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Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and
contribute to cognitive and behavioral deficits impacting affected individuals and their
families. While sensory processing differences are now widely recognized in children
with autism, children with sensory-based dysfunction who do not meet autism criteria
based on social communication deficits remain virtually unstudied. In a previous pilot
diffusion tensor imaging (DTI) study, we demonstrated that boys with SPD have altered
white matter microstructure primarily affecting the posterior cerebral tracts, which
subserve sensory processing and integration. This disrupted microstructural integrity,
measured as reduced white matter fractional anisotropy (FA), correlated with parent
report measures of atypical sensory behavior. In this present study, we investigate
white matter microstructure as it relates to tactile and auditory function in depth with
a larger, mixed-gender cohort of children 8–12 years of age. We continue to find robust
alterations of posterior white matter microstructure in children with SPD relative to
typically developing children (TDC), along with more spatially distributed alterations. We
find strong correlations of FA with both parent report and direct measures of tactile and
auditory processing across children, with the direct assessment measures of tactile and
auditory processing showing a stronger and more continuous mapping to the underlying
white matter integrity than the corresponding parent report measures. Based on these
findings of microstructure as a neural correlate of sensory processing ability, diffusion
MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis
and treatment response in children with SPD. To our knowledge, this work is the first
to demonstrate associations of directly measured tactile and non-linguistic auditory
function with white matter microstructural integrity – not just in children with SPD, but
also in TDC.

Keywords: diffusion tensor imaging, sensory processing disorders, auditory processing, tactile processing, white
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INTRODUCTION

Hypo-and/or hyper responsiveness to sensory stimulation is
estimated to occur in 5–16% of children within the general
population, and 40–80% of children with neurodevelopmental
disorders (Ahn et al., 2004). Such sensory dysfunction can
hinder a child’s ability to accomplish practical, daily activities
and age-appropriate learning tasks, thus resulting in long-
term impairment of intellectual and social abilities. Sensory
processing disorder (SPD) is reported to be highly co-incident
with attention deficit hyperactivity disorder (ADHD) and autism
spectrum disorders (ASDs). However, it is also clear that children
can have sensory processing dysfunction without the degree
of attention, language, or social challenges that would meet
criteria for ADHD or ASD. This has been referred to in the
literature as isolated SPD. TheDiagnostic Classification ofMental
Health and Developmental Disorders in Infancy and Early
Childhood includes a diagnostic label for Regulation Disorders
of Sensory Processing (Zero to Three, 2005), but the Diagnostic
and Statistical Manual 5 (DSM-V) does not include SPDs as a
standalone category. They do now, however, include hyper- or
hyporeactivity to sensory input or unusual interest in sensory
aspects of the environment in their revised ASD criteria. These
sensory processing differences are being increasingly investigated
in the field of autism research and recognized as a core and
critical clinical feature—however, children with SPD who do not
also have social communication deficits that meet ASD criteria
can provide insight into the neural underpinnings of sensory
processing in particular.

The present literature on SPD primarily utilizes
parent/caregiver report measures that describe sensory-
related behaviors and physiological measures that provide
information about arousal and sensory reactivity. Recently,
our group has published two studies using diffusion tensor
imaging (DTI) to better define the neural correlates of these
sensory processing deficits. Our first study took a whole-brain,
data-driven approach to demonstrate decreased fractional
anisotropy (FA) and increased mean diffusivity (MD) and
radial diffusivity (RD), reflecting reduced microstructural
integrity, in the posterior white matter tracts of 16 boys with
SPD compared to 24 neurotypically developing boys (Owen
et al., 2013). In addition, we found that FA in affected brain
regions correlated with atypical auditory, multisensory, and
attention-related behaviors as reported by parents on the Sensory
Profile. In a subsequent report, we established that children
with SPD and those with ASD both demonstrate decreased
FA in parietal-occipital tracts whereas only children with ASD
show differences in temporal tracts subserving social-emotional
processing (Chang et al., 2014). We recently investigated whether
direct assessment measures of tactile and auditory processing
might also inform our understanding and evaluation of children
with atypical sensory related behaviors both with and without an
ASD diagnosis. We found that children with both ASD and SPD
show impairment in tactile processing (right hand graphesthesia)
whereas only the ASD group showed significant impairment in
a measure of cortical auditory processing (Demopoulos et al.,
2015). However, correlations including all children (controls,

SPD, and ASD) showed a significant association between a direct
measure of auditory processing impairment and a parent report
measure of real-world communication ability.

As our previous imaging findings were limited to a small
cohort of affected boys, we seek to investigate these results
in a larger mixed-gender cohort sample. We hypothesize that
boys and girls with SPD will show impaired white matter
microstructural integrity, with a posterior predominance, relative
to typically developing children (TDC). We further hypothesize
that this microstructural integrity will correlate with parent
report as well as with direct measurements of sensory processing,
but that the direct measurements will show stronger correlation
with the underlying microstructure.

