
Mechanical axonal injury and a lack of neurotrophic 
support for retinal ganglion cell (RGC) bodies induces apop-
tosis and necrosis of retinal ganglion cells [1], which results 
in visual dysfunction and can lead to blindness by giving rise 
to diseases such as glaucoma [2,3]. Blunt trauma, including 
optic canal fractures and expansile intracranial lesions, may 
result in partial axonal injury instead of complete nerve tran-
section. The optic nerve is a white-matter tract composed 
principally of RGC axons, and injury of the optic nerve is 
similar to brain axonal injury [4-6]. Currently, there is no 
effective therapy for diseases involving optic nerve injury, 
such as glaucoma and ischemic optic neuropathy [7,8]. To 
investigate the mechanisms and neuroprotective treatment of 
disease associated with optic nerve injury, we chose a partial 

axonal injury model. Optic nerve crush (ONC) injury is a 
model of acute RGC injury that produces rapid degeneration 
of axons and significant changes in RGC morphology that are 
readily standardized [9]. We thus decided to use this model 
as previously described [10-12] with a slight modification, 
to understand the process of axonal degeneration and RGC 
death involved in traumatic optic neuropathy and glaucoma 
[13,14].

The mechanism of RGC death after ONC in adult 
animals is not fully understood. Many studies have demon-
strated that neurotrophic factor deprivation [15,16] and oxida-
tive stress [17] contribute to RGC loss. A substantial body of 
evidence suggests that reactive oxygen species (ROS) are part 
of the signaling pathway in RGC death after ONC [18,19]. 
RGC axons within the globe are functionally specialized and 
are richly endowed with many mitochondria. Mitochondria 
produce the energy required for nerve conduction in the 
unmyelinated part of ganglion cell axons. Thus, optic nerve 
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Purpose: This study was conducted to determine whether alpha lipoic acid (ALA) promotes the survival of retinal gan-
glion cells (RGCs) in a rat model of optic nerve crush (ONC) injury and to investigate the neuroprotective mechanisms 
of ALA in the retina in this ONC injury model.
Methods: Adult male Sprague-Dawley rats (180–220 g) were subjected to ONC injury surgery. ALA (63 mg/kg) was 
injected intravenously 1 day before or after the ONC injury. Animals were euthanized after 10 days, and the number of 
ganglion cells positive for RNA-binding protein with multiple splicing (Rbpms), which is an RGC marker, were counted 
on the whole mount retinas. In addition, immunofluorescence and immunoblotting were performed to examine the lo-
calization and levels of erythropoietin receptor (EPOR) and neurotrophin-4/5 (NT4/5) in the retinas in all experimental 
groups. To determine whether the EPO/EPOR signaling pathway was involved in the ALA antioxidant pathway, the 
rats were subjected to ruxolitinib (INCB018424, 0.25 mg/kg, bid, intraperitoneal, i.p.) treatment after the animals were 
injected intravenously with ALA 1 day before ONC injury.
Results: The average number of Rbpms-positive cells/mm2 in the control group (sham-operated group), the ONC group, 
the ALA-ONC group, and the ONC-ALA group retinas was 2219±28, 418±8, 848±22, and 613±18/mm2, respectively. 
The ALA-ONC and ONC-ALA groups showed a statistically significantly increased RGC survival rate compared to the 
ONC group. There were statistical differences in the RGC survival rates between the ALA-ONC (39%) and ONC-ALA 
groups (28%; p<0.05). Immunofluorescent labeling showed that EPOR and NT4/5 expression was significant in the retinal 
ganglion cell layer (GCL). At the same time, western blot analysis revealed that ALA induced upregulation of EPOR 
protein and NT4/5 protein expression in the retina after ONC injury. However, INCB018424 reversed the protective 
effects of ALA on the ONC retinas.
Conclusions: ALA has neuroprotective effects on RGCs after ONC injury. Moreover, prophylactic administration of 
ALA may have a stronger neuroprotective effect against ONC-induced damage. Based on these data, we also conclude 
that the endogenous EPO/EPOR signaling pathway may contribute to the protective effects of ALA in the retina after 
ONC injury.
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crush injury–induced RGC apoptosis may at least partially be 
due to mitochondrial malfunction [20,21]. Alpha lipoic acid 
(ALA) and its reduced form, dihydrolipoic acid (DHLA), have 
powerful antioxidant effects. ALA is a disulfide compound 
found naturally in mitochondria that serves as the coenzyme 
involved in the carbohydrate utilization necessary for the 
production of ATP in mitochondria. Evidence shows that 
ALA is a superb antioxidant that enhances mitochondrial 
function [20,22,23]. ALA inhibits mitochondrial calcium 
transport that may be associated with its beneficial effects 
which are observed in neurodegenerative disorders [10]. ALA 
provides protection to the retina as a whole, and to ganglion 
cells in particular from ischemia–reperfusion injury [24] 
and optic nerve crush [20]. Recent studies have revealed that 
ALA exerts a neuroprotective effect against oxidative stress 
in retinal neurons [25,26].

