-
sities.30 Hence, it could be possible to perform the pedal
ergometer to maximal intensity heart rates by increasing
the workload intensities or exercise time.

Exercise has been recognized as the most important
efficient physiological stimulus that increases the demand
on myocardial oxygen.31 Limited studies have demon-
strated similar physiological responses between exercise
and dobutamine induced stress, in terms of increased heart
rate, blood flow, and oxygen demand.12 The results of this
study are in accord with a previous study reporting that
the hemodynamic responses of healthy controls to dobu-
tamine stress were similar to those to physical exercise
tests.32 Sundin et al.33 administered a dobutamine dose
of 22± 6 μg/kg/min, which increased heart rate by 64%
and increased systolic blood pressure by 14%. The increase
in heart rate obtained in our study (74%) is in line with
these results with pharmacological stress. Nevertheless,
whether our compact ergometer permits accurate and reli-
able assessment of biventricular function remains to be
studied in a clinical setting.34

Dobutamine stress leads to MRP of 1.73± 0.73 to
1.97± 1.13, which is comparable to our MPR of 1.69± 0.45
or 1.72± 0.41during the exercise.35 Our results of exer-
cise stress MBF and MPR regarding healthy subjects were
comparable to those observed with intravenous dobu-
tamine or other maximal exercise on a treadmill proto-
col in CMR.35,36 In addition, the T1 reactivity seems to

show better reproducibility (lower CoV%) compared to
MBF and MPR measurements. The CoV of T1 mapping
during stress in our study (3.05% or 2.02%) is in line
with the results reported by Federica et al, in which the
test–retest reliability was from good to excellent for stress
native T1(1.5%).37 Test–retest reliability of MPR of this
study (8.8%) is also in accord with other studies report-
ing that the CoV value of test–retest reliability of MPR was
from 13.3% to 35%38,39 in healthy subjects and ICCs var-
ied from 0.26 to 0.88.39,40 Although the specific reasons
for less reproducibility in MBF and MPR measurement are
unknown, the residual motion artifacts, errors in AIF esti-
mation, and/or physiology difference of participants at two
different days may all contribute to this slightly poorer rep
roducibility.

It is noted the exercise stress augmented native T1
by using this compact ergometer. Several studies have
revealed that native (non-contrast) T1 mapping may be
used to quantify myocardial water content41–43 and the
T1 reactivity can differentiate between normal, infarcted,
ischemic, and remote myocardium with distinctive T1 pro-
files, thus holding promise for ischemia detection without
the need for gadolinium contrast injections.42,44,45 In this
pilot study, exercise stress and the change in myocardial T1
during stress (T1 reactivity = 4.9%) are similar to previous
adenosine and exercise stress T1-mapping studies.32,44,46,47

5 LIMITATIONS

There are several limitations in this pilot study. First,
the sample size is very limited, and no cardiac patients
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were involved in the tests. Second, this study lacks direct
comparison with perfusion imaging with pharmaceuti-
cally induced stress in the present study. It would be inter-
esting to compare these two types of stress mechanisms
in terms of their effectiveness for the diagnosis of coro-
nary artery disease. Third, the subjects were not instructed
to abstain from vigorous exercise and caffeine/tea con-
sumption prior to each visit, which may affect MBF values.
Finally, our findings with regards to the moderate repro-
ducibility in MBF and MPR may reflect residual exercise
motion artifacts during stress. Consequently, more techni-
cal developmental work in Ex-CMR acquisition methods
such as 3D perfusion and T1 mapping sequences with
motion correction, need to be done prior to using this
compact ergometer in routine clinical study of cardiac
patients.

In conclusion, we designed, constructed, and exam-
ined an MR-compatible compact ergometer for Ex-CMR
within the MR bore. The increases in heart rate and RPP
during the moderate exercise are similar to those by using
dobutamine stress. The reproducibility of native T1, MBF,
and MPR measurements during the exercise stress are
from good to excellent. More studies are necessary to
examine the diagnosis utility with this compact ergometer
in a variety of cardiovascular diseases.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1 The first-pass perfusion images for the sub-
ject that was excluded due to poor MoCo. The first-pass
perfusion image captured in frame 8 is in systole,
whereas the one in frame 9 is in diastole. This repre-
sents difficult-to-correct nonrigid motion. Also, the deep
breathing-pattern typically seen during exercise stress is

visualized in frames 10–15 (large through-plane motion
which is difficult for MoCo to correct).
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