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Global pairwise RNA interaction landscapes reveal
core features of protein recognition
Qin Zhou1, Nikesh Kunder1, José Alberto De la Paz 1, Alexandra E. Lasley1, Vandita D. Bhat1,

Faruck Morcos 1,2 & Zachary T. Campbell 1

RNA–protein interactions permeate biology. Transcription, translation, and splicing all hinge

on the recognition of structured RNA elements by RNA-binding proteins. Models of

RNA–protein interactions are generally limited to short linear motifs and structures because

of the vast sequence sampling required to access longer elements. Here, we develop an

integrated approach that calculates global pairwise interaction scores from in vitro selection

and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and

human origin. Our approach reveals regulatory motifs, discriminates between regulated and

non-regulated RNAs within their native genomic context, and correctly predicts the con-

sequence of mutational events on binding activity. We design binding elements that improve

binding activity in cells and infer mutational pathways that reveal permissive versus dis-

ruptive evolutionary trajectories between regulated motifs. These coupling landscapes are

broadly applicable for the discovery and characterization of protein–RNA recognition at single

nucleotide resolution.
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Proteins are integral to virtually every aspect of RNA func-
tion including: transcription, processing, localization,
translation, and ultimately decay1. RNA-binding proteins

(RBPs) associate with specific structures and sequences found in
their regulatory targets. Their affinity for these elements confers
regulatory potential and is a fundamental aspect of RNA
control2,3. Accordingly, numerous next generation sequencing
methods have emerged with the goal of understanding how
proteins recognize their targets both biochemically and in cells4–6.
These methods are complementary and have been reviewed
elsewhere4,6–11. For instance, models that define key determi-
nants of specificity from in vitro selection and high-throughput
sequencing of RNAs (SEQRS) predict which bound sites facilitate
regulatory encounters in vivo12. In this work, we integrate SEQRS
with global probabilistic models to improve our understanding of
how proteins associate with extended RNA elements.

Structured RNAs are integral components of ribosomes, spli-
ceosomes, and telomerases13. Genome-wide surveys, which probe
structure in vivo, enable unbiased detection of structured ele-
ments and suggest that structure profoundly impacts mRNA
translation and stability14–21. Comparable advances in high-
throughput biochemical approaches remain tenuous. For
instance, genomic microfluidic analysis of a yeast RNA-binding
protein captured a short known binding element but sampled
only a reduced fraction of sequence space due to the compact
nature of the host genome22. Microfluidic approaches have been
proposed having the advantage of direct observation of binding
events and accurate estimation of biochemical constants (see Ozer
et al. as well as Greenleaf and co-workers)7–9. Sequencing
methods can provide kinetic information and have been used to
calculate enrichment scores that correlate with equilibrium dis-
sociation constants4,6,10. A major challenge remains for the
analysis of structured motifs. Methodological advances are nee-
ded to understand how proteins recognize these complex yet vital
regulatory elements.

High-throughput methods, including SEQRS, induce selection
to extract biochemical information. As a result of positive selec-
tion imposed by RNA interacting with RBPs, high-affinity RNA
elements survive and thrive while those sequences that fail to
interact are depleted23,24. One way to analyze the selection pro-
cess is through the use of high-throughput sequencing and local
models25–27. These local models are robust for identification of
short motifs (typically 6–10 bases), but limited in analysis of
extended binding elements. Because it is impractical to achieve a
sufficient sequencing depth to capture all possible permutations
of a short random sequence (~16 bases with existing capabilities),
enrichment is scored for subsets of the total library size (typically
6–10 bases). Although the frequency of motifs in SEQRS provides
a proxy for potential binding elements, precise native binding
sites may not be the most frequently observed. Global models of
binding may enable detection of biologically important sites. To
enable analysis of extended binding elements, we developed a
statistical framework for the generation of global statistical
models based on direct coupling analysis (DCA)28,29. DCA has
revealed key mechanistic insights into protein evolution, struc-
ture, dynamics, and function28–37. Our hypothesis is that
pairwise interactions between individual RNA bases within a
random library would reveal the underpinnings of motif recog-
nition by RBPs.