However, whether treatment with ALA has protective 
effects on RGCs in the ONC retina, and whether there are 
differences in outcome with administration of ALA before 
versus after ONC is unclear. Erythropoietin (EPO) and 
erythropoietin receptor (EPOR) are expressed in the retina 
[27,28], and an endogenous EPO/EPOR signaling system 
may participate in intrinsic recovery mechanisms and play 
an endogenous neuroprotective role in the survival of RGCs 
after retinal injury [29]. EpoR depends on Janus kinase 
2 (JAK2), which is a non-receptor tyrosine kinase, and its 
active form binds the Box1/Box2 region of EpoR [30]. EPO 
binding to the EpoR homodimer triggers a conformational 
change in the receptor cytoplasmic domain, bringing the 
JAK2 proteins in close proximity to each other and resulting 
in transphosphorylation and activation of JAK2 and EpoR 
[31]. Neurotrophin-4/5 (NT4/5), which is a neurotrophin that 
shares many homologies with brain-derived neurotrophic 
factor (BDNF), and its receptor, tropomyosin related kinase 
receptor B (TrkB), are produced locally in the retina [32-35]. 
Multiple studies have demonstrated that administration of 
NT4/5 increases RGC survival in ONC retinas [36-39]. The 
NT4/5-TrkB survival signaling pathway has been implicated 
in the protection of RGCs against retinal injury, such as ONC, 
vitreoretinopathy, and glaucoma [35,37,40-42]. Although 
research in this area is substantial, the effectiveness of ALA 
as a neuroprotectant acting via the endogenous EPO/EPOR 
signaling pathway or the NT4/5 molecule in the ONC retina 
has not been investigated. The objective of this study was 
to determine whether ALA has protective effects on retina 
neuronal cells against retinal ONC injury and to identify the 
mechanisms involved in this process.

METHODS

Animals: Seventy-four 6-week-old male Sprague-Dawley 
(SD) rats with bodyweight of 180–220 g were housed in a 
12 h:12 h light-dark cycle environment. Rats had free access 
to food and water during the experiments. All experiments 
were performed in accordance with the Peking University 
guidelines for animal research and the ARVO Statement for 
the Use of Animals in Ophthalmic and Vision Research. The 
experimental animal protocol used throughout this study was 
approved by the Peking University Institutional Animal Care 
and Use Committee (IACUC).

Animal model of retinal ONC: ONC surgery was conducted 
as previously described [10,11] with a slight modification. 
Briefly, rats were deeply anesthetized with an intraperito-
neal injection using a cocktail of ketamine (80 mg/kg) and 
xylazine (8 mg/kg). An incision was made on the temporal 
conjunctiva, the lateral rectus muscle was dissected, and the 
optic nerve was exposed with sharp forceps tips, followed 
by blunt dissection. The left optic nerve was then crushed 
1 mm distal to the globe for 10 s with a 40 g power vascular 
clamp (TKF-5–40, AROSurgical Corp, Newport Beach, CA), 
carefully avoiding vessels. The right eye was treated in the 
same manner, but crushing of the optic nerve was omitted to 
establish a sham-operated control group.

Experimental design: ALA (300 mg:12 ml, c = 121 mmol/l, 
C8H14O2S2) was purchased from STADA (Dresden, Germany). 
About 0.5 ml ALA was administered in one intravenous (i.v.) 
bolus (63 mg/kg bodyweight) 1 day before or after ONC 
surgery. Control animals received vehicle alone. Ruxolitinib 
(INCB018424, 0.25  mg/kg, bid at a fixed time; Selleck 
Chemicals, Shanghai, China), which is a Jak2 inhibitor, 
was administered via intraperitoneal (i.p.) injection (for 10 
days until the animals were killed) after retinal ONC injury 
following 1 day of pretreatment with ALA. INCB018424 (10 
mg) was prepared by dissolving the compound in 1 ml of 
dimethyl sulfoxide (DMSO) as stock solution (10 mg/ml). The 
pH was adjusted to 7.4, and the solution was diluted to a final 
volume with 0.9% NaCl. Rats were randomly divided into 
five groups: The sham-operated group (the optic nerve was 
exposed with sharp forceps tips and blunt dissection without 
crushing the optic nerve, Control, n = 17); the ONC group 
(animals were subjected to retinal optic nerve crush only, 
ONC, n = 17); the ALA-ONC group (animals were injected 
intravenously with ALA 1 day before ONC, ALA-ONC, n 
= 17); the ONC-ALA group (animals were injected intrave-
nously with ALA 1 day after ONC, ONC-ALA, n = 17); and 
the ALA-ONC+I group (animals were injected intravenously 
with ALA 1 day before ONC, followed by INCB018424, 
bid, i.p., ALA-ONC+I, n = 6). All experimental animals 
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were euthanized by administration of an overdose of sodium 
pentobarbital 10 days after ONC injury.