MATERIALS AND METHODS

Demographic, Sensory, Cognitive and
Behavioral Data
Children ages 8–12 years were enrolled under an institutional
review board approved protocol. SPD subjects were recruited
from the UCSF Sensory Neurodevelopment and Autism Program
(SNAP) and from local online parent board listings. TDC were
recruited from online parent group listings as well as referrals
from affiliated sensory neurodevelopment and autism research
groups. Informed consent was obtained from the parents or
legal guardians, with the assent of all participants. Exclusion
criteria were brain malformation or injury, movement disorder,
bipolar disorder, psychotic disorder, hearing impairment, full-
scale IQ (FSIQ) score <70 on the Wechsler Intelligence Scale for
Children-Fourth Edition (WISC-IV;Wechsler, 2003), or meeting
criteria for ASD. Subjects were also excluded for any anomalies
or artifacts on MR imaging or DTI using criteria explained below
in Section “DTI Analysis.” A total of 40 right-handed children
with SPD (32 male, 8 female) and 41 right-handed TDC (28
male, 13 female) met all inclusion and exclusion criteria for the
study.

Autism spectrum disorders was intially screened for using the
Social Communication Questionnaire (SCQ; Rutter et al., 2003),
a parent report screening measure for autism symptoms, with a
score of 15 or above being suggestive of ASD. There were four
boys in the SPD cohort who exceeded the SCQ screening cut
off score of 15, which prompted a standardized structured play
session following the Autism Diagnostic Observation Schedule
(ADOS; Lord et al., 2000) and clinical review. All four boys scored
less than 3 for the social and communication total score with a
score greater than 7 meeting concern for ASD and a score greater
than 10 meeting concern for a full autism disorder diagnosis
based on DSM IV-TR criteria. Clinical interview and review by
Dr. Marco, a pediatric cognitive and behavioral child neurologist
was also non-consistent with a clinical ASD diagnosis. None of
the TDC cohort and none of the SPD girls met screening criteria
for ASD based on the SCQ.

All TDC and SPD subjects were assessed with the Sensory
Profile (Dunn andWestman, 1997), a parent report questionnaire
which measures atypical sensory related behaviors. A definite
difference in each sensory domain is defined as a score that
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is greater than two standard deviations from the mean: ≤25
out of 40 for auditory processing, ≤64 out of 90 for tactile
processing, ≤26 out of 45 for visual processing, and ≤23 out
of 35 for multisensory integration. There was one child without
an auditory processing score, one without tactile, one without
multisensory, two without visual scores, and five without sensory
profile total scores given incomplete data from the parent survey.
A child was included in the SPD cohort if they carried an outside
diagnosis of SPD from a community occupational therapist and
they had a score in the definite difference range on at least one
of the Sensory Profile subscores listed above. Six of the TDC
group scored in the probable difference range for one of the
subscales, while the remainder scored in the normative range on
all subscales. Finally, two SPD kids and one control were born
early (gestational ages 36, 35, 33 weeks, respectively).

The Acoustic Index of the Differential Screening Test for
Processing (DSTP) was used to assess auditory processing
(Richard and Ferre, 2006) for all subjects. This test was
administered by the lead study coordinator in accordance with
manualized instructions and with training and supervision by
a cognitive and behavioral neurologist. The acoustic index is
calculated from totaling correct items in: (1) dichotic listening,
an index of interhemispheric auditory processing, in which the
participant hears and repeats different numbers simultaneously
presented through headphones to each ear; (2) temporal
patterning, in which the participant reports the order of high
and low tones presented in a sequence; and (3) auditory
discrimination, in which a participant repeats nonsense syllables
presented in background noise. Thirty four out of the 41 controls
and 35 out of the 40 SPD subjects received the DSTP. The
graphesthesia subtest of The Sensory Integration Praxis Tests
(Ayres, 1989) was used to assess tactile proprioception by asking
participants to recreate seven designs (neither numbers nor
letters) drawn on the dorsum of each hand with closed eyes. Each
drawing is then scored for accuracy. This test was administered
by the lead study coordinator in accordance with manualized
instructions and with training and supervision by a cognitive and
behavioral neurologist. 33 out of the 41 controls and 34 out of the
40 SPD subjects received the graphesthesia assessment.

Summary demographic information is included in Table 1. No
significant differences were found in any of the demographic or
sensory variables between boys and girls, for either TDC or SPD
kids.

Image Acquisition
MR imaging was performed on a 3T Tim Trio scanner
(Siemens, Erlangen, Germany) using a 12 channel head coil.
Structural MR imaging of the brain was performed with an
axial 3D magnetization prepared rapid acquisition gradient-
echo T1-weighted sequence (TE = 2.98 ms, TR = 2300 ms,
TI = 900 ms, flip angle of 90◦) with in-plane resolution of
1 × 1 mm on a 256 × 256 matrix and 160 1.0 mm contiguous
partitions. Whole-brain diffusion imaging was performed with
a multislice 2D single-shot twice-refocused spin echo echo-
planar sequence with 64 diffusion-encoding directions, diffusion-
weighting strength of b= 2000 s/mm2, iPAT reduction factor of 2,
TE/TR = 109/8000 ms, NEX = 1, interleaved 2.2 mm-thick axial

slices with no gap, and in-plane resolution of 2.2 mm × 2.2 mm
on a 100× 100 matrix. An additional image volume was acquired
with no diffusion weighting (b = 0 s/mm2). The total diffusion
acquisition time was 8.7 min. Structural MRI for all children was
reviewed by Dr. Pratik Mukherjee, a pediatric neuroradiologist,
who was blind to cohort assignment. No structural anomalies or
other clinically significant findings were reported.