Our approach yields a comprehensive view of specificity that
we refer to as a DCA-scape. This method differs from positional
weight matrix (PWM) models, which form the basis for most
motif discovery algorithms38. PWMs are limited by the
assumption of independence between different nucleotide posi-
tions of the binding site39. The DCA-scape captures both the
identity of single sites and examines pairwise nucleotide inter-
actions termed couplings across the complete site. Related
approaches have yielded key insights into recognition of tran-
scription factor-binding elements40,41. To achieve this inference
procedure, we use DCA to estimate parameters in the nucleotide
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Fig. 1 DCA-scapes provide global models of RNA recognition. RNA-binding proteins are incubated with libraries of in vitro transcribed RNA containing a 20
base random region (scheme adapted from ref. 46). RNA–protein complexes are isolated through washing and reverse transcribed to cDNA. Transcription
adapters are attached to the library using PCR and the selection process is repeated for five rounds. After selection, the pool is subjected to high-
throughput sequencing. The 20-mer region is used as an input for the creation of a global model. The model considers both the local nucleotide
propensities and pairwise couplings to calculate a Hamiltonian score. These scores can be used to detect binding sites and predict the outcome of specific
mutations. Pairwise interactions are visualized on a landscape and provide hints of molecular interactions relevant for recognition
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distribution originating from SEQRS data. Our approach expands
on existing work on co-evolutionary signatures in RNA structure
through experimental consideration of the selective force of
protein binding on pairwise nucleotide couplings42–44.

Here, we infer DCA-scapes for P22N, λN, BIV TAT, and
human TUT7. These are particularly challenging targets for
unbiased analysis given their extended motifs, up to 28 bases, and
preference for secondary structures. The DCA-scapes accurately
determine biologically functional regions within their endogenous
genomic contexts, predicts alternative sequences that preserve
or enhance recognition, quantify evolutionary trajectories, and
recapitulate past findings and suggest recognition motifs that
might play important biological roles in bacterial and viral
genomes.

Results
An integrated approach to analyze RNA interaction land-
scapes. There are two main elements to our method. First, we
perform in vitro selection and high-throughput sequencing, and
second, generate a global statistical model of the resulting data
(Fig. 1). This allows us to sparsely sample the functional sequence
space experimentally and then use those signals to computa-
tionally estimate the much larger space of functional sequences.
Briefly, the SEQRS procedure begins with in vitro transcription of
DNA oligonucleotides encoding a random 20-mer region45,46.

The resulting pool of RNAs is incubated with purified recombi-
nant protein immobilized on magnetic resin. After repeated
washing, bound RNAs are thermally eluted and converted into
double-stranded DNA using reverse transcriptase and PCR. This
enrichment procedure is repeated for five cycles. Sequencing
adapters and unique barcodes are added prior to high-throughput
sequencing. The use of barcodes enables sequencing of multiple
samples in parallel, and enables deconvolution of multiplexed
data.

The second element involves generation of the statistical
model. The DCA-scape is a model that contains three types of
metrics: direct information (DI) pairs, coupling landscapes, and
Hamiltonian scores. In the first stage of analysis, sequencing data
are used to estimate, for positions i, j and nucleotide x, pairwise
couplings eij(xi, xj) and local biases hi(xi) that are parameters
of a joint probability distribution of 20-mers, i.e. P(x1,…, xL) with
L= 20 (Fig. 1). These parameters are used to compute DI for all
possible pairwise interactions between individual bases. DI values
among pairs provide a broad quantitative measure of pairwise
interactions. DI values calculated for other systems (e.g. amino
acid sequences in protein families) serve as a proxy to detect
coevolving residues that are in direct physical contact31. Here, we
examine if these pairs are informative in the context of
RNA–protein interactions (Fig. 2a, b). DCA-scapes also provide
coupling values that are represented on a landscape to visualize
interacting pairs of nucleotides. Unlike DI values, pairwise
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Fig. 2 DCA-scapes of N proteins reveal known sites of association in vivo. a The structure of P22 N (PDB 1A4T [https://www.rcsb.org/structure/1A4T])
bound to box B motif is shaded according to direct information (DI) score. Yellow bases have the highest score while darker colors denote lower scores. A
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coupling landscapes take into account nucleotide composition
and provide a finer scale picture of the strength of nucleotide
connectivity, see the expanded cells in Fig. 3a. The third element
of the DCA-scape, the Hamiltonian score, is a global sum of
recognition parameters (pairwise couplings) eij(xi, xj) and also
local biases hi(xi) for all possible interactions in a given sequence
that exists in the complete sequence space of a random RNA
library. This score quantitatively predicts how likely a given
protein associates with a particular RNA sequence and provides
a sequence-dependent global model of specificity. For this model
to be useful, it would ideally predict endogenous biologically
functional interactions across entire genomes, faithfully recapi-
tulate biophysical interactions, and provide a rational for
mutational pathways. We evaluate these applications in the
context of DCA-scapes for four distinct RBPs.

