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We propose reinforcement learning on simple networks consisting of random

connections of spiking neurons (both recurrent and feed-forward) that can learn complex

tasks with very little trainable parameters. Such sparse and randomly interconnected

recurrent spiking networks exhibit highly non-linear dynamics that transform the inputs

into rich high-dimensional representations based on the current and past context. The

random input representations can be efficiently interpreted by an output (or readout)

layer with trainable parameters. Systematic initialization of the random connections

and training of the readout layer using Q-learning algorithm enable such small random

spiking networks to learn optimally and achieve the same learning efficiency as humans

on complex reinforcement learning (RL) tasks like Atari games. In fact, the sparse

recurrent connections cause these networks to retain fading memory of past inputs,

thereby enabling them to perform temporal integration across successive RL time-steps

and learn with partial state inputs. The spike-based approach using small random

recurrent networks provides a computationally efficient alternative to state-of-the-art

deep reinforcement learning networks with several layers of trainable parameters.

Keywords: liquid state machine, recurrent SNN, learning without stable states, spiking reinforcement learning,

Q-learning

1. INTRODUCTION

High degree of recurrent connectivity among neuronal populations is a key attribute of neural
microcircuits in the cerebral cortex and many different brain regions (Douglas et al., 1995; Harris
and Mrsic-Flogel, 2013; Jiang et al., 2015). Such common structure suggests the existence of
a general principle for information processing. However, the principle underlying information
processing in such recurrent population of spiking neurons is still largely elusive due to the
complexity of training large recurrent Spiking Neural Networks (SNNs). In this regard, reservoir
computing architectures (Maass et al., 2002, 2003; Lukoševičius and Jaeger, 2009) were proposed
to minimize the training complexity of large recurrent neuronal populations. Liquid State Machine
(LSM) (Maass et al., 2002, 2003) is a recurrent SNN consisting of an input layer sparsely connected
to a randomly interlinked reservoir (or liquid) of spiking neurons whose activations are passed
on to a readout (or output) layer, trained using supervised algorithms, for inference. The key
attribute of an LSM is that the input-to-liquid and the recurrent excitatory ↔ inhibitory synaptic
connectivity matrices and weights are fixed a priori. LSM effectively utilizes the rich non-linear
dynamics of Leaky-Integrate-and-Fire spiking neurons (Dayan and Abbott, 2003) and the sparse
random input-to-liquid and recurrent-liquid synaptic connectivity for processing spatio-temporal
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inputs. At any time instant, the spatio-temporal inputs are
transformed into a high-dimensional representation, referred to
as the liquid states (or spike patterns), which evolves dynamically
based on decaying memory of the past inputs. The memory
capacity of the liquid is dictated by its size and degree of
recurrent connectivity. Although the LSM, by construction, does
not have stable instantaneous internal states like Turingmachines
(Savage, 1998) or attractor neural networks (Amit, 1992), prior
studies have successfully trained the readout layer using liquid
activations, estimated by integrating the liquid states (spikes)
over time, for speech recognition (Auer et al., 2002; Maass
et al., 2002; Verstraeten et al., 2005; Bellec et al., 2018), image
recognition (Srinivasan et al., 2018), gesture recognition (Chrol-
Cannon and Jin, 2015; Panda and Srinivasa, 2018), and sequence
generation tasks (Nicola and Clopath, 2017; Panda and Roy,
2017; Bellec et al., 2019).

In this work, we propose such sparse randomly-interlinked
low-complexity LSMs for solving complex Reinforcement
Learning (RL) tasks, which involve an autonomous agent
(modeled using the LSM) trained to select actions in a manner
that maximizes the expected future rewards received from
the environment. For instance, a robot (agent) learning to
navigate a maze (environment) based on the reward and
punishment received from the environment is an example
RL task. The environment state (converted to spike trains)
is fed to the liquid, which produces a high-dimensional
representation based on current and past inputs. The sparse
recurrent connections enable the liquid to retain decaying
memory of past input representations and perform temporal
integration across different RL time-steps. We present an optimal
initialization strategy for the fixed input-to-liquid and recurrent-
liquid connectivity matrices and weights to enable the liquid to
produce high-dimensional representations that lead to efficient
training of the liquid-to-readout weights. Artificial rate-based
neurons for the readout layer takes the liquid activations and
produces action-values to guide action selection for a given
environment state. The liquid-to-readout weights are trained
using the Q-learning RL algorithm proposed for deep learning
networks (Mnih et al., 2015). In RL theory (Sutton and Barto,
1998), the Q-value, also known as the action-value, estimates the
expected future rewards for a state-action pair that specifies how
good is the action for the current environment state. The readout
layer of the LSM contains as many neurons as the number of
possible actions for a particular RL task. At any given time,
the readout neurons predict the Q-value for all possible actions
based on the high-dimensional state representation provided
by the liquid. The liquid-to-readout weights are then trained
using backpropagation (Rumelhart et al., 1986) to minimize
the error between the Q-values predicted by the LSM and
the target Q-values estimated from RL theory (Watkins and
Dayan, 1992) as described in subsection 2.2. We adopt ǫ-greedy
policy (explained in subsection 2.2) to select the suitable action
based on the predicted Q-values during training and evaluation.
Based on ǫ-greedy policy, a lot of random actions are picked
in the beginning of the training phase to better explore the
environment. Toward the end of training and during inference,
the action corresponding to the maximum Q-value is selected

with higher probability to exploit the learnt experiences. We
first demonstrate the utility of the sparse recurrent connections
in enabling the LSM to perform temporal integration across
RL time-steps by training it to perform the Cartpole-balancing
RL task (Sutton and Barto, 1998) with partial state inputs. We
feed only the cart position and pole angle to the LSM while
suppressing the cart velocity and angular velocity of the pole. We
show that the fading memory of the past cart position and pole
angle retained by the liquid enables it to make better decisions
without the velocity information compared to an LSM without
recurrent connections. We then comprehensively validate the
capability of the LSM and the presented training methodology
on complex RL tasks like Pacman (DeNero et al., 2010) and
Atari games (Brockman et al., 2016). We note that LSM has
been previously trained using Q-learning for RL tasks pertaining
to robotic motion control (Joshi and Maass, 2005; Berberich,
2017; Tieck et al., 2018). We demonstrate and benchmark
the efficacy of appropriately initialized LSM for solving RL
tasks commonly used to evaluate deep reinforcement learning
networks. In essence, this work provides a promising step toward
incorporating bio-plausible low-complexity recurrent SNNs like
LSMs for complex RL tasks, which can potentially lead to
much improved energy efficiency in event-driven asynchronous
neuromorphic hardware implementations (Merolla et al., 2014;
Davies et al., 2018).