DTI Analysis
Pre-processing
The diffusion-weighted images were corrected for motion and
eddy currents using FMRIB’s Linear Image Registration Tool
(FLIRT1) with 12-parameter linear image registration (Jenkinson
et al., 2002). All diffusion-weighted volumes were registered
to the reference b = 0 s/mm2 volume. To evaluate subject
movement, we calculated a scalar parameter quantifying the
transformation of each diffusion volume to the reference. Sixteen
children (6 TDC, 10 SPD) were excluded for DTI artifacts and/or
median relative displacement between volumes greater than
2 mm, where a volume represents a single diffusion directional
measurement of the entire brain. This left a total of 81 children
(40 SPD, 41 TDC) with DTI datasets meeting quality control
criteria. A heteroscedastic two-sample Student’s t-test verified
that there were no significant differences between these SPD and
TDC groups in movement during the DTI scan (p > 0.05). The
non-brain tissue was removed using the Brain Extraction Tool
(BET2). FA, mean diffusivity (MD), and radial diffusivity (RD)
were calculated using FSL’s DTIFIT at every voxel, yielding FA,
MD, and RD maps for each subject.

Group Differences
Tract-Based Spatial Statistics (TBSS) in FSL (Smith et al., 2006)
was used to skeletonize and register the diffusion maps for each
subject in order to perform voxel-wise comparisons along the
white matter skeleton. First, each subject’s FA map was non-
linearly registered to each other subject’s FA map to identify
the most representative FA map as a registration target. The
registered maps were then averaged and skeletonized to the
center of the white matter. Next, each subject’s FA data was
projected onto this mean skeleton to obtain skeletonized FA
maps per subject. MD and RD maps were then registered and
projected onto the white matter skeleton. Finally, voxelwise
statistics were performed on the skeletonized maps to assess
for group differences with non-parametric permutation testing
using the randomize function from FSL. Based on our prior work
(Owen et al., 2013), we tested the contrasts of: TDC > SPD for
FA, SPD > TDC for MD, and SPD > TDC for RD. The resulting
group difference maps for each comparison were corrected for
multiple comparisons over the 3D image volume with threshold-
free cluster enhancement (TFCE) (Smith and Nichols, 2009)
using a significance threshold of p < 0.05. It is important to note
that, in TFCE, the cluster, and not the individual voxel, is the
ultimate object of statistical inference and therefore every voxel
in the cluster has exactly the same level of statistical significance

1www.fmrib.ox.ac.uk/fsl/flirt
2http://www.fmrib.ox.ac.uk/analysis/research/bet
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TABLE 1 | Demographic information and sensory scores.

#TDC/#SPD TDC (mean ± standard deviation) SPD (mean ± standard deviation) p

Age (years) 41/40 10.1 ± 1.1 9.6 ± 1.2 0.066

FSIQ 41/40 116 ± 10 112 ± 13 0.077

SP – Auditory 41/39 33.8 ± 3.5 23.2 ± 5.00 1.2E-16

SP – Tactile 41/39 83.5 ± 5.8 62.4 ± 12.2 1.5E-13

DSTP 34/35 36.1 ± 3.53 32.2 ± 5.6 0.0017

Graphesthesia 33/34 21.5 ± 3.91 19.1 ± 4.8 0.0025

Bolded p values indicate statistically significant group differences using an unpaired student t-test (p < 0.05).

in the final results. The Johns Hopkins University (JHU) ICBM-
DTI-81 White-Matter Labeled Atlas (Wakana et al., 2004) was
used to determine the anatomic locations of white matter regions.

Effects of Age and Gender
For each subject, mean FA values were obtained within the
significant voxels of each of the four white matter regions
implicated in the group difference analyses – the left and right
posterior thalamic radiations (PTR), splenium of the corpus

callosum (SCC), and retrolenticular limb of the right internal
capsule (RLIC), as defined by the JHU white matter atlas. Then,
general linear models (GLMs) of FA as a function of group (TDC
or SPD), age, and gender were created for the each of these ROIs:

FAroi = β0 + β1
∗group + β2

∗age + β3
∗gender

where group is 1 for TDC and 0 for SPD, and gender is 1 for
females and 0 for males. The coefficient values (β1−β3) and their
significance levels were assessed for each ROI.

FIGURE 1 | Tract-Based Spatial Statistics (TBSS) results of group differences in FA, MD, and RD between TDC and SPD. Blue regions indicate voxels of
significant decreases in SPD relative to TDC, while yellow regions indicate voxels of significant increases in SPD relative to TDC.
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TABLE 2 | Coefficient estimates and p-values for the general linear model of FA in a few significant regions as a function of group, age, and gender.

Group (TDC = 1, SPD = 0) Age Gender (F = 1, M = 0)

b1 p b2 p b3 p

PTR-L 0.028 0.00034 0.0066 0.038 0.012 0.14

PTR-R 0.028 0.00053 0.0080 0.017 0.016 0.063

RLIC-R 0.014 0.011 0.0033 0.16 0.010 0.12

SCC 0.019 0.00033 0.0049 0.022 0.0039 0.49

PTR, posterior thalamic radiation; RLIC, retrolenticular limb of the internal capsule; SCC, splenium of the corpus callosum. Bolded p values indicate statistically significant
coefficient estimates (p < 0.05).