Pairwise couplings elucidate regulatory elements. As a test of
the accuracy of DCA-scapes, we examine the anti-termination N
proteins encoded by phage λ and P22. The symmetric binding
sites, termed nut-boxB RNAs, flank the operator sequence and
serve as a key function in transcription47. After SEQRS,
we compared our experimentally derived Hamiltonian scores to a
random distribution (Supplementary Fig. 1). The positive end of

the experimentally derived Hamiltonian scores distribution forms
a normal-like distribution (0–10 range), which is similar to a
random distribution, which suggests some non-specific binders
that are independent from each other and do not affect the
robustness of couplings estimation. The difference between the
two distributions suggests that the experiment has identified
sequences that are distinct and may preferentially associate with λ
and P22 N. To compare these scores to sites of productive
binding in vivo, Hamiltonian scores were calculated for genomic
regions flanking the operator regions of P22 and λ N arranged in
the order in which they are transcribed (Fig. 2c, d). In both cases,
the dominant valley (negative values indicate an increased
probability of interaction) is situated directly on known binding
elements (P22 nut-boxB right p-value= 7.3×10−12, P22 nut-boxB
left p-value= 3.2 × 10−13, λ nut-boxB right p-value= 3.5 × 10−13,
and λ nut-boxB left p-value= 6.3 × 10−15 under one-tailed z-
test). We expanded our analysis to encompass the entire genome
of phage λ and P22, and found the same conclusion (Supple-
mentary Fig. 2). The highest-ranking sequence of λ genome, as
judged by the Hamiltonian score, is situated at the precise site of
the known binding site (AUC= 0.937, FDR~10110). P22
N binding elements are found in the top 10 Hamiltonian scores
sequences in its genome (AUC= 0.9923, FDR~10−12) (Supple-
mentary Data 2). There are seven out of 41,705 sequences that
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have a better Hamiltonian score than the binding elements. Five
of the seven sequences lack secondary structure. We tested the
binding affinity of these seven sequences and confirmed that
those are false positives (Supplementary Fig. 7). We conclude that
the DCA-scape is sufficiently sensitive to detect endogenous
binding elements in vivo.

To better understand the linkage between bases after selection with
λ N and P22N, we generated landscapes using DI (Fig. 2a, b). To
rationalize these relationships suggested by the landscape, we examined
biophysical models derived from NMRmeasurements48,49. A priori, at
least two non-mutually exclusive types of interaction contribute toward
a strong coupling score. These are nucleotide interactions that preserve
secondary structures and RNA-protein interactions that impart
specificity between related secondary structures. We see instances of
both. For example, positions 6 and 12 (P22 Box B), or 5 and 11 (λ Box
B) appear to maintain stem structures. Conversely, residues situated in
loop regions (P22 RNA residue 7 and 11, λ RNA residues 6 and 7)
appear to impart specificity through loop specific contacts. Residue 4
and 7 of P22 RNA are on the same side of the RNA proximal to P22 N
protein, a coupling that may arise as the result of contributions to
protein recognition. In the case of λ RNA base 6 is vital as it is strongly
coupled to base 5, 7, 12, and 13. Base 6 resides in a loop region while
its interacting partners are located in structured and unstructured
portions of the RNA. Consistent with the notion that base 6 is key for
recognition; substitution of G6 with A6 abolishes λ N binding50. The
information obtained through DI identifies RNA bases involved in
maintaining RNA secondary structure and protein interactions.