2. MATERIALS AND METHODS

2.1. Liquid State Machine: Architecture and
Initialization
Liquid State Machine (LSM) consists of an input layer sparsely
connected via fixed synaptic weights to a randomly interlinked
liquid of spiking neurons followed by a readout layer as depicted
in Figure 1. Each spiking neuron fires an action potential
that leads to either excitatory or inhibitory effect at all of its
termination sites. Based on the terminology followed in Maass
et al. (2002) and Diehl and Cook (2015), we term a neuron that
leads to excitatory (inhibitory) effect an excitatory (inhibitory)
neuron. The input layer (denoted by P) is modeled as a group
of excitatory neurons that spike based on the input environment
state following a Poisson process. The sparse input-to-liquid
connections are initialized such that each excitatory neuron in
the liquid receives synaptic connections from approximately K
random input neurons. This guarantees uniform excitation of
the liquid-excitatory neurons by the external input spikes. The
fixed input-to-liquid synaptic weights are chosen from a uniform
distribution between 0 and α as shown in Table 1, where α is the
maximum bound imposed on the weights. The liquid consists
of excitatory neurons (denoted by E) and inhibitory neurons
(denoted by I) recurrently connected in a sparse randommanner
as illustrated in Figure 1. The number of excitatory neurons is
chosen to be 4× the number of inhibitory neurons as observed
in the cortical circuits (Wehr and Zador, 2003). We use the
Leaky-Integrate-and-Fire (LIF) model (Dayan and Abbott, 2003)
to mimic the dynamics of both excitatory and inhibitory spiking
neurons as described by the following differential equations:
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FIGURE 1 | Illustration of the LSM architecture consisting of an input layer sparsely connected via fixed synaptic weights to randomly recurrently connected reservoir

(or liquid) of excitatory and inhibitory spiking neurons followed by a readout layer composed of artificial rate-based neurons.

TABLE 1 | Synaptic weight initialization parameters for the fixed LSM connections

for learning to balance cartpole, play Pacman, and play Atari game.

Connection type Weight

INPUT-TO-LIQUID CONNECTIONS

P→E [0, 0.6]

RECURRENT-LIQUID CONNECTIONS

E→E [0, 0.05]

E→I [0, 0.25]

I→E [0, 0.3]

I→I [0, 0.01]

dVi

dt
=

Vrest − Vi

τ
+ Ii(t) (1)

Ii(t) =
∑

l∈NP

Wli · δ(t− tl)+
∑

j∈NE

Wji · δ(t− tj)−
∑

k∈NI

Wki · δ(t− tk)

(2)

where Vi is the membrane potential of the i-th neuron in the
liquid, Vrest is the resting potential to which Vi decays to, with
time constant τ , in the absence of input current, and Ii(t)
is the instantaneous current projecting into the i-th neuron,
and NP, NE, and NI are the number of input, excitatory, and
inhibitory neurons, respectively. The instantaneous current is a
sum of three terms: current from input neurons, current from
excitatory neurons, and current from inhibitory neurons. The
first term integrates the sum of pre-synaptic spikes, denoted by
δ(t − tl) where tl is the time instant of pre-spikes, with the
corresponding synaptic weights (Wli in Equation 2). Likewise,
the second (third) term integrates the sum of pre-synaptic spikes
from the excitatory (inhibitory) neurons, denoted by δ(t − tj)
(δ(t − tk)), with the respective weights Wji (Wki) in Equation 2.
The neuronal membrane potential is updated with the sum of
the input, excitatory, and negative inhibitory currents as shown

TABLE 2 | Leaky-Integrate-and-Fire (LIF) model parameters for the liquid neurons.

Parameter Value

EXCITATORY AND INHIBITORY NEURONS

Vrest 0

Vreset 0

Vthres 0.5

τ 20 ms

τrefrac 1 ms

1t (simulation time-step) 1 ms

in Equation 1. When the membrane potential reaches a certain
threshold Vthres, the neuron fires an output spike. The membrane
potential is thereafter reset to Vreset and the neuron is restrained
from spiking for an ensuing refractory period by holding its
membrane potential constant. The LIF model hyperparameters
for the excitatory and inhibitory neurons are listed in Table 2.