Tissue preparation and whole mount retinal immunohis-
tochemistry: Rats were euthanized with an overdose of 
sodium pentobarbital, the temporal pole of each retina was 
burn marked for orientation, and the eyes were removed 
and dissected (n = 30). After the cornea, lens, and vitreous 
body were removed, the retina was removed from the eyecup 
after 2 min in 4% paraformaldehyde (Cat. No. 15710, Elec-
tron Microscopy Sciences, Ft. Washington, PA), dissected 
from the RPE, separated by four radial cuts in the retinal 
periphery, and mounted on a nitrocellulose membrane filter 
(GSWP02500, Millipore, Bedford, MA), followed by fixa-
tion for an additional 60 min in a 24-well tissue culture 
cluster (Cat. No. 3524, Corning Inc., Corning, MA). Retinas 
were then washed four times with 0.01 M PBS (1X; 85 mM 
Na2HPO4, 15 mM NaH2PO4, 150 mM NaCl, pH 7.4) for 6 min 
per wash on a shaker (unless otherwise stated, all steps in the 
following protocol were performed on a shaker). The retinas 
were then incubated in 2% Triton X-100 (Sigma-Aldrich, 
St. Louis, MO) and 0.5% DMSO (Sigma-Aldrich) in 0.01 
M PBS for 2–3 days at 4 °C and then blocked (CAS-Block, 
Invitrogen, Frederick, MD) for 3–4 h at room temperature. 
The blocking solution was removed, and a rabbit polyclonal 
antibody against RNA-binding protein with multiple splicing 
(Rbpms; 1:1,000, ProSci, Poway, CA), diluted in blocking 
solution, was immediately added to the retinas, which were 
then incubated for 3–5 days at 4  °C. After rinsing four 
times to remove excess primary antibody, the retinas were 
incubated with secondary antibody DyLight 488 anti-rabbit 
immunoglobulin G (IgG; 1:2,000, Vector Labs, Inc., Burlin-
game, CA) and diluted in blocking solution for 3–4 h at room 
temperature. The cell nuclei were then counterstained with 
4’-6-diamidino-2-phenylindole (DAPI, Cat. No. 10236276001, 
Roche, Basel, Switzerland). Following the final washing, the 
retinas were mounted on glass slides with the ganglion cell 
layer up, air-dried, and coverslipped using antifade mounting 
medium (Cat. No. 17985–10, Electron Microscopy Sciences, 
Hatfield, PA).

Image processing and counting of surviving RGCs: The 
entire whole mount retina was photographed with a 2.5× 
objective using fluorescent microscopy (BX51, Olympus, 
Tokyo, Japan). The actual image area of a single shot was 
3207 × 2415 μm2 (n = 6 per group). Photographic images 
were montaged with graphic software Adobe Photoshop 
CS5 (Adobe Systems, Inc., San Jose, CA). Mean densities of 
Rbpms-positive cells in the GCL of the retina were estimated 
as previously described [16,43,44]. Briefly, Rbpms-positive 
cells were counted by the same observer from photographs 

of 12 rectangular (436 × 327 μm2/microscope fields) areas 
of each retina, three in each quadrant (superior, inferior, 
nasal, and temporal) at distances of 1, 2, and 3 mm from 
the optic disc (OD) using a 20× objective lens. Cell counts 
were performed in an area approximately the same distance 
from the optic disc (1, 2, and 3 mm from the OD). Twelve 
microscopic fields were counted per retina, corresponding to 
approximately 3.5% of the retinal area. The average number 
of Rbpms-positive cells/mm2 was calculated. Quantification 
was performed in a blinded manner.

Immunohistochemistry using radial sections: Immuno-
fluorescence was used to examine the localization of EPOR-
positive cells and NT4/5-positive cells in the retina (n = 24). 
In addition, radial sections were also used to double label 
EPOR or NT4/5 with Rbpms, which is a specific marker 
for RGCs [45,46]. Eyes were enucleated, postfixed in 4% 
freshly prepared paraformaldehyde for 40 min to 1 h, and 
then immersed in 30% sucrose solution (in 0.01 M PBS) at 
4 °C overnight. The following day, retinas were embedded 
in optimum cutting temperature (OCT). Sections were cut 
transversely along the temporal-nasal axis of the eyeball. To 
ensure comparability, only sections containing the optic nerve 
stump were used for this study (n = 6 per group). Cryosections 
(12 µm) were thawed, air-dried, and washed three times with 
0.01 M PBS (pH 7.4). Tissue specimens were treated with 3% 
bovine serum albumin (BSA; Sigma-Aldrich) in 0.3% Triton 
X-100 for 60 min at room temperature and then incubated 
with either rabbit polyclonal antibody against EPOR (1:100, 
sc-5624, Santa Cruz Biotech Inc., Dallas, TX) or goat poly-
clonal antibody against NT4/5 (1:100, SAB2500696, Sigma-
Aldrich), and with guinea pig polyclonal antibody against 
Rbpms (1:1,000, ProSci) as double primary antibodies. Immu-
noreactivity was evaluated using two fluorescein isothio-
cyanate (FITC)-labeled secondary antibodies (Abcam Inc., 
Cambridge, MA), and cell nuclei were counterstained with 
4’-6-diamidino-2-phenylindole (DAPI; Cat. No. 10236276001, 
Roche). As a control for secondary antibody specificity, some 
retinas were processed in parallel for immunofluorescence 
staining, with the omission of the primary antibody. These 
specimens showed no detectable signal. Preparations were 
evaluated using fluorescence microscopy (BX51, Olympus, 
Tokyo, Japan).