FIGURE 2 | Tract-Based Spatial Statistics results of correlations of the Sensory Profile tactile score and Graphesthesia with FA, including regression
of motion.

Sensory Correlations with DTI
In order to limit the number of statistical comparisons, FA alone
was examined for correlations with our sensory variables. FA
was tested for correlations with the Sensory Profile auditory
score and DSTP separately to assess the relationship between
white matter microstructure and auditory processing. FA was
tested for correlations with the Sensory Profile tactile score and
Graphesthesia separately to assess the relationship between white
matter microstructure and tactile processing. The correlation
analyses were performed on a voxel-wise basis along the
white matter skeleton. Randomize was used to assess for
significant positive correlations of FA with each parent report
or direct assessment, with regression of the motion parameters,
and the resultant statistical maps were corrected for multiple
comparisons using TFCE with p < 0.05.

As a post hoc analysis to determine contributions of group, age,
and gender to the correlational results, for each sensory metric,
FAwas averaged across the voxels of significant clusters separately
for each subject, and separately for several JHU white matter
regions. Then, GLMs were constructed with the cognitive metric

as the response variable, and FA, group (TDC vs. SPD), age, and
gender as predictor variables. The significance of each predictor
variable for each model was determined.

To further investigate the contributions of different types of
auditory processing to the correlational results found with DSTP,
an additional post hoc analysis of correlations between the three
subscores of the DSTP acoustic subtest and FA was conducted
using the same approach described above.

RESULTS

Group Differences
Significantly lower FA, and higherMD andRD values, were found
in the SPD cohort relative to TDC (Figure 1). Visual reference
with the JHU white matter atlas reveals that the differences in FA
are primarily localized to the bilateral PTRs, the SCC, and the
right RLIC. MD and RD showed extensive elevations throughout
the white matter. Consistent with the FA results, MD and RD are
elevated only in the posterior corpus callosum. Also consistent
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TABLE 3 | Number of significantly correlated voxels in several ROIs, along with results of the GLMs of Sensory Profile tactile score and Graphesthesia as
functions of group, FA, age, and gender.

SP Tactile Graphesthesia

# sig vox p_FA p_TDCvSPD # sig vox p_FA p_TDCvSPD

ACR-L 659 0.074 4.1E-13 361 0.11 0.024

ACR-R 372 0.14 2.0E-12 938 0.039 0.020

SCR-L 179 0.0037 5.6E-15 181 0.034 0.012

SCR-R 24 0.85 9.0E-14 170 0.0072 0.0080

PCR-L 221 0.031 8.4E-14 232 0.023 0.012

PCR-R 229 0.11 1.8E-13 398 0.056 0.031

ALIC-L 267 0.29 9.0E-13 – – –

ALIC-R 308 0.10 2.3E-12 234 0.014 0.034

PLIC-L 590 0.014 5.9E-14 49 0.20 0.0077

PLIC-R 506 0.012 2.1E-13 322 0.010 0.016

RLIC-L 393 0.033 3.9E-13 375 0.721 0.011

RLIC-R 333 0.091 3.4E-13 386 0.301 0.021

PTR-L 720 0.0041 3.4E-12 910 0.026 0.056

PTR-R 644 0.032 1.5E-12 425 0.057 0.062

GCC 19 0.069 1.8E-14 1039 0.031 0.022

BCC 398 0.21 1.6E-13 1803 0.046 0.012

SCC 1010 0.027 4.8E-12 1654 0.0012 0.055

CGC-L 172 0.052 2.4E-13 73 0.011 0.038

CGC-R 2 0.41 9.0E-14 – – –

EC-L 602 0.0058 2.5E-14 60 0.021 0.014

EC-R 278 0.033 5.3E-14 370 0.033 0.019

SLF-L 98 0.0019 5.9E-15 549 0.0059 0.012

SLF-R 102 0.44 4.9E-13 161 0.0077 0.010

SS-L 156 0.043 1.6E-13 186 0.099 0.013

SS-R 187 0.17 5.3E-13 169 0.021 0.043

The significance of group and FA to the GLMs are displayed. The significance of age and gender are described in the main text. ACR, anterior corona radiata; SCR,
superior corona radiata; PCR, posterior corona radiata; ALIC, anterior limb of the internal capsule; PLIC, posterior limb of the internal capsule; RLIC, retrolenticular limb
of the internal capsule; PTR, posterior thalamic radiation; GCC, genu of the corpus callosum; BCC, body of the corpus callosum; SCC, splenium of the corpus callosum;
CGC, cingulate gyrus part of the cingulum; EC, external capsule; SLF, superior longitudinal fasciculus; SS, sagittal stratum. Bolded p values indicate statistically significant
effects (p < 0.05).

with the FA results, the most significant elevations of both MD
and RD occur in the bilateral PTR and right RLIC.

Effects of Age and Gender
The coefficient estimates and p-values for the GLM of FA as a
function of group, age, and gender, are displayed in Table 2. The
effect of group remained strongly significant when accounting
for age and gender. As expected, increasing age contributed to
higher FA in the bilateral PTR and SCC. There were no significant
gender effects.