There are four types of recurrent synaptic connections in the
liquid, namely, E→E, E→I, I→E, and I→I. We express each
connection in the form of a matrix that is initialized to be sparse
and random, which causes the spiking dynamics of a particular
neuron to be independent of most other neurons and maintains
separability in the neuronal spiking activity. However, the degree
of sparsity needs to be tuned to achieve rich network dynamics.
We find that excessive sparsity (reduced connectivity) leads to
weakened interaction between the liquid neurons and renders
the liquid memoryless. On the contrary, lower sparsity (increased
connectivity) results in chaotic spiking activity, which eliminates
the separability in neuronal spiking activity. We initialize the
connectivity matrices such that each excitatory neuron receives
approximately C synaptic connections from inhibitory neurons,
and vice versa. The hyperparameter C is tuned empirically as
discussed in subsection 3.1 to avoid common chaotic spiking
activity problems that occur when (1) excitatory neurons connect
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to each other and form a loop that always leads to positive
drift in membrane potential, and when (2) an excitatory neuron
connects to itself and repeatedly gets excited from its activity.
Specifically, for the first situation, we have non-zero elements in
the connectivity matrix E→E (denoted byWEE) only at locations
where elements in the product of connectivity matrices E→I and
I→E (denoted byWEI andWIE, respectively) are non-zero. This
ensures that excitatory synaptic connections are created only for
those neurons that also receive inhibitory synaptic connections,
which mitigates the possibility of continuous positive drift in
the respective membrane potentials. To circumvent the second
situation, we force the diagonal elements of WEE to be zero and
eliminate the possibility of repeated self-excitation. Throughout
this work, we create a recurrent connectivity matrix for liquid
with m excitatory neurons and n inhibitory neurons by forming
an m × n matrix whose values are randomly drawn from a
uniform distribution between 0 and 1. Connection is formed
between those pairs of neurons where the corresponding matrix
entries are lesser than the target connection probability (= C/m).
For illustration, consider a liquid with m = 1, 000 excitatory
and n = 250 inhibitory neurons. In order to create the E→I
connectivity matrix such that each inhibitory neuron receives
synaptic connection from a single excitatory neuron (C = 1),
we first form a 1, 000 × 250 random matrix whose values are
drawn from a uniform distribution between 0 and 1. We then
create a connection between those pairs of neurons where the
matrix entries are lesser than 0.1% (1/1,000). Similar process
is repeated for connection I→E. We then initialize connection
E→E based on the product of WEI and WIE. Similarly, the
connectivity matrix for I→I (denoted byWII) is initialized based
on the product of WIE and WEI . The connection weights are
initialized from a uniform distribution between 0 and β as
shown in Table 1 for different recurrent connectivity matrices,
unless stated otherwise. Note that the weights of the synaptic
connections from inhibitory neurons are greater than that for
synaptic connections from excitatory neurons to account for
the lower number of inhibitory neurons relative to excitatory
neurons. Stronger inhibitory connection weights help ensure that
every neuron receives similar amount of excitatory and inhibitory
input currents, which improves the stability of the liquid as
experimentally validated in subsection 3.1.

The liquid-excitatory neurons are fully-connected to artificial
rate-based neurons in the readout layer for inference. The
readout layer, which consists of as many output neurons as the
number of actions for a given RL task, uses the average firing
rate/activation of the excitatory neurons to predict the Q-value
for every state-action pair. We translate the liquid spiking activity
to average rate by accumulating the excitatory neuronal spikes
over the time period for which the input (current environment
state) is presented. We then normalize the spike counts with the
maximum possible spike count over the LSM-simulation period,
which is computed as the LSM-simulation period divided by
the simulation time-step, to obtain the average firing rate of
the excitatory neurons that are fed to the readout layer. Since
the number of excitatory neurons is larger than the number of
output neurons in the readout layer, we gradually reduce the
dimension by introducing an additional fully-connected hidden

layer between the liquid and the output layer. We use ReLU
non-linearity (Nair and Hinton, 2010) after the first hidden layer
but none after the final output layer since the Q-values are
unbounded and can assume positive or negative values. We train
the synaptic weights constituting the fully-connected readout
layer using the Q-learning based training methodology that is
described in the following subsection 2.2.

2.2. Q-Learning Based LSM Training
Methodology
At any time instant t in RL task, the agent receives the
environment state st and picks action at from the set of all
possible actions. After the environment receives the action at ,
it transitions to the next state based on the chosen action and
feeds back an immediate reward rt+1 and the new environment
state st+1. As mentioned in the beginning, the goal of the agent
is to maximize the accumulated reward in the future, which is
mathematically expressed as

Rt =

∞
∑

t=1

γ t rt (3)

where γ ∈ [0, 1] is the discount factor that determines the relative
significance attributed to immediate and future reward. If γ is
chosen to be 0, the agent maximizes only the immediate reward.
However, as γ approaches unity, the agent learns to maximize
the accumulated reward in the future. Q-learning (Watkins and
Dayan, 1992) is a widely used RL algorithm that enables the agent
to achieve this objective by computing the state-action value
function (or commonly known as the Q-function), which is the
expected future reward for a state-action pair that is specified by

Qπ (s, a) = E[Rt|st = s, at = a,π] (4)

where Qπ (s, a) measures the value of choosing an action a when
in state s following a policy π . If the agent follows the optimal
policy (denoted by π∗) such that Qπ∗

(s, a) = max
π

Qπ (s, a),

the Q-function can be estimated recursively using the Bellman
optimality equation that is described by

Qπ∗
(s, a) = E[rt+1 + γ max

at+1
Qπ∗

(st+1, at+1)|s, a] (5)

where Qπ∗
(s, a) is the Q-value for choosing action a from

state s following the optimal policy π∗, rt+1 is the immediate
reward received from the environment, Qπ∗

(st+1, at+1) is the
Q-value for selecting action at+1 from the next environment
state st+1. Learning the Q-values for all possible state-action
pairs is intractable for practical RL applications. Popular
approaches approximate Q-function using deep convolutional
neural networks (Lillicrap et al., 2015; Mnih et al., 2015, 2016;
Silver et al., 2016).

In this work, we model the agent using an LSM, wherein
the liquid-to-readout weights are trained to approximate the
Q-function as described below. At any time instant t, we map
the current environment state vector st to input neurons firing
at a rate constrained between 0 and φ Hz over certain time
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period (denoted by TLSM) following a Poisson process. The
maximum Poisson firing rate φ is tuned to ensure sufficient
input spiking activity for a given RL task. We follow the method
outlined in Heeger (2000) to generate the Poisson spike trains
as explained below. For a particular input neuron in the state
vector, we first compute the probability of generating a spike
at every LSM-simulation time-step based on the corresponding
Poisson firing rate. Note that the time-steps in the RL task are
orthogonal to the time-steps used for the numerical simulation
of the liquid. Specifically, in-between successive time-steps t and
t + 1 in the RL task, the liquid is simulated for a time period of
TLSM with 1ms separation between consecutive LSM-simulation
time-steps. The probability of producing a spike at any LSM-
simulation time-step is obtained by scaling the corresponding
firing rate by 1,000. We generate a random number drawn from a
uniform distribution between 0 and 1, and produce a spike if the
random number is lesser than the neuronal spiking probability.
At every LSM-simulation time-step, we feed the spike map of
the current environment state and record the spiking outputs
of the liquid-excitatory neurons. We accumulate the excitatory
neuronal spikes and normalize the individual neuronal spike
counts with the maximum possible spike count over the LSM-
simulation period to obtain the high-dimensional representation
(activation) of the environment state as discussed in the previous
subsection 2.1. Note that the liquid state variables, such as the
neuronal membrane potentials are not reset between successive
RL time-steps so that some information of the past environment
representations are still retained. The capability of the liquid to
retain decaying memory of the past representations enables it to
perform temporal integration over different RL time-steps such
that the high-dimensional representation provided by the liquid
for the current environment state also depends on decaying
memory of the past environment representations. However, it
is important to note that appropriate initialization of the LSM
(detailed in subsection 2.1) is necessary to obtain useful high-
dimensional representation for efficient training of the liquid-to-
readout weights as experimentally validated in section 3.