Western blotting: Rats were euthanized using an overdose 
of sodium pentobarbital 10 days after ONC, the eyes were 
enucleated immediately, and the retinal tissues were extracted 
(n = 20). Tissues were washed with precooled 0.01 M PBS 
(pH 7.4), and ultrasonically homogenized at 4 °C in 100 ml 
of RIPA Lysis buffer (pH 7.4, 50 mM Tris-Hcl, 150 mM 
NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate (SDS), Cat. 
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No. C1053, Applygen, Beijing, China), 1X All-in-One (100X, 
P1260, Applygen), and 1X Proteinase inhibitor cocktail (50X, 
P1265, Applygen). Using a bicinchoninic acid protein assay 
reagent kit (P1511, Applygen), the protein concentration 
was measured (n = 5 per group). Equal amounts of protein 
(20 µg/lane) were separated with 10% or 12% sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). 
Next, the proteins were transferred to Immun-Blot Polyvi-
nylidene Difluoride (PVDF) Membrane (162–0177, Bio-Rad 

Laboratories, Hercules, CA), which was then blocked and 
probed with one of the following primary antibodies: rabbit 
polyclonal antibody against EPOR (1:1,000, sc-5624, Santa 
Cruz Biotech), goat polyclonal antibody against NT4/5 
(1:1,000, SAB2500696, Sigma-Aldrich), or mouse monoclonal 
anti–β-actin (1:2,000, A1978, Sigma-Aldrich). Peroxidase-
conjugated donkey anti-rabbit IgG (H+L; 1:2,000, Jackson 
ImmunoResearch Laboratories, West Grove, PA), donkey 
anti-goat IgG-horseradish peroxidase (HRP; 1:2,000, sc-2020, 

Figure 1. Density distribution of retinal ganglion cells (RGCs) in whole mount retinas under different conditions. Panels A to D (25× magni-
fication, amplified images in white boxes) reveal the retinal distribution patterns of RNA-binding protein with multiple splicing (Rbpms)-
positive cells under different experimental conditions. The retinal orientation (clockwise) is temporal, inferior, nasal, and superior poles. 
Sampling location: 1.5 mm temporal to the optic disc. Scale bar = 800 μm. Panels E to H (100× magnification) show magnified micrographs 
of Rbpms-positive cells (white dashed lines encircle areas from panels A–D). Sampling field size: 877 × 660 μm2. Scale bar = 100 μm. Panels 
I through L (200× magnification) exhibit retinal micrographs from panels E to H (white dashed lines encircle the areas). Sampling field size: 
439 × 330 μm2. Scale bar = 50 μm. Panels M to P (400× magnification) are magnified micrographs of Rbpms-positive cells (white dashed 
lines encircle areas from panels I–L). Sampling field size: 219×165 μm2. Scale bar = 20 um. A–D: 2.5× objective lens; E–H: 10× objective 
lens; I–L: 20× objective lens; M–P: 40× objective lens. AEIM = Control (sham-operated animal); BFJN = ONC (optic nerve crush animal); 
CGKO = ALA-ONC (ALA-pretreated animal 1 day before ONC); DHLP = ONC-ALA (ALA-treated animal 1 day after ONC).
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Santa Cruz Biotech), and goat anti-mouse IgG-peroxidase 
(1:4,000, Cat. No. HRPGTXMS.05, KPL Inc., Gaithersburg, 
MD) were used. Protein bands were visualized using Amer-
sham Biosciences ECL western blotting detection reagent 
(GE Healthcare Life Science, Uppsala, Sweden) according 
to the manufacturer’s instructions. For quantification, blots 
from at least five independent experiments (five animals per 
group) were used and quantified using Image J software.

Statistical analysis: Data are expressed as mean ± standard 
error of the mean (SEM). Analysis among multiple groups for 
single variable data was performed using one-way ANOVA 
analysis, followed by Bonferroni post hoc tests using SPSS 
17.0 for Windows Software (SPSS Inc., Armonk, NY). A p 
value of less than 0.05 was considered statistically significant.

RESULTS

ALA protects RGCs from ONC injury: To determine whether 
treatment with ALA has protective effects on RGCs in the 
ONC retina, Rbpms, which is a specific marker for RGCs, 
was used to quantify the loss of RGCs due to ONC-induced 
damage. RGCs of various soma size were immunoreactive 
to Rbpms, and Rbpms-positive cells were distributed across 
the entire retina. The retinal distribution patterns of Rbpms-
positive cells under different experimental conditions are 
shown in Figure 1. A significant decrease in the number of 
RGCs was observed 10 days after ONC injury (Figure 1N) 
compared to the control group (Figure 1M). The extent of 
cell death was reduced in the ALA-ONC group compared 
to the ONC group (Figure 1O). In the ONC-ALA group, 
cell loss induced by ONC injury was also prevented (Figure 
1P). Graphic quantification of RGCs induced by ONC in all 