DCA-scapes elucidate high-resolution maps of specificity. To
understand the contribution of couplings between individual
RNA bases with additional precision, we analyze pairwise cou-
pling values for all possible base pairs at each position in the P22

N motif (Fig. 3a). Each unique potential interaction is shown on a
pairwise landscape matrix along each axis. As a point of reference,
the wild-type boxB left composition and structure is shown as a
cartoon and listed along each axis. This element is well repre-
sented on the landscape, interestingly; there are additional cou-
pling relationships that depart from the sequence specified by the
consensus element. In the context of the BoxB sequences, inter-
actions that maintain the stem structure in the wild-type element
(3C–15G, 5C–13G, and 6U–12A for left, 6C–12C for right) have
strong coupling scores consistent with the consensus motif.
However, we also observe alternative pairings. For example,
mutations which alter the identity of bases 6 and 12 yet preserve
base pairing are well tolerated51 (Fig. 3b, left). This suggests that
the stem structure is important for recognition, yet, these posi-
tions permit other nucleotide combinations51. Remarkably, sev-
eral bases that do not appear to interact directly with one another
(10A–13G and 3C–6U) but are found in the wild-type element
are strongly coupled. Mutation of base 10 from A to G shows
higher coupling in the landscape than the wild type. We tested
this experimentally and observed that this change slightly
enhances binding suggestive of a key role in facilitating protein
recognition (p-value= 0.0079, under one-tailed t-test) (Fig. 3b,
middle). Indeed, the loop portion of the RNA has been shown to
be crucial for N protein recognition51. The landscape suggests
that two stem bases (14C–17G) are not optimal for binding. We
tested this notion with a substitution to a combination with a
higher coupling score—14U 17C (Fig. 3b, right). We observed a
small enhancement in binding relative to the wild-type element
(p-value= 0.0024, under one-tailed t-test). These observations
suggest that the DCA-scape is an informative source of alternate
nucleotide sequences that maintain protein binding.

As a comprehensive test for the utility of DCA-scapes for
tailored RNA recognition, we predicted three classes of mutations
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in the Box B left element with respect to their effects on protein
binding: enhancers, inhibitors, or those with no effect (Fig. 3c).
Having predicted the position of the Box B element in the
genome using Hamiltonian scores, we reapplied this knowledge
to rank all possible sequence permutations relative to the wild-
type element (Fig. 3c). In yeast three-hybrid experiments, we
probed nine positive, one wild-type-like, and three disruptive
single mutations. All predictions in both classes were confirmed
experimentally. The Hamiltonian score is uniformly able to
predict mutations that stabilize protein binding for Box B left
(Pearson’s R= 0.83) and Box B right (Pearson’s R= 0.67)
(Supplementary Fig. 3, Supplementary Data 1). As an additional
test of our model, we compared our predictions to activity assays
that included more than one point mutation51 (Supplementary
Table 1) and found a significant Pearson correlation of 0.69
(Supplementary Fig. 4a). We extended this analysis to also
examine binding of λ N to the same mutant series. The Pearson
correlation was also significant (0.78 Supplementary Fig. 4b). The
major source of error in these comparisons was related to
the magnitude of the effects as opposed to their directionality.
Collectively, these experiments suggest that Hamiltonian scores
have a strong predictive value for understanding the conse-
quences of sequence variants.

As a more extreme test for the predictive power of the
Hamiltonian scoring function, we mutated and tested RNAs with
trajectories with single up to six mutations and their interaction
with P22 N. These mutations were introduced throughout the
RNA in stem and loop regions. We tested two trajectories where
all of the substitutions were predicted for sequences that have
favorable Hamiltonian scores as a proxy to retain binding and 10/
12 predictions were accurate (Supplementary Fig. 5). Two cases
(both quadruple mutants) where mutations disrupted two base-
pairing interactions in the stem hindered protein binding. In both
cases, RNAs with subsequent five or six mutations still interacted

with P22 N. This suggests that the Hamiltonian score is able to
accurately predict end points sequences for complex mutational
trajectories that retain their protein binding ability.