The high-dimensional liquid activations are fed to the readout
layer that is trained using backpropagation to approximate
the Q-function by minimizing the mean square error between
the Q-values predicted by the readout layer and the target
Q-values following (Mnih et al., 2015) as described by the
following equations:

θt+1 = θt + η
(

Yt − Q(st , at|θt)
)

∇θtQ(st , at|θt) (6)

Yt = rt+1 + γ max
at+1

Q(st+1, at+1|θt) (7)

where θt+1 and θt are the updated and previous synaptic weights
in the readout layer, respectively, η is learning rate, Q(st , at|θt) is
vector representing the Q-values predicted by the readout layer
for all possible actions given the current environment state st
using the previous readout weights, ∇θtQ(st , at|θt) is the gradient
of the Q-values with respect to the readout weights, and Yt is
the vector containing the target Q-values that is obtained by
feeding the next environment state st+1 to the LSM while using

the previous readout weights. To encourage exploration during
training, we follow ǫ-greedy policy (Watkins, 1989) for selecting
the actions based on the Q-values predicted by the LSM. Based
on ǫ-greedy policy, we select a random action with probability ǫ

and the optimal action, i.e., the action pertaining to the highest Q-
value with probability (1−ǫ) during training. Initially, ǫ is set to a
large value (closer to unity), thereby permitting the agent to pick
a lot of random actions and effectively explore the environment.
As training progresses, ǫ gradually decays to a small value,
thereby allowing the agent to exploit its past experiences. During
evaluation, we similarly follow ǫ-greedy policy albeit with much
smaller ǫ so that there is a strong bias toward exploitation.
Employing ǫ-greedy policy during evaluation also serves to
mitigate the negative impact of over-fitting or under-fitting. In
an effort to further improve stability during training and achieve
better generalization performance, we use the experience replay
technique proposed by Mnih et al. (2015). Based on experience
replay, we store the experience discovered at each time-step (i.e.,
st , at , rt , and st+1) in a large table and later train the LSM
by sampling mini-batches of experiences in a random manner
overmultiple training epochs, leading to improved generalization
performance. For all the experiments reported in this work, we
use the RMSProp algorithm (Tieleman and Hinton, 2012) as the
optimizer for error backpropagation with mini-batch size of 32.
We adopt ǫ-greedy policy, wherein ǫ gradually decays from 1 to
0.001−0.1 over the first 10% of the training steps. Replaymemory
stores onemillion recently played frames, which are then used for
mini-batch weight updates that are carried out after the initial 100
training steps. The simulation hyperparameters for Q-learning
are summarized in Table 3.

3. EXPERIMENTAL RESULTS

We first present results motivating the importance of careful
LSM initialization for obtaining rich high-dimensional state
representation, which is necessary for efficient training of the

TABLE 3 | Q-learning simulation parameters.

Parameter Value

Readout weights update frequency Once every

game-step

Warm up steps before training begins 100

Batch size for experience replay 32

Experience replay buffer size 1× 106

Discount factor 0.95

Initial exploration probability during training 1

Final exploration probability during training (Cartpole) 1× 10−3

Final exploration probability during training (Pacman & Atari) 1× 10−1

Exploration probability during evaluation (Cartpole & Atari) 5× 10−2

Exploration probability during evaluation (Pacman) 0

Learning rate for RMSProp algorithm 2× 10−4

Term added to denominator for RMSProp algorithm 1× 10−6

Weight decay for RMSProp algorithm 0

Smoothing constant for RMSProp algorithm 0.99
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liquid-to-readout weights. We then demonstrate the utility
of the recurrent-liquid synaptic connections of careful LSM
initialization using classic cartpole-balancing RL task (Sutton and
Barto, 1998). We then validate the capability of appropriately
initialized LSM, trained using the presented methodology, for
solving complex RL tasks like Pacman (DeNero et al., 2010) and
Atari games (Brockman et al., 2016).

3.1. LSM Hyperparameter Tuning
Initializing LSM with appropriate hyperparameters is an
important step to construct a model that produces useful
high-dimensional representations. Since the input-to-liquid and
recurrent-liquid connectivity matrices of the LSM are fixed a
priori during training, how these connections are initialized
dictates the liquid dynamics. We choose the hyperparameters
K (governing the input-to-liquid connectivity matrix) and
C (governing the recurrent-liquid connectivity matrices)
empirically based on three observations: (1) stable spiking
activity of the liquid, (2) eigenvalue analysis of the recurrent
connectivity matrices, and (3) development of liquid-excitatory
neuron membrane potential.

Spiking activity of the liquid is said to be stable if every finite
stream of inputs results in a finite period of response. Sustained
activity indicates that small input noise can perturb the liquid
state and lead to chaotic activity that is no longer dependent
on the input stimuli. It is impractical to analyze the stability of
the liquid for all possible input streams within a finite time. We
investigate the liquid stability by feeding in random input stimuli
and sampling the excitatory neuronal spike counts at regular time
intervals over the LSM-simulation period for different values of
K and C. We separately adjust these hyperparameters for each
learning task using random representations of the environment
based on the following experimental steps. We begin by first
selecting the hyper-parameter K, which indicates the number of
pre-synaptic inputs to each neuron in the liquid. K is initialized
to a small number (=1 in our experiments) while C is set to zero.
We gradually increase K until the liquid neurons are sufficiently
excited to determine the K that leads to optimally sparse spiking
activity. The same optimal value of K can then be used for
liquid of any size since each neuron still receives similar degree
of excitation from the inputs and spikes sufficiently. Using the
optimal value of K, we increase C until the desired eigenvalue
spectrum and spiking neuronal dynamics (with respect to the
evolution of the membrane potential over time) are obtained as
explained in the following paragraph.