Sensory Correlations with DTI
Tactile Correlations with DTI
There were widespread, significant positive associations of FA
across groups with the Sensory Profile tactile score and with
graphesthesia, after regression of motion parameters (Figure 2).
The number of significantly correlated voxels in several ROIs is
included in Table 3.

The significance of the group and FA predictor variables in
the GLMs for prediction of the Sensory Profile tactile score
and Graphesthesia are included in Table 3. The effects of group

(TDC vs. SPD) for the Sensory Profile tactile score model
were much more strongly significant than the group effects
in the Graphesthesia model. The FA effect was significant for
many ROIs for both the Sensory Profile tactile score and for
Graphesthesia, though the effect was significant for more ROIs
with Graphesthesia than with the Sensory Profile tactile score (12
ROIs for Sensory Profile tactile score, 16 ROIs for Graphesthesia).
For the Sensory Profile tactile response variable, neither age nor
gender was significant for any of the models. For graphesthesia,
gender was significant for every model, with females achieving
higher scores than males.

Representative plots of the Sensory Profile tactile score model
and Graphesthesia vs. FA in significant voxels of the bilateral PTR
and SCC are displayed in Figure 3. The regression lines for TDC
and SPD (of sensory score vs. FA) are more concordant with
one another for Graphesthesia than for the Sensory Profile tactile
score.

Auditory Correlations with DTI
There were widespread, significant positive associations of FA
across groups with the Sensory Profile auditory score and with
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FIGURE 3 | Representative scatterplots and regression lines of the Sensory Profile tactile score and Graphesthesia (mean-centered) versus FA in
significant voxels (differing between the two sensory variables) of the posterior thalamic radiations (PTRs) (both sides combined) and splenium of
the corpus callosum (SCC).

DSTP, after regression of motion parameters (Figure 4). The
number of significantly correlated voxels in several ROIs is
included in Table 4.

The significance of the group and FA predictor variables in the
GLMs for prediction of the Sensory Profile auditory score and
DSTP are included in Table 4. Similarly to the tactile model, the
group effects (TDC vs. SPD) in the Sensory Profile auditory score
model were much more strongly significant than group effects in
the DSTPmodel, with the DSTP group effects only reaching weak
significance in a few ROIs. The FA effect was significant for many
ROIs for DSTP, but only in a few ROIs for the Sensory Profile
auditory score. For the Sensory Profile auditory response variable,
neither age nor gender was significant for any of the models. For
DSTP, age was significant for every model, with increasing age
giving rise to higher scores.

Representative plots of the Sensory Profile tactile score model
and Graphesthesia versus FA in significant voxels of the bilateral

PTR and SCC are displayed in Figure 5. The regression lines for
TDC and SPD (of sensory score vs. FA) aremore concordant with
one another for Graphesthesia than for the Sensory Profile tactile
score.

DSTP Subscore Correlations with DTI
Given the extensive and robust correlations of FA with the DSTP
acoustic subscore, additional post-hoc tests for correlations were
performed between FA and the three subscores of the DSTP
acoustic test – dichotic digits, temporal patterning, and auditory
discrimination. The number of significantly correlated voxels
in several ROIs is included in Table 5. Overall, the dichotic
digits task was significantly associated with the largest number
of voxels, as compared with temporal patterning and auditory
discrimination.

The significance of the group and FA predictor variables in
the GLMs for prediction of each DSTP subscore are included in
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FIGURE 4 | Tract-Based Spatial Statistics results of correlations of the Sensory Profile auditory score and DSTP with FA, including regression of
motion.

Table 5. The group effect (TDC vs. SPD) was only significant for
the temporal patterning task, while the FA effect was significant
for all tasks, but most strongly for dichotic digits. For the dichotic
digits test and temporal patterning test, age was a significant
contributor for most models, with increasing age giving rise to
higher scores, but gender did not contribute significantly to the
model. For auditory discrimination, neither age nor gender was
significant.

Representative plots of each DSTP subscore versus FA in
significant voxels of the bilateral PTR and SCC are displayed in
Figure 6. The regression lines for TDC and SPD (of sensory score
vs. FA) are concordant with one another for dichotic digits and
auditory discrimination, but not temporal patterning. A ceiling
effect of the dichotic digits and temporal patterning tasks can be
observed from these plots, limiting the range of sensory function
that can be differentiated between subjects, particularly in the
TDC cohort.

DISCUSSION

These findings corroborate and generalize our previous work
demonstrating the role of disrupted posterior white matter
microstructure in SPD. Furthermore, the larger, mixed-gender
cohort unmasks a more extensive distribution of white
matter differences which includes anterior white matter. More
importantly, to our knowledge, this work is the first to
demonstrate a relationship between direct measurements of
tactile function and non-linguistic auditory function with white

matter microstructural integrity not just in SPD, but also
in TDC.

Group Differences
As in our prior work (Owen et al., 2013), our results show
strong decreases of white matter microstructural integrity in
the posterior projection and commissural tracts of the bilateral
PTR and the SCC, which respectively contain all primary
sensory projection pathways excluding olfaction, and connect
homologous sensory cortical regions (Huang et al., 2005;
Hofer and Frahm, 2006). Our findings additionally reveal
marked reductions of microstructural integrity in the RLIC,
which contains visual and auditory projection fibers. Overall,
microstructural integrity is disrupted extensively, but with a
posterior bias, throughout the white matter.

