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Abstract Mice emit ultrasonic vocalizations (USVs) that communicate socially relevant

information. To detect and classify these USVs, here we describe VocalMat. VocalMat is a software

that uses image-processing and differential geometry approaches to detect USVs in audio files,

eliminating the need for user-defined parameters. VocalMat also uses computational vision and

machine learning methods to classify USVs into distinct categories. In a data set of >4000 USVs

emitted by mice, VocalMat detected over 98% of manually labeled USVs and accurately classified

» 86% of the USVs out of 11 USV categories. We then used dimensionality reduction tools to

analyze the probability distribution of USV classification among different experimental groups,

providing a robust method to quantify and qualify the vocal repertoire of mice. Thus, VocalMat

makes it possible to perform automated, accurate, and quantitative analysis of USVs without the

need for user inputs, opening the opportunity for detailed and high-throughput analysis of this

behavior.

Introduction
In animals, vocal communication transmits information about the state of the caller and influences

the state of the listener. This information can be relevant for the identification of individuals or

groups (Hoffmann et al., 2012); status within the group (e.g., dominance, submission, fear, or

aggression; Nyby et al., 1976); next likely behavior (e.g., approach, flee, play, or mount;

Neunuebel et al., 2015); environmental conditions (e.g., presence of predators, location of food;

Slobodchikoff et al., 2012); and facilitation of mother–offspring interactions (D’Amato et al.,

2005).

Mice emit ultrasonic vocalizations (USVs) in a frequency range ( »30–110 kHz) above the human

hearing range ( » 2–20 kHz) (Zippelius and Schleidt, 1956; Noirot, 1972; Nyby et al., 1976;

Nyby et al., 1977b; Nyby et al., 1977a; Sales and Smith, 1978; Branchi et al., 2001; Hahn and

Lavooy, 2005; Ehret, 2005; Branchi et al., 2006). These USVs are organized in phrases or bouts

composed of sequences of syllables. The syllables are defined as continuous units of sound not inter-

rupted by a period of silence. The syllables are composed of one or more notes and are separated

by salient pauses and occur as part of sequences (Arriaga et al., 2012; Holy and Guo, 2005). These

transitions across syllables do not occur randomly (Holy and Guo, 2005; Castellucci et al., 2018),
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and the changes in the sequences, prevalence, and acoustic structure of syllables match current

behavior (Chabout et al., 2015), genetic strain (Van Segbroeck et al., 2017; Scattoni et al., 2011),

and developmental stage (Grimsley et al., 2011). USVs are commonly emitted by mouse pups when

separated from the home nest (Scattoni et al., 2008) and are modulated during development

(Grimsley et al., 2011; Elwood and Keeling, 1982; Castellucci et al., 2018). In the adult mouse,

USVs are emitted in both positive and negative contexts (Arriaga and Jarvis, 2013). Thus, under-

standing the complex structure of USVs will advance vocal and social communications research.

In the past years, tools for USV analysis advanced significantly (Coffey et al., 2019;

Van Segbroeck et al., 2017; Neunuebel et al., 2015; Chabout et al., 2015; Arriaga et al., 2012;

Tachibana et al., 2020). For the detection of USVs in audio recordings, the majority of the software

tools available depend on user inputs (Neunuebel et al., 2015; Van Segbroeck et al., 2017;

Tachibana et al., 2020) or present limited detection capabilities (Arriaga et al., 2012;

Chabout et al., 2015). An exception is DeepSqueak (Coffey et al., 2019), which uses a neural net-

work-based method for the detection of USVs from audio recordings. For the classification of USVs,

different tools use supervised classification (Arriaga et al., 2012; Chabout et al., 2015;

Coffey et al., 2019) and unsupervised clustering (Burkett et al., 2015; Van Segbroeck et al., 2017;

Coffey et al., 2019) methods to assign USVs to different groups. However, no consensus exists on

the biological function of the various USV subclasses, making it challenging to develop a tool for all

purposes. Additionally, the accuracy of classification methods depends on the accurate detection of

vocalizations in audio recordings, which remains a challenge in experimental conditions that include

noise and low intensity vocalization. To overcome these limitations, our goal was to create a tool

that does not need user inputs to detect and classify USVs with high accuracy and that extracts the

spectral features of the USVs with precision.