Analyzing the eigenvalue spectrum of the recurrent
connectivity matrix is a common tool to assess the stability
of the liquid. Each eigenvalue in the spectrum represents an
individual mode of the liquid. Real part indicates decay rate
of the mode while the imaginary part corresponds to the
frequency of the mode (Rajan et al., 2010). Liquid spiking
activity remains stable as long as all eigenvalues remain within
the unit circle. However, this condition is not easily met for
realistic recurrent-liquid connections with random synaptic
weight initialization (Rajan and Abbott, 2006). We constrain the
recurrent weights (hyperparameter β) such that each neuron
receives balanced excitatory and inhibitory synaptic currents as

previously discussed in subsection 2.1. This results in eigenvalues
that lie within the unit circle as illustrated in Figure 2A. In order
to emphasize the importance of LSM initialization, we also show
the eigenvalue spectrum of the recurrent-liquid connectivity
matrix when the weights are not properly initialized as shown
in Figure 2B where many eigenvalues are outside the unit circle.
Finally, we also use the development of the excitatory neuronal
membrane potential to guide hyperparameter tuning. The
hyperparameters C and β are chosen to ensure that membrane
potential exhibits balanced fluctuation as illustrated in Figure 2C

that plots the membrane potential of 10 randomly picked
neurons in the liquid. Note that these steps to find K and C are
based on empirical observations. We chose values of K and C
to be 3 and 4 for cartpole and Pacman experiment, respectively,
which ensures stable liquid spiking activity while enabling the
liquid to exhibit fading memory of the past inputs.

3.2. Learning to Balance a Cartpole
Cartpole-balancing is a classic control problemwherein the agent
has to balance a pole attached to a wheeled cart that can move
freely on a rail of certain length as shown in Figure 3A. The
agent can exert a unit force on the cart either to the left or
right side for balancing the pole and keeping the cart within
the rail. The environment state is characterized by cart position,
cart velocity, angle of the pole, and angular velocity of the pole,
which are designated by the tuple (χ , χ̇ ,ϕ, ϕ̇). The environment
returns a unit reward every time-step and concludes after 200
time-steps if the pole does not fall or the cart does not goes
out of the rail. Because the game is played for a finite time
period, we constrain (χ , χ̇ ,ϕ, ϕ̇) to be within the range specified
by (±2.5,±0.5,±0.28,±0.88) for efficiently mapping the real-
valued state inputs to spike trains feeding into the LSM. Each
real-valued state input is mapped to 10 input neurons which have
firing rates proportional to one-hot encoding of the input value
representing 10 distinct levels within the corresponding range.

We model the agent using an LSM containing 150 liquid
neurons, 32 hidden neurons in the fully-connected layer between
the liquid and output layer, and two output neurons. The
maximum firing rate for the input neurons representing the
environment state is set to 100 Hz and each input is presented
for 100 ms. The LSM is trained for 105 time-steps, which are
equally divided into 100 training epochs containing 1,000 time-
steps per epoch. After each epoch, the LSM is evaluated for
1,000 time-steps with the probability of choosing a random
action ǫ set to 0.05. Note that the LSM is evaluated for 1,000
time-steps (multiple gameplays) even though single gameplay
lasts a maximum of only 200 time-steps as mentioned in the
previous paragraph. We use the accumulated reward averaged
over multiple gameplays as the true indicator of the LSM
(agent) performance to account for the randomness in action-
selection as a result of the ǫ-greedy policy. We train the LSM
initialized with 10 different random seeds and obtain median
accumulated reward as shown in Figure 3B. Note that the
maximum possible accumulated reward per gameplay is 200
since each gameplay lasts at most 200 time-steps. Increase in
median accumulated reward over epochs indicates that the
LSM learnt to balance the cartpole using the dynamically
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FIGURE 2 | Metrics for guiding hyperparameter tuning: (A) Eigenvalue spectrum of the recurrent-liquid connectivity matrix for an LSM containing 500 liquid neurons.

The LSM is initialized with synaptic weights listed in Table 1 based on hyperparameter C=4. All eigenvalues in the spectrum lie within a unit circle. (B) Eigenvalue

spectrum of the recurrent-liquid connectivity matrix initialized with synaptic weights βE→E = 0.4, βE→I = 0.1, and βI→E = 0.1. Many eigenvalues in the spectrum are

outside the unit circle. (C) Development of membrane potentials from 10 randomly picked excitatory neurons in the liquid initialized with synaptic weights listed in

Table 1 based on hyperparameter C = 4. Random representation from the cartpole-balancing problem is used as the input.

evolving high-dimensional liquid states. The ability of the liquid
to provide rich high-dimensional input representations can
be attributed to the careful initialization of the connectivity
matrices andweights (explained in subsection 2.1), which ensures
balance between the excitatory and inhibitory currents to the
liquid neurons and preserves fading memory of past liquid
activity. However, the median accumulated reward after 100
training epochs saturates around 125 and does not reach the
maximum value of 200. We hypothesize that the game score
saturation comes from the quantized representation of the
environment state, and demonstrate in the following experiment
with Pacman that the LSM can learn optimally given a better state
representation. Finally, in order to emphasize the importance
of LSM initialization, we also show the median accumulated
reward per training epoch for training in which the LSM is
initialized to have few synaptic connections. Figure 3C indicates
that the median accumulated reward is around 90 when the LSM
initialization is suboptimal.