Evolutionary pathways between functional RNA elements.
Over the course of P22 phage evolution, two high-affinity binding
elements with similar structures yet different sequence emerged
as biological targets. Six positions in the stem regions differ
between the structures. We sought to determine the entire
landscape of mutations linking the two elements (Fig. 4a).
Hamiltonian scores for box B right (origin) and box B left (outer
ring) suggest that most pathways do not support interaction
(darker regions in the landscape). Rotation of the plot along the
abscissa reveals the complex landscape of RNA recognition
(Fig. 4c). In the lateral view of Hamiltonian scores, trajectories
form both valleys and mountains. Peaks represent favorable
mutations that tend to be preferred in nature, while valleys are
disruptive mutations that impair binding. We examined both the
most and least favorable trajectories based on a Hamiltonian
search. All of the optimal sequences preserved RNA-binding
(black dashed arrow in Fig. 4a and upper panel in Fig. 4b).
Conversely, 4/5 of the mutations on the unfavorable pathway
eliminated recognition (gray dashed arrow in Fig. 4a and lower
panel in Fig. 4b). We conclude that the mutational landscape
surrounding two functional binding elements is complex and that
the Hamiltonian-based landscape can suggest optimal mutational
pathways with high accuracy.

Extended binding elements in BIV-TAT. Bovine immunodefi-
ciency virus (BIV) trans-activator of transcription (TAT) binds
the trans-activation response (TAR) element. This interaction
facilitates production of viral RNA and contributes to the repli-
cation cycle through recruitment of the P-TEFb elongation
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factor52. The 26-nucleotide TAR element is longer than the
selection libraries utilized in SEQRS by six nucleotides. Thus, we
analyzed this protein to determine if DCA-scapes were capable of
extracting useful information from a library that is shorter than
the native binding element. We reasoned that our approach
would capture useful information as crucial interactions in BIV
TAT–TAR binding are located predominantly on one end of the
RNA—the bulge and lower stem regions (Fig. 5b)53,54. To
determine the accuracy of our approach, we examined the
entirety of the BIV genome (Fig. 5a). The two identical TAR
elements present in the BIV genome were detected with a high
degree of confidence (p-value= 2.7 × 10−10, under one-tailed z-
test). From the sequences with the top 10 Hamiltonian scores, five
of them contain part of the binding element. The native full-
length-binding element can be extracted by joining these
sequences together (Fig. 5b). The Pearson correlation between
Hamiltonian scores for BIV TAT and mutations that impact the
bulge or stem regions was high, 0.93 and 0.77, respectively
(Fig. 5c, supplementary Data 1)55. These data suggest that DCA-
scapes are capable of re-capitulating known mutational and
structural properties of extended RNA structures based on
libraries with a fixed length shorter than known in vivo-binding
elements.

Recognition of pre-miRNAs by processing enzymes. Terminal
uridylyl transferase 7 (TUT7) is a master regulator of microRNA
(miRNA) biogenesis and function56. TUT7 binds to pre-miRNAs
from the let-7 family and controls their biogenesis through uri-
dylation57. The TUT7 RNA-binding region is similar in com-
position to highly basic viral RNA-binding domains58.
We reasoned that the specificity of this domain would provide
insight into how TUT-7 discriminates between pre-miRNAs
and unrelated structures. We computed Hamiltonian scores
for two mutant forms of a TUT7 target (Supplementary Fig. 6a).
One version of pre-let-7a lacks the entire loop region, the other
lacks part of the stem region. Specificity scores for binding of
RNAs derived from the unmodified (p-value= 0.0046, under
one-tailed z-test) and the mutant with a stem deletion (p-value=
0.00078, under one-tailed z-test) suggest potential for binding.
However, deletion of the loop eliminated this possibility (p-value
= 0.098, under one-tailed z-test). Consistent with this series of
predictions, only the unmodified and stem deletion RNAs were
uridylated by TUT757. Given that little is known about
TUT7 specificity, we confirmed binding of the TUT7 RNA-
binding region to a top scoring sequence using florescence
polarization (Supplementary Fig. 6b). Our coupling landscapes
are able to accurately predict binding of RNAs of a related
sequence that possess major differences in structure and length.
Our findings suggest a molecular basis for the difference in
enzymatic activity observed with TUT7 on model substrates from
the let-7 family.