Sensory Correlations with DTI
We find that correlations of white matter microstructure with
direct measurements of tactile and auditory processing are
stronger than the correlations of microstructure with parent
report measures, likely due to the more objective nature of the
direct measurements. Furthermore, the stronger concordance
between the TDC and SPD regression lines of FA with the direct
sensory measurements of Graphesthesia and DSTP, as compared
with the sensory profile tactile and auditory scores, suggest that
these direct measurements map more closely to the underlying
biology. The offset between the TDC and SPD regression lines
of the sensory profile metrics with FA may reflect biased parent
reporting as a function of the presence or absence of an SPD
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TABLE 4 | Number of significantly correlated voxels in several ROIs, along with results of the GLMs of Sensory Profile auditory score and DSTP as
functions of group, FA, age, and gender.

SP – Auditory DSTP

Num vox p_FA p_TDCvSPD Num vox p_FA p_TDCvSPD

ACR-L 562 0.13 9.9E-15 1155 0.014 0.077

ACR-R 573 0.26 9.7E-15 1371 0.00036 0.12

SCR-L 79 0.17 1.7E-15 148 0.067 0.038

SCR-R 61 0.77 2.5E-15 464 0.029 0.043

PCR-L 48 0.26 2.5E-15 236 0.081 0.050

PCR-R 298 0.11 4.8E-15 518 0.016 0.068

ALIC-L 276 0.06 1.1E-14 398 0.0074 0.18

ALIC-R 374 0.20 1.8E-14 576 0.010 0.19

PLIC-L 339 0.28 7.8E-16 491 0.016 0.058

PLIC-R 173 0.64 2.8E-15 553 0.011 0.082

RLIC-L – – – 539 0.016 0.075

RLIC-R 5 0.69 6.4E-16 475 0.039 0.11

PTR-L 396 0.026 6.8E-14 647 0.029 0.23

PTR-R 429 0.029 6.5E-14 768 0.013 0.29

GCC 551 0.25 8.1E-15 1234 0.020 0.086

BCC 1718 0.055 9.2E-16 2173 0.048 0.046

SCC 1293 0.096 5.3E-14 1032 0.027 0.18

CGC-L 102 0.038 1.7E-15 255 0.022 0.067

CGC-R 7 0.021 3.9E-15 10 0.26 0.041

EC-L 399 0.00038 2.7E-17 383 0.091 0.048

EC-R 289 0.010 1.7E-16 1104 0.002 0.063

SLF-L – – – 560 0.018 0.068

SLF-R 141 0.062 5.1E-15 852 0.00040 0.060

SS-L – – – 246 0.0055 0.047

SS-R – – – 308 0.00016 0.36

The significance of group and FA to the GLMs are displayed. The significance of age and gender are described in the main text. ACR, anterior corona radiata; SCR,
superior corona radiata; PCR, posterior corona radiata; ALIC, anterior limb of the internal capsule; PLIC, posterior limb of the internal capsule; RLIC, retrolenticular limb
of the internal capsule; PTR, posterior thalamic radiation; GCC, genu of the corpus callosum; BCC, body of the corpus callosum; SCC, splenium of the corpus callosum;
CGC, cingulate gyrus part of the cingulum; EC, external capsule; SLF, superior longitudinal fasciculus; SS, sagittal stratum. Bolded p values indicate statistically significant
effects (p < 0.05).

diagnosis. More explicitly, if a child without an SPD label and a
child with an SPD label exhibit the same level of function for a
given sensory processing domain, parents of the child who has
not been attributed an SPD label may be less likely to report
abnormalities than the parents of the child who has been clinically
assigned an SPD label.

The relative lack of anatomic specificity of these correlations
of DTI with sensory processing measures may be due, in part, to
the high degree of microstructural covariance between different
white matter tracts (Wahl et al., 2010), with a spatially global
factor accounting for almost half of the variance in FA (Penke
et al., 2010). It is also likely reflective of the multiple functional
brain networks required for each of these tests, as reviewed below.

Tactile Processing
Diffusion tensor imaging has previously been used to link degree
of periventricular white matter injury in the PTR, as assessed by
size reduction of white matter tracts on visual inspection, with
contralateral touch threshold, proprioception, andmotor severity
in children with cerebral palsy (Hoon et al., 2009). However,
this prior work used a subjective rater system of white matter

injury. One study has reported a correlation between tactile
defensiveness and FA in the inferior longitudinal fasciculus of
children with ASD (Pryweller et al., 2014). However, the metric of
tactile defensiveness is an assessment of sensory-related behavior,
rather than early-stage sensory function. While we are not aware
of other studies reporting a relationship between white matter
microstructure and primary or secondary tactile processing, there
are a multitude of functional imaging studies have demonstrated
primarily fronto-parietal network activations in tasks involving
either active or passive touch discrimination of macrogeometric
object features such as shape or length (Bodegård et al., 2001; Van
de Winckel et al., 2005). These circuits include the ventral and
dorsal premotor cortex, secondary somatosensory area, superior
parietal lobe, anterior part of the intraparietal sulcus (AIP), and
supramarginal gyrus (Kawashima et al., 1994; O’Sullivan et al.,
1994; Hadjikhani and Roland, 1998; Roland and Zilles, 1998;
Binkofski et al., 1999; Bodegård et al., 2000, 2001; Servos et al.,
2001; Stoeckel et al., 2003, 2004; Stoesz et al., 2003).