Figure 2. ALA protects retinal ganglion cells (RGCs) from ONC-induced damage. A, B, C, D: Quantitative analysis of RNA-binding protein 
with multiple splicing (Rbpms)-positive cells (mean ± standard error of the mean [SEM], n = 6 per group). A, B, C: Mean density was 
estimated in an area approximately the same distance from the optic disc (OD): 1 mm (A), 2 mm (B), and 3 mm (C) from the OD. D: The 
average number of Rbpms-positive cells/mm2 was calculated. *** p<0.001 compared to control, ## p<0.01, ### p<0.001 compared to optic 
nerve crush (ONC) injury, + p<0.05, +++ p<0.001 compared to the alpha lipoic acid (ALA)-ONC group at the same time point.
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experimental groups is shown in Figure 2. RGC densities in 
four experimental groups at distances of 1 mm (Figure 2A), 
2 mm (Figure 2B), and 3 mm (Figure 2C) from the OD are 
shown in the partial content of Table 1. As shown in Figure 
2D, the average number of Rbpms-positive cells/mm2 was 
consistent with the mean density at identical distances from 
the OD. The average RGC density in the control group 
retinas was 2219±28/mm2. The RGC density in the ONC 
group, ALA-ONC group, and ONC-ALA group decreased 
to 418±8, 848±22, and 613±18/mm2, respectively. Rbpms-
positive cell loss was 81% of the RGC population in the ONC 
group compared with the control group (n = 6 per group). 
This is somewhat comparable to previously reported results 
obtained after ONC in adult SD rats. A recent study showed 
51% RGC survival at 7 days, 10% RGC survival at 1 month, 
and 4% RGC survival at 6 months after ONC [47]. In previous 
research, ONC-induced RGC loss first appeared at 7 days, 
and after 12 days, only 32% of the RGC population remained 
in the retina [37]. In the ALA-ONC and ONC-ALA groups, 
RGC loss was limited to approximately 61% and 72%, respec-
tively. These results demonstrate the RGC survival rate was 
increased in the retinas of the ALA-ONC and ONC-ALA 
groups compared to the ONC group, and the RGC survival 
rate was higher in the ALA-ONC group (39%) compared with 
the ONC-ALA group (28%; p<0.05). The neuroprotective 
effect of precrush treatment with ALA (the ALA-ONC group) 
on RGCs was more effective than that seen in post-crush 
treatment with ALA (the ONC-ALA group). These results 
suggest that prophylactic administration of ALA may yield 
better protective effects in neurodegenerative diseases, such 
as glaucoma.

ALA induces the upregulation of EPOR expression in the 
retina after ONC injury: To determine whether the EPO/
EPOR signaling pathway contributes to the retinal protec-
tive effects of ALA after ONC injury, we immunostained 
for EPOR and Rbpms in retinal cross sections from different 
experimental groups. With three-label immunohistochemical 
staining using antibodies against EPOR, Rbpms, and DAPI 
(Figure 3), we observed intense immunoreactivity in the 
GCL of the control group rats and weak immunoreactivity 
in the ONC groups. There was no immunoreactivity in the 
controls without a primary antibody (negative control). In the 
ALA-ONC and ONC-ALA groups, EPOR immunoreactivity 
was statistically significant enhanced compared with the 
ONC group. Double-label staining of the control retinas for 
EPOR and Rbpms showed that EPOR was highly expressed in 
the GCL but not in the RGCs. In the other groups, the altera-
tion in EPOR expression was consistent with Rpbms but was 
slightly greater than that of Rpbms. Semiquantitative analysis 
of the EPOR protein was confirmed with immunoblotting. As 
shown in Figure 4A, the level of EPOR in the ONC retina was 
low compared with that in the control groups. ALA induced 
an increase in EPOR expression in the retinal GCL. Statisti-
cally significantly enhanced EPOR expression was observed 
in the ALA-ONC group compared with the ONC group, but 
there was no statistically significant difference compared 
with the control group. There was no statistically significant 
difference in EPOR levels in the ALA-ONC group and the 
ONC-ALA group. These results show that the EPOR protein 
contributes to the protective effect of ALA on the retina after 
ONC injury.

Table 1. Quantification of Rbpms-positive retinal ganglion cells (RGCs; cells/mm2) in whole 
mount retinas in different experimental groups (n=6 per group, mean ± SEM).

Group
Distance from Center of Optic Nerve Head (mm)

Average
1 mm 2 mm 3 mm

Control 2435±35 2328±49 1893±35 2219±28
ONC 422±13 464±5 369±19 418±8
ALA-ONC 933±45 896±25 714±22 848±22
ONC-ALA 672±28 628±24 540±11 613±18
ALA-ONC+I 546±38 579±32 550±39 558±33
F1 767.28 801.95 862.77 1588.12
P1-value (<) 0.000 0.000 0.000 0.000
F2 58.63 91.26 38.09 87.41
P2-value (<) 0.000 0.000 0.000 0.000

Note: F1 and P1-value: one-way ANOVA analysis among the four groups Control, ONC, ALA-ONC and ONC-ALA; F2 and P2-value: 
one-way ANOVA analysis among the three groups ONC, ALA-ONC and ALA-ONC+I; Control: sham-operated animal; ONC: optic 
nerve crush animal; ALA-ONC: ALA animal pretreated 1d before ONC; ONC-ALA: ALA-treated animal 1d after ONC; ALA-ONC+I: 
ALA animal pretreated 1d before ONC, followed by INCB018424.
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ALA upregulates the level of NT4/5 in retinal tissue after 
ONC injury: To determine whether ALA increases NT4/5 
expression, we performed immunohistochemistry and immu-
noblotting studies for NT4/5 in different experimental groups. 
Using immunohistochemistry, no staining was detected in 
the controls without a primary antibody (negative control, 
Figure 5A). We observed a change in NT4/5 expression in 
the RGCs after ONC (ONC, Figure 5A), compared with 
the retinas that had no lesions (control, Figure 5A). In the 
ALA-ONC and ONC-ALA groups, we discovered intense 
immunoreactivity in the surviving RGCs in the GCL (Figure 
5A) compared with the ONC group. As shown in Figure 5D, 
NT4/5 immunoreactivity colocalized with Rbpms (Figure 5B) 
and DAPI (Figure 5C). These findings show NT4/5 expres-
sion is located in the cells of the retinal GCL, and especially 