Discussion
Our study explores the specificity of RBPs for complex RNA
targets for four different systems. Structured RNAs are particu-
larly important given their use as tethers in heterologous assays,
potential therapeutic utility, aptamer applications, and biological
prevalence17,18,59–64. We analyzed prokaryotic and eukaryotic
viral RBPs and a human enzyme as these domains bind struc-
tured RNAs. Our approach provides a means to simultaneously
probe protein–RNA recognition in a space of 420 sequence
combinations in a single experiment. This expands on related
microfluidic methods, which access ≈107 permutations9. A pair-
wise global mathematical model of the sampling in this enormous
space deals effectively with the sparsity of experimental data and

estimates parameters to dissect and engineer specificity for a
variety of systems. This work demonstrates that sequence cou-
pling models can be applied to understand protein–RNA recog-
nition from a synergy of theory and high-throughput
experiments. Our studies permit three major conclusions. First,
we found that Hamiltonian scores were remarkably sensitive for
identification of endogenous binding sites, which have apparently
evolved to form high affinity interactions. Although we focused
on the viral sites of recognition, this approach could be used to
score binding elements in any genome. As P22N, and λ N are
commonly used as tethers for synthetic biology applications in
eukaryotic cells, identification of their off target binding elements
in these contexts could be helpful in experimental design.
Moreover, the BIV homolog HIV TAT binds host RNA species at
2074 genomic regions in immune cells65. Our approach provides
a means to predict these interactions based on biochemical
information with a high degree of accuracy.

Second, the data we have generated enable the use of RNA
variants corresponding to a range of different binding activities.
In particular, we have generated variants with improvements in
binding which are particularly desirable. When we incorporate
structural information into our analysis, we are able to separate
effects on RNA structure from those that originate from con-
tributions to protein recognition. Similar results have been
obtained for the MS2 coat protein based on variants of the
consensus binding element8. It appears, based on our analysis of
multiple systems, that both mechanisms are broadly required for
recognition of structured RNA elements.

Finally, we developed an approach to analyze possible evolu-
tionary bridges between two functional binding elements for
P22N and validated the pathways experimentally. We find that
both pathways resulted in intermediates that had destabilized
secondary structures. In the case of the most favorable route,
deleterious substitutions can be compensated for based on their
introduction in a favorable order. This suggests that while there
are many ways in which two structures could be linked through a
mutational process, the sequence in which these changes occur is
vital for preservation of binding. Thus, DCA-scapes can be
applied to propose possible evolutionary trajectories at single
nucleotide resolution and to predict the effects of sequential
mutations on binding activity. Our technology focuses on struc-
tured RNAs but the approach is general and should also be
applicable to RBPs that bind linear elements.