Our results are the first to demonstrate associations of
white matter microstructure with tactile processing, both among
children with SPD as well as among TDC. Both the Sensory
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FIGURE 5 | Representative scatterplots and regression lines of the Sensory Profile auditory score and DSTP (mean-centered) versus FA in significant
voxels (differing between the two sensory variables) of the posterior thalamic radiations (PTR) (both sides combined) and splenium of the corpus
callosum (SCC).

Profile tactile score and Graphesthesia are associated with FA
in regions subserving primary sensory processing, including
the posterior projection tracts of the superior and posterior
corona radiata, the posterior limbs of the internal capsule,
and the PTR. Both are also associated with the SCC, which
connects homologous sensory areas. However, they are also
associated with microstructure in associational tracts such as
the external capsules, superior longitudinal fasciculus, sagittal
stratum. Unlike the Sensory Profile tactile score, Graphesthesia
demonstrates associations with the frontal regions of the right
anterior corona radiata, anterior limb of the RLIC, and the
genu of the corpus callosum. The widespread nature of these
correlations may in part reflect the non-specificity of the
assessments used, in addition to the previously mentioned
contribution of high microstructural covariance of white matter
(from the beginning of the Discussion). For example, in addition
to primary tactile processing, Graphesthesia engages secondary
modalities requiring synthesis and interpretation of the primary

tactile inputs, including the spatio-temporal analysis of these
inputs to form a visual representation of what was drawn on the
back of the hand, and the motor planning and coordination to
re-create this image.

The tactile sense develops the earliest among all sensory
systems, with somatosensory responses detected in utero as early
as 8 weeks of gestation (Montagu, 1986). Tactile feedback from
mechanoreceptors in the skin and joints critically guide the
development of motor skills during childhood, both in gross
motor (Metcalfe et al., 2005) and fine motor (Soechting and
Flanders, 2008) functions. Tactile processing has been further
suggested to play a central role in the development of social
and communicative behaviors, with tactile-centered therapies
shown to effectively modulate arousal, attention, and sensory
defensiveness (Cascio, 2010). It is thus critical to understand
the neural correlates of tactile processing in order to better
understand the downstream effects of its abnormalities as well as
to better design and evaluate tactile-centered therapies.
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Auditory Processing
One prior study reported associations between FA and
performance on auditory processing tasks in TDC (Schmithorst
et al., 2011). This prior study reports positive correlations of FA
around the prefrontal regions with performance in a speech-
in-noise task. However, all measures of auditory processing
in this previous study involved manipulations of language
stimuli, unlike the acoustic test of the DSTP which involves
manipulations of non-linguistic stimuli, therefore being more
likely to probe basic auditory processing function instead of the
integrity of language networks.

To our knowledge, our study is the first to demonstrate
associations of white matter microstructure with non-linguistic
auditory processing, both among children with SPD as well
as among TDC. Both the Sensory Profile auditory score and
DSTP are associated with FA in the PTR, which contains
the primary auditory projection pathway. However, they are
also associated with microstructure in associational tracts such
as the external capsules and the cingulate portion of the
cingulum bundles. Unlike the Sensory Profile auditory score,

DSTP demonstrates widespread associations with both frontal
and posterior projection and commissural pathways, along with
the associational tracts of the superior longitudinal fasciculus and
sagittal stratum. Similar to tactile processing, one contributor
to the extensive regions of significant correlations with the
DSTP task may lie in the test’s additional recruitment of
attentional processes. For example, dichotic listening tasks have
long been used to test different neural models of attention
(Broadbent, 1954; Treisman, 1964), and have been used to
demonstrate enhanced right ear advantage in individuals with
mild Alzheimer’s disease (Duchek and Balota, 2005), decreased
right ear advantage in children with dyslexia (Helland and
Asbjornsen, 2001), and challenges with attention shifting in
sleep deprivation (Johnson et al., 2002). The dichotic listening
portion of the DSTP demonstrates the most robust correlations
with FA of the three DSTP subtests, showing strong FA effects
across projection, commisural, and association tracts (Table 5).
Temporal patterning shows strong effects in certain projection
and association tracts. It has previously been suggested that
children with specific language impairment perform worse on

TABLE 5 | Number of significantly correlated voxels in several ROIs, along with results of the three DSTP subscores as functions of group, FA, age, and
gender.