To visualize the learnt action-value function guiding action
selection, we compare Q-values produced by the LSM during

evaluation in three different scenarios depicted in Figure 3D.
Note that each Q-value represents how good is the corresponding
action for a given environment state. In scenario 1 (see
Figure 3D-1) that corresponds to the beginning of the gameplay
wherein the pole is almost balanced, the value of both the actions
are identical. This implies that either action (moving the cart
left or right) will lead to a similar outcome. In scenario 2 (see
Figure 3D-2) wherein the pole is unbalanced to the left side, the
difference between the predicted Q values increases. Specifically,
the Q value for applying a unit force on the right side of the cart
is higher, which causes the cart to move to the left. Pushing the
cart to the left in turn causes the pole to swing back right toward
the balanced position. Similarly, in scenario 3 (see Figure 3D-3)
wherein the pole is unbalanced to the right side, the Q value
is higher for applying a unit force on the left side of the cart,
which causes the cart to move right and enables the pole to swing
left toward the balanced position. This visually demonstrates the
ability of the LSM (agent) to successfully balance the pole by
pushing the cart appropriately to the left or right based on the
learnt Q values.
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3.3. Learning to Balance a Cartpole
Without Complete State Information
In this sub-section, we demonstrate the capability of the LSM
to learn without complete state information, thereby validating
its ability to perform temporal integration across different RL
game steps enabled by the sparse random recurrent connections.
Specifically, we modify the previous cartpole-balancing task such
that the agent only receives the cart position and angle of the
pole, designated by tuple (χ ,ϕ), as an input while the velocity
information is ignored. The objective is to determine if the
decayingmemory of the past cart position and pole angle retained
by the liquid, as a result of the recurrent-liquid connectivity,
enables the LSM to make better decisions without the velocity
information. We clip (χ ,ϕ) to be within the range specified
by (±2.5,±0.28) similar to the previous experiment; however,
each real-valued state input is mapped to only 1 input neuron
whose firing rate is proportional to the normalized state value.
A positive state input causes the corresponding neuron to fire
unit positive spikes. On the other hand, if the state input is
negative, the input neuron fires unit negative spikes at a rate
proportional to the absolute value of the input as described in
Sengupta et al. (2019). We initialize the input-to-liquid weights

from a uniform distribution between −0.4 and 0.4 to achieve
balanced input excitation in the presence of both positive and
negative spikes. Other connection weights are initialized from a
uniform distribution as shown in Table 4.

We model the agent using an LSM with 150 liquid neurons
followed by a fully-connected layer with 32 hidden neurons
and a final output layer with two neurons, which is similar
to the architecture used for the previous cartpole-balancing
experiment. Additional feedback connections between excitatory
neurons that have a large delay of 20 ms are introduced to

TABLE 4 | Synaptic weight initialization parameters for learning to balance

cartpole without complete state information.

Connection type Weight

RECURRENT-LIQUID CONNECTIONS

E→E with 1 ms delay [0, 0.4]

E→E with 20 ms delay [0, 0.4]

E→I [0, 0.4]

I→E [0, 0.4]

I→I [0, 0.01]

FIGURE 3 | (A) Illustration of the cartpole-balancing task wherein the agent has to balance a pole attached to a wheeled cart that moves freely on a rail of certain

length. (B) The median accumulated reward per epoch provided by the LSM trained across 10 different random seeds for the cartpole-balancing task. Shaded region

in the plot represents the 25-th to 75-th percentile of the accumulated reward over multiple random seeds. (C) The median accumulated reward per epoch from

cartpole training across 10 different random seeds in which the LSM is initialized to have sparser connectivity between the liquid neurons compared to that used for

the experiment in (B). (D) Visualization of the learnt Q (action-value) function for the cartpole-balancing task at three different game-steps designated as 1, 2, and 3.

Angle of the pole is written on the left side of each figure. Negative angle represents an unbalanced pole to the left and positive angle represents an unbalanced pole

to the right. Black arrow corresponds to a unit force on the left or right side of the cart depending on which Q value is larger.
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achieve long-term temporal integration over RL time-steps. In
this experiment, we also reduced the LSM simulation time-steps
to 20 ms from 100 ms used in the previous experiment to
precisely validate the long-term temporal integration capability
of the liquid. The LSM is trained for a total of 5× 106 time-steps,
which is sufficiently long to guarantee no further improvement
in performance. Without complete state information, the LSM
achieves best median accumulated reward of 70.93 over the
last 10 epochs as illustrated in Figure 4, which is lower than
that (125) attained with complete state information. However,
the median accumulated reward of 70.93 achieved by the LSM
based on incomplete state information is still higher than that
(38.23) provided by the LSM without recurrent connections
as shown in Figure 4. This indicates that the sparse recurrent
connections provide useful information about the past input

FIGURE 4 | (A) The median accumulated reward per epoch obtained from

cartpole training with five different random seeds using an LSM with sparse

random recurrent connections. (B) The median accumulated reward per

epoch obtained from cartpole training across the same five different random

seeds using an LSM without any recurrent connections. Shaded region in the

plot represents the 25-th to 75-th percentile of the accumulated reward over

multiple random seeds.

since information about the cart velocity and angular velocity
of the pole can be derived based on the current and past cart
position and pole angle. We observe that LSM initialized based
on some random seeds provide significantly better learning than
others due to inherent stochasticity in the model, but we report
the results based on the reward statistics obtained using runs
from 5 different random seeds.

3.4. Learning to Play Pacman
In order to comprehensively validate the efficacy of the high-
dimensional environment representations provided by the liquid,
we train the LSM to play a game of Pacman (DeNero et al., 2010).
The objective of the game is to control Pacman (yellow in color)
to capture all the foods (represented by small white dots) in a grid
without being eaten by the ghosts as illustrated in Figure 5. The
ghosts always hunt the Pacman; however, cherry (represented
by large white dots) make the ghosts temporarily scared of the
Pacman and run away. The game environment returns unit
reward whenever Pacman consumes food, cherry, or the scared
ghost (white in color). The game environment also returns a
unit reward and restarts when all foods are captured. We use
the location of Pacman, food, cherry, ghost and scared ghost as
the environment state representation. The location of each object
is encoded as a two-dimensional binary array whose dimension
matches with that of the Pacman grid as shown in Figure 5. The
binary intermediate representations of all the objects are then
concatenated and flattened into a single vector to be fed to the
input layer of the LSM.