Methods
SEQRS. Recombinant proteins were generated through amplification with the
primer sets described in Supplementary Table 2 with GoTaq (Promega). All clones
were validated with Sanger sequencing prior to expression in BL21 codon plus cells
as GST fusions. The protein constructs used were P22N (NAKTR-
RHERRRKLAIER), λ N (MDAQTRRRERRAEKQAQWKAAN), BIV TAT
(RPRGTRGKGRRIRR), and a 90 amino acid stretch of human TUT7 (residues
1362–1452). Prior to selection, the initial RNA library was generated using the
primer sets described in Supplementary Table 2 using GoTaq (Promega). Following
recovery with the GeneJET PCR Purification Kit, transcription of 1 μg of dsDNA
was conducted using the AmpliScribe T7-Flash Transcription Kit (Epicentre)45.
Removal of DNA was accomplished through incubation with Turbo DNAse.
Recombinant proteins were immobilized on magnetic resin. As a competitor, 200
ng of RNA was added to each of the binding reactions (Ambion). Each reaction
contained protein and 100 μl of SEQRS buffer—50 mM Tris–HCl pH 8, 0.1 mM
ZnCl2, 150 mM NaCl, 0.1 mM MgCl2, 0.1% NP-40, 0.5% glycerol, 200 ng yeast
tRNA competitor, and 0.1 units of RNase inhibitor (Promega). Samples were
incubated for 30 min at 22 °C prior to magnetic isolation of protein–RNA com-
plexes. Unbound RNAs were aspirated and the beads were subjected to four washes
with 200 μl of SEQRS buffer. After the final wash step, resin was suspended in
elution buffer (1 mM Tris pH 8.0) containing 10 pmol of the reverse transcription
primer 1615. Samples were heated to 65 °C for 10 min and then cooled on ice.
Reverse transcription was conducted with ImProm-II reverse transcription reaction
(Promega). The ssDNA product was used as a template for 25 cycles of PCR using
a 50 μl GoTaq reaction (Promega).
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Data processing. The 20 base pair sequencing reads (L= 20) from SEQRS were
arranged in M rows (M= 1,579,936 in P22 N, M= 1,165,352 for λ N and M=
1,447,349 for BIV TAT). As a negative control, GST immobilized on resin was used
to compute a background. The sequence array can be represented with the fol-
lowing notation:

A ¼ Aa
i

� �
; i ¼ 1; ¼ ; L; a ¼ 1; ¼ ;M ð1Þ

where four types of nucleotides were translated into consecutive numbers 1, 2, 3, 4.
A version of DCA31 was developed to analyze RNA datasets for both protein-
binding target sequences, as well as background negative control. The final land-
scape of protein recognition or DCA-scape was estimated by subtracting the
background parameters from the target protein recognition preference parameters
(see Eq. 4 in the following section).

DCA and Hamiltonian scores. DCA is an unbiased, global inference methodology
used to infer joint probability distributions from sequence data. DCA has been used
widely to study evolutionarily related sequences with applications to structural and
system biology28–31. Here, rather than studying families of proteins we analyze
nucleotide sequences obtained experimentally after a stage of selection towards
RBP binding (SEQRS). In this work, DCA infers a joint probability distribution of
RNA fragments (20-mers). The parameters of this distribution include pairwise
elements (couplings) and single site occupancies (local fields). The coupling
parameters provide information about non-local interactions of nucleotide posi-
tions. Such interactions include Watson–Crick pairs but also non-trivial connec-
tions that contribute to protein-binding specificity and recognition.

In order to infer a global joint probability distribution to satisfy the statistical
observations for input RNA sequences, marginal empirical frequency counts are
generated to be consistent with input data. Derived from the maximum-entropy
principle, this global probability distribution can be modeled with an explicit
mathematical form similar to a Boltzmann distribution31. Two types of parameters
are estimated for this distribution: pairwise couplings eij(xi, xj) and local biases
(fields) hi(xi). In DCA for protein families, typically, couplings and fields are set to
0 relative to gaps while SEQRS output sequences contain no gaps. Therefore,
during the inference process, to reduce the freedom from independent constraints,
we set all couplings and fields measured relative to one nucleotide (Nk) to 0 for
each round where Nk∈{A, C, G, T/U}:

eijðxi; xj ¼ NkÞ ¼ eijðxi ¼ Nk; xjÞ ¼ hi xi ¼ Nkð Þ ¼ 0 ð2Þ

For each round, pairwise couplings eij(xi, xj) and local fields hi(xi) are estimated
with respect to each state (A, C, G, T/U)31. Finally, parameters eijðxi; xjÞ and hi xið Þ
are obtained by calculating the mean of the couplings and local fields for each of
the four nucleotide gauged states. These parameters inferred from the input
binding sequences can be collectively interpreted as a fitness function or
Hamiltonian:

Hðx1; ¼ ; xLÞ ¼ �
X

1�i<j�L

eij xi; xj
� �

�
X

1�i�L

hi xið Þ ð3Þ

Hamiltonians can be calculated for the binding preference data and the
experimental control data (bg). The effective Hamiltonian is defined as

Heff σð Þ ¼ H σð Þ � Hbg σð Þ ð4Þ

where σ is the vector representing the nucleotide sequence that is the target of a
RBP. The more negative a Hamiltonian score is, the more favorable is the
protein–RNA-binding specificity.