in the RGCs. Western blot experiments confirmed changes in 
NT4/5 expression in protein lysates prepared from the retinas 
of the four experimental groups that were consistent with 
the immunohistochemistry results (Figure 6A). The level of 
NT4/5 in the ONC retina was low compared with that in the 
control group (Figure 6B, p<0.001). Treatment with ALA (the 
ALA-ONC and ONC-ALA groups) statistically significantly 
enhanced NT4/5 expression compared with the ONC group 
(Figure 6B, p<0.001), and the control group showed higher 
expression compared with these two groups (Figure 6B, the 
ALA-ONC group, p<0.05; the ONC-ALA group, p<0.001). In 
the comparison of the ALA-ONC group with the ONC-ALA 
group, the relative optical density of NT4/5 in the ALA-ONC 
animals was statistically significantly higher (Figure 6B, 
p<0.001). These results suggest that the NT4/5 signaling 

Figure 3. Evaluation of EPOR expression in the retina with immunohistochemistry. A: Representative micrographs of retinal sections 
obtained from each group stained with antierythropoietin receptor (EPOR) antibody. B: EPOR expression (green, amplified images in yellow 
boxes) was observed in the GCL and colocalized with RNA-binding protein with multiple splicing (Rbpms; red, in the GCL, amplified images 
in yellow boxes). C: Rbpms and 4’-6-diamidino-2-phenylindole (DAPI; blue, in the GCL, amplified images in yellow boxes). D: Merged 
images (in the GCL, amplified images in yellow boxes) of the EPOR. Control = sham-operated animal; ONC = optic nerve crush animal; 
ALA-ONC = alpha lipoic acid (ALA) animal pretreated 1 day before ONC; ONC-ALA = ALA-treated animal 1 day after ONC. Scale bar 
= 50 µm. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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pathway also contributes to the protective effects of ALA on 
the retina after ONC injury.

INCB018424 administration reverses the protective effects of 
ALA on ONC retinas: To determine whether EPOR protein 
expression is involved in the protective effect of ALA on the 
RGCs in ONC retinas, a specific Jak2 inhibitor, INCB018424 
,was used in this study. JAK2 is the most critical molecule 
of the EPO/EPOR signaling system. As shown in Figure 7, 
INCB018424 treatment statistically significantly reduced 
the number of Rbpms-expressing cells in the ALA-ONC+I 
group compared with the ALA-ONC group (Figure 7D, 
p<0.001). In the comparison of the ONC group with the ALA-
ONC+I group, the number of Rbpms-expressing cells in the 
ALA-ONC+I animals was still higher (Figure 7D, p<0.01). 
Together, these results provide evidence that the protective 
effects of ALA on ONC retinas are at least partially mediated 
by EPOR.

DISCUSSION

This study showed that ALA protects against oxidative stress 
and neurotrophic factor deprivation in ONC retinas. Treatment 
with ALA not only alleviated or retarded ONC-induced retinal 
damage but also simultaneously increased the expression of 
the EPOR protein and increased NT4/5 protein expression in 
the ONC retina. There was a significant difference in our data 
in the average number of Rbpms-positive cells/mm2 in the 
control group and the ONC group, in agreement with previous 
studies [4,9,25,45,47,48]. R-a-lipoic acid has a dramatic neuro-
protective effect against oxidative stress–induced death of 
the retinal neuronal RGC-5 cell line [25]. Dietary therapy 
containing ALA results in oxidative stress reduction and an 
increase in the RGC survival rate in the DBA/2J model of 
glaucoma [49]. In our study, the average RGC density in the 
control group retinas at different concentric distances (1, 2, 
and 3 mm from the OD) was 2435±35, 2328±49, and 1893±35/
mm2, respectively. The central and medial regions of the rat 

Figure 4. ALA upregulates the 
expression of EPOR in the retina 
after ONC injury. A: Representa-
tive immunoblotting showing 
erythropoietin receptor (EPOR) 
protein levels in the whole retina. 
B: Densitometric analysis of EPOR 
expression relative to the loading 
control (mean ± standard error of 
the mean [SEM], n = 5 per group). 
Control: sham-operated animal; 
ONC = optic nerve crush animal; 
ALA-ONC = alpha lipoic acid 
(ALA) animal pretreated 1 day 
before ONC; ONC-ALA = ALA-
treated animal 1 day after ONC. * 
p<0.05, *** p<0.001 compared to 
the control group, # p<0.05, ### 
p<0.001 compared to the ONC 
groups.
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retina were more densely populated than the periphery. This 
trend of RGC density (Rbpms-positive cells/mm2) at different 
concentric distances reflects the normal distribution of RGCs 
throughout the retina of the adult SD rat, in agreement with 
previous reports [50-52]. In the present study, the average 
RGC density in the control group, ONC group, ALA-ONC 
group, and ONC-ALA group retinas was 2219±28, 418±8, 
848±22, and 613±18/mm2, respectively. The trend of RGC 
density (Rbpms-positive cells/mm2) at different concentric 
distances (1, 2, and 3 mm from the OD) parallels the total 
average RGC density in the retina of the four experimental 
groups. For example, the number of Rbpms-positive cells/
mm2 at a distance of 2 mm from the OD in the four groups 

was 2328±49, 464±5, 896±25, and 628±24/mm2, respectively 
(in the order designated above). These results indicate that 
pretreatment with ALA can improve the RGC survival rate 
in rats after retinal ONC, which is consistent with a previous 
report that showed R-a-lipoic acid (R-LA) induced protection 
in the mouse [25]. Together with previous studies [25,49], 
these results provide evidence that ONC-induced oxidative 
stress is attenuated by ALA. In addition, pre- and post-treat-
ment with ALA provides protection to the retina as a whole, 
and in particular to RGCs from ischemia–reperfusion injuries 
[24]. There were statistical differences in the RGC survival 
rates between the ALA-ONC group (39%) and the ONC-ALA 
group (28%; p<0.05). These data suggest that prophylactic 