The LSM configurations and game settings used for Pacman
experiments are summarized in Table 5, where each game setting
has different degree of complexity with regards to the Pacman
grid size and the number of foods, ghosts, and cherries. In the
first experiment, we use a 7× 7 grid with three foods for Pacman
to capture and a single ghost to prevent it from achieving its
objective. Thus, the maximum possible accumulated reward at
the end of a successful game is 4. Figure 6A shows that the

FIGURE 5 | Illustration of a snapshot from the Pacman game that is translated into 5 two-dimensional binary representations corresponding to the location of

Pacman, foods, cherries, ghosts, and scared ghosts. The binary intermediate representations are then flattened and concatenated to obtain the environment state

representation.
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median accumulated reward gradually increases with the number
of training epochs and converges closer to the maximum possible
reward, thereby validating the capability of the liquid to provide
useful high-dimensional representation of the environment state
necessary for efficient training of the readout weights using the
presented methodology. Interestingly, in the second experiment
using a larger 7 × 17 grid, we find that the median reward
converges to 12, which is greater than the number of foods
available in the grid. This indicates that the LSM does not only
learn to capture all the foods; in addition, it also learns to capture
the cherry and the scared ghosts, leading to further increase the
accumulated reward since consuming the scared ghost results in a
unit immediate reward. In the final experiment, we train the LSM
to control Pacman in 17× 19 grid with sparsely dispersed foods.
We find that larger grid requires more exploration and training

TABLE 5 | LSM configuration and game settings for different Pacman

experiments reported in this work.

Grid

size

Ghost Food Cherry Training

steps

Liquid

neurons

Hidden

neurons

7×7 1 3 0 5× 105 500 128

7×17 2 6 2 5× 105 2,000 512

17×19 1 6 0 3× 106 3,000 512

steps for the agent to perform well and achieve the maximum
possible reward, resulting in a learning curve that is less steep
compared to that obtained for smaller grid sizes in the earlier
experiments as shown in Figure 6C.

Finally, we plot the average of Q-values produced by the LSM
as the Pacman navigates the grid to visualize the correspondence
between the learnt Q-values and the environment state. As
discussed in subsection 2.2, each Q-value produced by the LSM
provides a measure of how good is a particular action for a
give environment state. The Q-value averaged over the set of
all possible actions (known as the state-value function) thus
indicates the value of being in a certain state. Figure 6D illustrates
the state-value function while playing the Pacman game in
a 7×17 grid. The predicted state-value starts at a relatively
high level because the foods are abundant in the grid and the
ghosts are far away from the Pacman (see Figure 6D-1). The
state-value gradually decreases as the Pacman navigates through
the grid and gets closer to the ghosts. The predicted state-
value then shoots up after the Pacman consumes cherry and
makes the ghosts temporarily consumable (see Figure 6D-2),
leading to potential additional reward. The predicted state-value
drops after the ghosts are reborn (see Figure 6D-3). Finally,
we observe a slight increase in the state-value toward the end
of the game when the Pacman is closer to the last food after
it consumes a cherry (see Figure 6D). It is interesting to note

FIGURE 6 | Median accumulated reward per epoch obtained by training and evaluating the LSM on three different game settings: (A) grid size 7× 7, (B) grid size

7× 17, and (C) grid size 17× 19. LSM is initialized and trained with 7 different initial random seeds. Shaded region represents the 25-th to 75-th percentile of the

accumulated reward over multiple seeds. (D) The plot on the left shows the predicted state-value function for 80 continuous Pacman game steps. The four snapshots

from the Pacman game shown on the right correspond to game steps designated as 1, 2, 3, and 4, respectively, in the state-value plot.
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that although the scenario in Figure 6D-4 is similar to that
in Figure 6D-2, the state-value is smaller since the expected
accumulated reward at this step is at most 3 assuming that
the Pacman can capture both the scared ghost and the last
food. On the other hand, in the environment state shown
in Figure 6D-2, the expected accumulated reward is >3 since
4 foods and 2 scared ghosts are available for the Pacman
to capture.

3.5. Learning to Play Atari Games
Finally, we train the LSM using the presented methodology to
play Atari games (Brockman et al., 2016), which are widely
used to benchmark deep reinforcement learning networks. We
arbitrarily select 4 games for evaluation, namely, Boxing, Gopher,
Freeway, and Krull. We use the RAM of the Atari machine,
which stores 128 bytes of information about an Atari game, as
a representation of the environment (Brockman et al., 2016).
During training, we modified the reward structure of the game
by clipping all positive immediate rewards to+1 and all negative
immediate rewards to−1. However, we do not clip the immediate
reward during testing and measure the actual accumulated
reward following Mnih et al. (2015). For all selected Atari games,
we model the agent using an LSM containing 500 liquid neurons
and 128 hidden neurons. Number of output neurons varies for
each game as the number of possible actions is different. The
maximum Poisson firing rate for the input neurons is set to
100Hz and each input is presented for 100ms. The LSM is trained
for 5× 103 steps.