Here, we describe the development of VocalMat, a software for robust and automated detection

and classification of mouse USVs from audio recordings. VocalMat uses image processing and differ-

ential geometry approaches to detect USVs in spectrograms, eliminating the need for parameter

tuning. VocalMat shows high accuracy in detecting USVs in manually validated audio recordings, pre-

serving quantitative measures of their spectral features. This high accuracy allows the use of multiple

tools for USV classification. In the current version of VocalMat, we embedded a supervised classifica-

tion method that uses computer vision techniques and machine learning to label each USV into 11

classes. Thus, VocalMat is a highly accurate software to detect and classify mouse USVs in an auto-

mated and flexible manner.

Results

Detection of mouse USVs using imaging processing
VocalMat uses multiple steps to analyze USVs in audio files (see Figure 1A for the general workflow).

Initially, the audio recordings are converted into high-resolution spectrograms through a short-time

Fourier transformation (see Materials and methods). The resulting spectrogram consists of a matrix,

wherein each element corresponds to an intensity value (power spectrum represented in decibels)

for each time-frequency component. The spectrogram is then analyzed as a gray-scale image, where

high-intensity values are represented by brighter pixels and low-intensity values by darker pixels

(Figure 1B). The gray-scale image undergoes contrast enhancement and adaptive thresholding for

binarization (see Materials and methods). The segmented objects are further refined via morphologi-

cal operations (Figure 1C and Figure 1—figure supplement 1), thus resulting in a list of segmented

blobs (hereafter referred to as USV candidates) with their corresponding spectral features

(Figure 1D). Finally, because experimental observations demonstrate a minimum of 10 ms of interval

between two successive and distinct USVs, we combined into a single USV candidate blobs that

were separated for less than 10 ms. The final list of USV candidates contain real USVs and noise (i.e.,

detected particles that are not part of any USV).

To reduce the amount of data stored for each USV, the features extracted from detected candi-

dates are represented by a mean frequency and intensity every 0.5 ms. The means are calculated for

all the individual candidates, including the ones overlapping in time, hence preserving relevant fea-

tures such as duration, frequency, intensity, and harmonic components (Figure 1D).
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Harmonic components are also referred to as nonlinear components or composite

(Scattoni et al., 2008). Here, we did not consider harmonic components as a different USV, but

rather as an extra feature of a USV (Grimsley et al., 2011). Therefore, each detected USV candidate

may or may not present a harmonic component. A harmonic component was considered as a contin-

uous sound (i.e., no discontinuities in time and/or frequency) overlapping in time with the main com-

ponent of the USV (similar to Grimsley et al., 2011).

Besides the list of USV candidates and their spectral features, the segmentation process also

exports image files of 227 � 227 pixels, in which the USV candidate is centralized in windows of 220

ms (see Figure 1B). This temporal length is defined as twice the maximum duration of USVs

observed in mice (Grimsley et al., 2011), thus preventing cropping.

Eliminating noise using a contrast filter
Initially, we used VocalMat to detect USVs in a set of 64 audio recordings. These recordings were

composed of experiments using mice of different strains, age, sex, and in a variety of experimental

conditions (e.g., recorded inside a chamber that produce high levels of environmental noise) to

increase the variability of the data set. In this data set, VocalMat initially detected a pool of 59,781

USV candidates, which includes real USVs and noise (Figure 2A and Materials and methods). Visual

inspection of the data set revealed that artifacts generated during the segmentation process domi-

nated the pool of USV candidates (see Figure 2B for examples of real USVs and noise in the pool of

USV candidates). This type of artifact is characterized by its low intensity compared to real USVs. To

remove these artifacts from the pool of USV candidates, we applied a Local Median Filter step, a

method to estimate the minimum expected contrast between a USV and its background for each

audio recording. This contrast is calculated based on the median intensity of the pixels in each

detected USV candidate k (referred to as bXk), and the median intensity of the background pixels in a

bounding box containing the candidate k (referred to as cWk) (Figure 2C). Thus, the contrast is

defined as the ratio Ck ¼ bXk=cWk.