Figure 5. Evaluation of NT4/5 expression in the retina with immunohistochemistry. A: Representative micrographs of retinal sections 
obtained from each group stained with anti-neurotrophin-4/5 (NT4/5) antibody (red, in the GCL, amplified images in yellow boxes). D: 
Merged images (in the GCL, amplified images in yellow boxes) of NT4/5 expression (A). B: RNA-binding protein with multiple splicing 
(Rbpms; green, in the GCL, amplified images in yellow boxes). C: 4’-6-diamidino-2-phenylindole (DAPI; blue, in the GCL, amplified 
images in yellow boxes). Control = sham-operated animal; ONC = optic nerve crush animal; ALA-ONC = alpha lipoic acid (ALA) animal 
pretreated 1 day before ONC; ONC-ALA = ALA-treated animal 1 day after ONC. Scale bar = 50 µm. GCL = ganglion cell layer; INL = 
inner nuclear layer; ONL = outer nuclear layer.
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administration of ALA produces a better neuroprotective 
effect in ONC-induced damage. This result is most likely 
due to the fact precrush treatment with ALA initiates the 
body’s immune defense mechanism and produces protective 
factors before the injury, which ultimately reduces damage 
to RGCs in ONC retinas. Once injury has occurred, there is 
a greater protective effect in the ALA-ONC group than in 
the ONC-ALA group. However, the average density of the 
Rbpms-positive cells did not return to the level of the control 
group (p<0.001). Repeated injections of ALA over 7 days 
offered no better protection for the injured RGCs than a single 
injection (data not shown). However, in the current study we 
did not examine RGC survival later than 10 days after ONC 
and administration of ALA, and thus do not know whether 
single injection ALA can have long-lasting neuroprotective 
effects on the survival of injured RGCs. Previous studies have 

shown neuroprotection of axotomized rat RGCs is a transient, 
rather than a persistent, effect [36,53]. The RGC density for 
animals that received growth factor injections was <200 cells 
per mm2 (9% of normal) at 6 and 8 weeks [53]. Fourteen days 
after axotomy, RGC density in the groups treated with growth 
factor was 839±39/mm2 [36]. Further study will be needed 
to confirm whether the protection afforded by ALA in ONC 
retinas is temporary or prolonged.

EPOR expression was found mainly in the GCL and the 
INL in the retinas consistent with findings in previous studies 
[54-57]. There was intense immunoreactivity in the GCL in 
the control group rats consistent with previous reports [56-58]. 
Fu et al. demonstrated that endogenous EPO/EPOR signaling 
may participate in intrinsic recovery mechanisms and play 
an endogenous neuroprotective role in the survival of RGCs 

Figure 6. ALA upregulates expres-
sion of NT4/5 in the retina after 
ONC injury. A: Representative 
immunoblotting showing neuro-
trophin-4/5 (NT4/5) protein levels 
in the whole retina. B: Densito-
metric analysis of NT4/5 expression 
relative to the loading control (mean 
± standard error of the mean [SEM], 
n = 5 per group). Control = sham-
operated animal; ONC = optic 
nerve crush animal; ALA-ONC 
= ALA animal pretreated 1 day 
before ONC; ONC-ALA = alpha 
lipoic acid (ALA)-treated animal 
1 day after ONC. ** p<0.01, *** 
p<0.001 compared to the control 
group, ### p<0.001 compared 
to the ONC group, +++ p<0.001 
compared to the ALA-ONC group 
at the same time point.
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after retina injury [29]. EPO binding to the EpoR homodimer 
triggers a conformational change in the receptor cytoplasmic 
domain, bringing the JAK2 proteins in close proximity to 
each other and resulting in transphosphorylation and activa-
tion of JAK2 and EpoR [31]. EpoR activation initiates down-
stream cascades via different signaling pathways including 
signal transducer and activator of transcription (STAT), 
phosphoinositide 3-kinase (PI3K)/AKT, and mitogen-acti-
vated protein kinase (MAPK) via adaptor proteins such as 
Src homology containing protein (SHC) [59,60]. JAK2 is the 
most critical molecule of the EPO/EPOR signaling system. 
In the present study, the ALA-ONC and ONC-ALA groups 
showed statistically significantly increased EPOR protein 
expression in the GCL of the retinas compared with the ONC 
group (p<0.001). The number of Rbpms-expressing cells in 

the ALA-ONC+I group was statistically significantly higher 
than that in the ALA-ONC group (p<0.001). INCB018424, 
a specific Jak2 inhibitor, reversed the protective effects of 
ALA on the ONC retinas. The protective effects of ALA were 
diminished on the ONC retinas by the administration of inhib-
itors of the EPO/EPOR signaling system. ALA may protect 
RGCs against ONC injury by activating the endogenous EPO/
EPOR survival signaling pathway. Recent evidence suggests 
that ALA may induce endogenous antioxidant pathways that 
sustain antioxidant effects for a period of time longer than 
expected if ALA acts only as an ROS scavenger [61]. In addi-
tion, Weishaupt et al. demonstrated that there was no change 
in the EPOR protein after optic nerve transection [57], but 
we discovered the level of EPOR in the ONC retina was low 
compared with that of the control group in the present study. 