Genome-wide binding site discovery. Binding specificities of genome sequences
can be quantified with the Hamiltonian metric defined in the previous section. We
obtained genome sequences from NCBI: λ genome (NC_001416.1); P22 genome
(NC_002371.2); and the BIV genome (NC_001413.1). With a sliding window of
size 20, starting from the first nucleotide to the end of the genome, binding spe-
cificities of genome sequences are quantified with Hamiltonian scores. By ranking
effective Hamiltonian scores and their p-values for different sequence regions,
binding motif sites can be identified with high accuracy (see Fig. 2, Supplementary
Fig. 2).

Null models and p-values. To compare and evaluate the binding strength of
genome sequences or mutants at a binding motif, we created 100 million random
20-mers sequences to build a null model. These random sequences are generated in
such a way to keep the same ACGU proportion as the specific genome of interest.
Hamiltonian scores of these random sequences are calculated according to the
parameters learned from each specific protein-binding preference data (Supple-
mentary Fig. 1). Based on the Hamiltonian score distribution of such random
sequences, p-values for Hamiltonian scores are estimated using the one tail z-test.

False discovery rates (FDR) and Q values are estimated from the p-values by
utilizing the procedure introduced by Storey66.

DI pairs and DCA-scapes. Based on the parameters estimated for the joint
probability distribution of RNA sequences, a quantification of how two sites in the
RNA are directly coupled can be deduced. We use the DI formulation31, which
computes the Kullback–Leibler divergence between the joint frequency counts and
the joint pairwise distributions obtained from the parameters inferred by DCA. The
pairwise couplings landscapes (DCA-scapes) directly illustrate the pairwise cou-
plings information for each nucleotide combination between pairs of positions as
an 80 × 80 matrix. This matrix is organized in 20 × 20 matrices with 4 × 4 sub-
matrices including all nucleotide pairs for a given position pair i, j (see Fig. 3).
The DCA-scapes and the DI pairs provide a quantitative description of
protein–RNA recognition and help us characterize the functional variability of a
given interface.

Mutational effects and Hamiltonian search optimization. In order to evaluate
or design alternative-binding specificities of protein recognition, we generate a
list of sequences, which cover possible mutations: single mutants (Fig. 3) to mul-
tiple mutations (Supplementary Figs. 4, 5) with respect to the native recognition
RNA motifs. We then quantify these mutants using Hamiltonian scores and
search for sequences that convey a desired property (low values for favorable
binding and high values for disruptive effects). The candidates then are
validated experimentally to test the accuracy of the model. This procedure has
low computational complexity and can be used to screen a large number of
mutants in silico.

Fluorescence polarization assays. Recombinant TUT7 (1362–1452) was incu-
bated with Cy5 5′ labeled RNA of the sequence GCAGUCUUAACGCUGCCUUA.
Binding was conducted in 30 μl of 45 mM Tris–HCl pH 8.0, 90 mM NaCl, 0.2%
Tween-20 at 22 °C for 60 min. Measurements were collected in triplicate using
a 96-well Tecan plate reader. Non-linear least-squares regression analysis was
conducted using Kaleidagraph (Synergy Software)67.

Yeast three-hybrid assays. Binding activity assays were conducted with a single
copy of the P22N sequence (NAKTRRHERRRKLAIER) fused to the DNA-
binding domain68,69. Subcloning was achieved using the primer sets described in
Supplementary Table 2. Luminescence data were collected using the β-Glo reagent
(Promega) and measured with a 96-well Tecan plate reader.

Code availability. The code used to compute DCA-scapes is available to the sci-
entific community online at: http://morcoslab.org/?page_id=385.

Data availability. The sequence data that support the findings of this study are
available from datadryad.org with the identifier doi:10.5061/dryad.qs734tp. Raw
data corresponding to the figures can be found in Supplementary Data File 1. All
other data supporting the findings of this study are available from the corre-
sponding authors on reasonable request.
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