DSTPdd DSTPtp DSTPad

# sig vox p_FA p_TDCvSPD # sig vox p_FA p_TDCvSPD # sig vox p_FA p_TDCvSPD

ACR-L 734 0.016 0.32 582 0.10 0.010 – – –

ACR-R 1190 0.0025 0.34 918 0.028 0.011 1176 0.00057 0.52

SCR-L 334 0.037 0.15 7 0.23 0.0022 – – –

SCR-R 460 0.022 0.18 326 0.037 0.0033 83 0.029 0.19

PCR-L 255 0.013 0.21 52 0.27 0.0061 – – –

PCR-R 499 0.0034 0.27 341 0.046 0.0086 40 0.012 0.25

ALIC-L 268 0.038 0.36 316 0.0074 0.021 – – –

ALIC-R 521 0.013 0.50 475 0.037 0.028 326 0.0054 0.64

PLIC-L 584 0.0050 0.21 306 0.077 0.0048 – – –

PLIC-R 602 0.0025 0.30 338 0.29 0.0070 18 0.0063 0.55

RLIC-L 455 0.0091 0.28 440 0.043 0.0087 – – –

RLIC-R 453 0.0083 0.43 363 0.14 0.012 111 0.026 0.62

PTR-L 596 0.0075 0.67 463 0.32 0.019 – – –

PTR-R 894 0.00043 0.99 583 0.12 0.031 305 0.0072 0.81

GCC 1116 0.014 0.33 928 0.095 0.0088 426 0.043 0.44

BCC 2048 0.030 0.18 1788 0.085 0.0044 529 0.041 0.23

SCC 939 0.028 0.43 871 0.074 0.021 129 0.025 0.45

CGC-L 268 0.0064 0.28 153 0.025 0.0091 – – –

CGC-R 8 0.11 0.20 69 0.080 0.0080 – – –

EC-L 223 0.13 0.18 439 0.049 0.0041 – – –

EC-R 911 0.0054 0.23 598 0.013 0.0045 752 0.00054 0.44

SLF-L 702 0.0014 0.24 9 0.14 0.0024 – – –

SLF-R 981 0.00046 0.18 715 0.014 0.0067 206 0.0013 0.45

SS-L 177 0.023 0.20 235 0.0068 0.0051 5 0.0026 0.18

SS-R 259 0.0054 0.56 284 0.016 0.032 212 0.00044 0.98

The significance of group and FA to the GLMs are displayed. The significance of age and gender are described in the main text. DSTPdd, dichotic digits; DSTPtp, temporal
patterning; DSTPad, auditory discrimination. ACR, anterior corona radiata; SCR, superior corona radiata; PCR, posterior corona radiata; ALIC, anterior limb of the internal
capsule; PLIC, posterior limb of the internal capsule; RLIC, retrolenticular limb of the internal capsule; PTR, posterior thalamic radiation; GCC, genu of the corpus callosum;
BCC, body of the corpus callosum; SCC, splenium of the corpus callosum; CGC, cingulate gyrus part of the cingulum; EC, external capsule; SLF, superior longitudinal
fasciculus; SS, sagittal stratum. Bolded p values indicate statistically significant effects (p < 0.05).
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FIGURE 6 | Representative scatterplots and regression lines of the DSTP subscores (mean-centered) – dichotic digits, temporal patterning, and
auditory discrimination – vs. FA in significant voxels (differing between the three sensory variables) of the PTR (both sides combined) and splenium
of the corpus callosum (SCC).
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temporal patterning tasks, but only when the interstimulus
interval between tones is short (Tallal and Piercy, 1973).
Interestingly, the left RLIC, with which temporal patterning
demonstrates an FA effect in our present study (but not with
the right RLIC), has been previously associated with reading
scores in individuals with dyslexia by a DTI study (Klingberg
et al., 2000). Auditory discrimination, which involves a strong
element of attentional control, demonstrates the strongest FA
effects with the right anterior corona radiata, which is concordant
with Schmithorst et al.’s (2011) finding of correlations of language
discrimination in noise with FA in white matter of prefrontal
regions.

Auditory processing is of primary importance for language
acquisition, with speech perception requiring the ability to
determine spectral shape, to discriminate modulation of
amplitude and spectral frequencies, and to do this at varying
temporal resolutions (Bailey and Snowling, 2002). These auditory
capabilities are likely sufficient by early infancy to support
the discrimination of phonetic elements in language, though
attentional capabilities may take longer to develop (Bailey
and Snowling, 2002). Given the wealth of evidence that
developmental language-based learning disorders can often
be traced to non-verbal auditory processing deficits (Tallal
et al., 1997), it is highly relevant to characterize the biological
underpinnings of these deficits.

Study Limitations and Future Directions
Despite the larger number of subjects in this study, we are still
limited by sample size in our ability to harness DTI as a clinically
utilizable tool for the diagnosis, prognosis, and treatment of
SPD. Going forward, larger sample sizes andmultimodal imaging
biomarkers from DTI, fMRI, and MEG may aid in better
definition and diagnosis of SPD. This could be of particular
use if these biomarkers can identify individuals at risk for SPD

at early ages before clinical symptoms are apparent, allowing
for early intervention and recruitment of support services. In
addition to diagnosis, larger scale longitudinal studies will allow
us to evaluate the utility of quantitative imaging biomarkers,
as compared with clinical metrics, neuropsychological testing,
or direct sensory testing, for the prognostication of behavioral
and cognitive development of individuals with SPD. Finally,
interventional studies will allow us to evaluate the utility of
quantitative imaging biomarkers for the monitoring of behavioral
and psychopharmacological interventions, as well as for the
prediction of interventional outcome. These biomarkers may
further aid in the design of interventions if they can be used
to stratify the SPD population into subgroups that will better
respond to particular interventions. Overall, future studies will
aim to shift SPD from a clinical diagnosis to a “biomarker
diagnosis,” with imaging, and in particular DTI, metrics among
the most promising of these biomarkers.
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