Figure 7. INCB018424 administration reverses the protective effects of ALA on ONC retinas. A-C: Representative micrographs (200× 
magnification) of retinal whole mounts obtained from three groups stained with anti-RNA-binding protein with multiple splicing (Rbpms) 
antibody (green). Sampling location: 2 mm temporal to the optic disc. Sampling field size: 439 × 330 μm2 (20× objective lens). Scale bar: 50 
μm. D: Quantitative analysis of Rbpms-positive cells under different experimental conditions (mean ± standard error of the mean [SEM], n = 
6 per group). The average number of Rbpms-positive cells/mm2 was calculated. ONC = optic nerve crush animal; ALA-ONC = alpha lipoic 
acid (ALA) animal pretreated 1 day before ONC; ALA-ONC+I = ALA animal pretreated 1 day before ONC, followed by INCB018424. *** 
p<0.001, ** p<0.01 compared to the ONC group, ### p<0.001 compared to the ALA-ONC group at the same time point.
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Previous studies have shown the RGC loss after axotomy in 
adult rats varies depending on the severity of the insult or 
the type of injury (optic nerve cut versus crush) [62-65] and 
the relative distance of the lesion site from the cell somata 
[65]. This difference in the RGC death rate could be due 
to the difference in response to crush versus incision and/
or that ONC was performed using watchmaker’s forceps or 
40 g power vascular clamps. Thus, this difference in EPOR 
expression in the present study and this previous study may 
be related to the severity of injury (crush versus incision), the 
duration of the insult, or the relative distance of the lesion site 
from the corresponding cell bodies. In future studies, it will 
be important to determine how change comes about upstream 
or downstream of the EPO/EPOR signaling pathway.

Under conditions of neurotrophin deprivation, the 
survival of immunopurified RGCs is enhanced statistically 
significantly by treatment with EPO [57]. Parrilla-Reverter 
et al. demonstrated that intravitreal administration of NT4 
increases RGC survival in intraorbital nerve crush (IONC) 
retinas for up to 12 days post-injury [37]. In addition, in accor-
dance with our results, the EPO/EPOR signaling pathway 
may contribute to the protective effects of ALA on the retina 
after ONC injury. We thus examined whether the improved 
survival rate of RGCs after ALA treatment in ONC retinas 
is also caused by upregulation of NT4/5. The trend of change 
in NT4/5 protein expression in all experimental groups in 
the present study is consistent with the change in average 
RGC density. For example, the NT4/5 level in the ALA-ONC 
animals was statistically significantly higher than that in 
the ONC-ALA animals for NT4/5 expression (p<0.001) and 
average RGC density (p<0.05). In addition, treatment with 
ALA (the ALA-ONC and ONC-ALA groups) statistically 
significantly enhanced NT4/5 expression compared with the 
ONC group (p<0.001).

From the experimental data, we found that NT4/5 protein 
expression in the control group was higher compared with 
that in the ALA-ONC and ONC-ALA groups. The level of 
the NT4/5 protein in the ALA-ONC group failed to return 
to the control level, but the EPOR protein in the ALA-ONC 
group returned to a level near the control level. There were 
statistically significant differences in levels of NT4/5 protein 
in the ALA-ONC and ONC-ALA animals, but there were 
no significant differences in the EPOR protein levels in the 
ALA-ONC and ONC-ALA animals. These subtle differences 
in the NT4/5 and EPOR protein levels may explain the differ-
ences in effects on RGCs before and after the administration 
of ALA in the ALA-ONC and ONC-ALA groups. These 
differences may also result from the fact that increases in 
EPOR are the cause of alpha lipoic acid neuroprotection, but 

the increase in NT4/5 may represent the outcome and not the 
cause of alpha lipoic acid neuroprotection. Effects before 
and after the application of ALA in this ONC model may 
result from different mechanisms, and this merits further 
investigation. Unfortunately, previous studies regarding 
prior and post-application of medication have not focused 
on different mechanisms [24,38]. Moreover, none of these 
studies attempted to identify different mechanisms of action 
for the neuroprotective effects of ALA. We report that there 
may be different mechanisms involved in the RGC neuropro-
tective effect in precrush treatment with ALA and post-crush 
treatment with ALA in ONC injury. The present study offers 
novel data on the different mechanisms of neuroprotection in 
the ALA-ONC and ONC-ALA groups. This is the first time 
there has been an investigation of this aspect of this problem.

In conclusion, the present study demonstrates that 
ALA has protective effects on the RGCs in ONC retinas, 
particularly in the ALA-ONC group. In addition, the research 
suggests that the EPO/EPOR signaling pathway and the 
molecule NT4/5 contribute to the protective effects of ALA in 
the retina after ONC injury and suggests they play differing 
roles in ALA neuroprotective effects after ONC injury. These 
data raise the possibility of a new approach to therapy for and 
ways of thinking about optic nerve injury diseases. However, 
further studies are required to resolve important issues such 
as the downstream effects of the EPO/EPOR signaling path-
ways and to evaluate the functional state of rescued RGCs.
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