Figure 7 illustrates that the LSM successfully learnt to play
the Atari games without any prior knowledge of the rules,

FIGURE 7 | Median accumulated reward per epoch obtained by training and

evaluating the LSM on 4 selected Atari games: (A) Boxing, (B) Freeway,

(C) Gopher, and (D) Krull. For each game, LSM is initialized and trained with

five different initial random seeds. Shaded region represents the 25-th to 75-th

percentile of the accumulated reward over multiple seeds.

leading to gradually increasing accumulated reward with the
number of training epochs.We compare themedian accumulated
reward provided by the LSM to the average accumulated
reward obtained from playing with random actions for 1 ×

105 steps. Note that the median accumulated reward used for
comparison is the highest reward achieved during the evaluation
phase over the last 10 training epochs. Table 6 shows that
the median accumulated reward offered by the LSM is higher
than the average accumulated reward obtained with random
actions for all the four Atari games, which demonstrates the
capability of the LSM to learn successful strategies in complex
RL tasks. In fact, the median accumulated reward on Boxing
and Krull reach the same level as human players reported
in Mnih et al. (2015). However, we observe that the median
accumulated reward on Freeway and Gopher are much lower
than that of the human players. In order to identify the cause
of poor learning, we trained all selected games using a deep
learning network consisting of two convolutional and two fully-
connected layers, and compared the median accumulated reward
with that provided by the LSM. The architecture of the deep
learning network used for different games is listed in Table 7.
Table 6 shows that the deep learning network trained with end-
to-end error backpropagation using the Q-learning algorithm
achieves better than human-level performance on Boxing and
Krull while yielding lower rewards on Freeway and Gopher.
Hence, the inferior performance of the LSM on Freeway and
Gopher can be attributed to the nature (or complexity) of
the respective games. However, the deep learning network
yields superior performance compared to that provided by the
LSM on all selected Atari games. We believe that the gap in
the LSM performance compared to that obtained using the
deep learning network stems from the inability of a randomly
initialized LSM to extract complex input representations and
game strategies. On the computation perspective, training a deep
learning network incurs higher cost due to additional trainable
parameters and the need for carrying out end-to-end error
backpropagation. Simpler models like LSMs with lower training
complexity offer a possible alternative for efficient training
and inference in edge devices, such as self-flying drones that

TABLE 6 | Median accumulated reward for each game is chosen from the highest

median accumulated reward over the last 10 training epochs across five different

initial random seeds.

Game Learning

with LSM

Random

actions

Human

player

Learning with deep

network

Boxing 20.2 0.8 4.3 68.2

Freeway 19.8 0.0 29.6 21.6

Gopher 611.1 279.3 2,321 1,443

Krull 3,686 1,590 2,395 4,672

Columns 1 and 4 report median accumulated rewards from learning with LSM and deep

network, respectively. Average accumulated reward in column 2 is obtained from playing

with random actions for 1×105 steps, which is a sufficiently large number for the average

accumulated reward to be stable. Accumulated reward from human players reported in

Mnih et al. (2015) is listed in column 3 for every game.
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TABLE 7 | Convolutional deep learning network architecture used in Atari

experiments.

Layer Output features Kernal size Stride Padding

One-dimensional

convolutional

4 4 2 1

One-dimensional

convolutional

16 4 2 1

Fully connected 128










3 for Freeway

Fully connected 8 for Gopher

18 for Boxing and Krull

operate under computational resource constraints and limited
power budget.

4. DISCUSSION

LSM, an important class of biologically plausible recurrent
SNNs, has thus far been primarily demonstrated for pattern
(speech/image) recognition (Bellec et al., 2018; Srinivasan et al.,
2018), gesture recognition (Chrol-Cannon and Jin, 2015; Panda
and Srinivasa, 2018), and sequence generation tasks (Nicola
and Clopath, 2017; Panda and Roy, 2017; Bellec et al., 2019)
using standard datasets. To the best of our knowledge, our work
is the first demonstration of LSMs, trained using Q-learning
based methodology, for complex RL tasks like Pacman and
Atari games commonly used to evaluate deep reinforcement
learning networks. The benefits of the proposed LSM-based
RL framework over the state-of-the-art deep learning models
are 2-fold. First, LSM entails fewer trainable parameters as
a result of using fixed input-to-liquid and recurrent-liquid
synaptic connections. However, this requires careful initialization
of the respective matrices for efficient training of the liquid-
to-readout weights as experimentally validated in section 3.
We note that the performance of LSMs could be further
improved by training the recurrent weights using localized
Spike Timing Dependent Plasticity (STDP) based learning rules
(Bi and Poo, 1998; Song et al., 2000; Diehl and Cook, 2015)
as demonstrated in Panda and Roy (2017) or biologically
inspired variants of backpropagation-through-time (Bellec et al.,
2018, 2019). Second, LSMs can be efficiently implemented
on event-driven neuromorphic hardware like IBM TrueNorth
(Merolla et al., 2014) or Intel Loihi (Davies et al., 2018),
leading to potentially much improved energy efficiency while
achieving comparable performance to deep learning models
on the chosen benchmark tasks. Note that the readout layer
in the presented LSM needs to be implemented outside the
neuromorphic fabric since they are composed of artificial rate-
based neurons that are typically not supported in neuromorphic
hardware realizations. Alternatively, readout layer composed
of spiking neurons could be used that can be trained using

spike-based error backpropagation algorithms (Lee et al., 2016,
2018; Panda and Roy, 2016; Jin et al., 2018; Wu et al., 2018;
Bellec et al., 2019). Future works could also explore STDP-
based reinforcement learning rules (Pfister et al., 2006; Farries
and Fairhall, 2007; Florian, 2007; Legenstein et al., 2008)
to render the training algorithm amenable for neuromorphic
hardware implementations.

5. CONCLUSION

Liquid State Machine (LSM) is a bio-inspired recurrent spiking
neural network composed of an input layer sparsely connected to
a randomly interlinked liquid of spiking neurons for the real-time
processing of spatio-temporal inputs. In this work, we proposed
LSMs, trained using Q-learning based methodology, for solving
complex Reinforcement Learning (RL) tasks like playing Pacman
and Atari that have been hitherto benchmarked for deep
reinforcement learning networks. We presented initialization
strategies for the fixed input-to-liquid and recurrent-liquid
connectivity matrices and weights to enable the liquid to produce
useful high-dimensional representation of the environment
based on the current and past input states necessary for efficient
training of the liquid-to-readout weights. We demonstrated
the significance of the sparse recurrent connections, which
enables the liquid to retain decaying memory of the past input
representations and perform temporal integration across RL
time-steps, by training it using partial input state information
that yielded higher accumulated reward than that provided by
a liquid without recurrent connections. Our experiments on the
Pacman game showed that the LSM learns the optimal strategies
for different game settings and grid sizes. Our analyses on a subset
of Atari games indicated that the LSM achieves comparable score
to that reported for human players in existing works.
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