To validate this method, a group of investigators trained to detect USVs manually inspected the

spectrograms and labeled the USVs in a subset of seven randomly selected audio recordings (hereaf-

ter referred to as test data set and described in Table 3). Each USV was labeled by at least two
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Figure 1. Overview of the VocalMat pipeline for ultrasonic vocalization (USV) detection and analysis. (A) Workflow of the main steps used by VocalMat,

from audio acquisition to data analysis. (B) Illustration of a segment of spectrogram. The time-frequency plan is depicted as a gray scale image wherein

the pixel values correspond to intensity in decibels. (C) Example of segmented USV after contrast enhancement, adaptive thresholding, and

morphological operations (see Figure 1—figure supplement 1 for further details of the segmentation process). (D) Illustration of some of the spectral

information obtained from the segmentation. Information on intensity is kept for each time-frequency point along the segmented USV candidate.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Image processing pipeline for segmentation of ultrasonic vocalizations (USVs) in spectrograms.
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investigators and when discrepancy occurred, both individuals reviewed their annotation under the

supervision of a third investigator. (This data set contains fully validated audio recordings with manu-

ally inspected USVs and is publicly available to facilitate the development and the test of perfor-

mance of new tools.)

In the test data set, a total of 7741 USV candidates were detected using the segmentation pro-

cess described above, representing 1.75 times more USV candidates than the manual counting

(4441 USVs). Importantly, the segmentation step included 4428 real USVs within the pool of USV

candidates, therefore missing 13 USVs compared to the ground-truth.

The distribution of Ck for real USVs and for noise showed that the peak at high Ck (i.e., low con-

trast) in the distribution was dominated by USV candidates corresponding to noise (Figure 2D,E).

The Ck of real USVs (mean = 0.642, SEM = 1.841 �10
�3, median = 0.640, 95% CI [0.638, 0.646];

N = 4,428) was significantly lower than the Ck of noise (mean = 0.922, SEM = 9.605 �10
�4,

median = 0.936, 95% CI [0.921, 0.924]; n = 3,336; p < 10�15, D = 0.894, Kolmogorov–Smirnov test;
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Figure 2. Noise elimination process for ultrasonic vocalization (USV) candidates. (A) In a set of 64 audio files, VocalMat identified 59,781 USV

candidates. (B) Examples of USVs among the pool of candidates that were manually labeled as either noise or real USVs. The score (upper-right corner)

indicates the calculated contrast Ck for the candidate. (C) Example of contrast calculation ( Ck ) for a given USV candidate k. The red dots indicate the

points detected as part of the USV candidate (Xk ) and the dashed-white rectangle indicates its evaluated neighborhood (Wk ). (D) Distribution of the Ck

for the USV candidates in the test data set. (E) Each USV candidate was manually labeled as real USV or noise. The distribution of Ck for the real USVs

(cyan) compared to the distribution for all the USV candidates (red) in the test data set. The blue line indicates the cumulative distribution function

(CDF) of Ck for all the USV candidates. The inflection point of the CDF curve is indicated by the arrow. (F) Example of a segment of spectrogram with

three USVs. The analysis of this segment without the ’Local Median Filter’ results in an elevated number of false positives (noise detected as USV). ’Red’

and ’cyan’ ticks denote the time stamp of the identified USV candidates without and with the ’Local Median Filter’, respectively.
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Figure 2D,E). This unbalanced bimodal distribution causes an inflection point on the cumulative dis-

tribution function (CDF) of Ck that matches the ratio observed for segmentation artifacts

(Figure 2E). Therefore, based on these results, we used the automatically calculated inflection point,

which is specific to each audio recording, as a threshold to effectively eliminate a substantial amount

of noise from the pool of USV candidates (details on this calculation are provided in Materials and

methods).

In the test data set, 5171 out of 7741 USV candidates survived the Local Median Filter step. This

number includes real USVs (4421; out of the 4428 real USVs after automatic segmentation) and

remaining noises of lower Ck. Thus, this step eliminated seven real USVs of the pool of candidates,

all of which presented a high Ck (mean = 0.942, SEM = 5.871 �10
�3, median = 0.943, 95% CI [0.927,

0.956]; n = 7). The remaining noises among the pool of candidates had high intensity and were com-

monly originated from external sources (Figure 2B,E).

To illustrate the performance of the Local Median Filter step, Figure 2F shows a segment of a

spectrogram with 11 USV candidates detected and three real USVs. After applying the Local Median

Filter step, only the real USVs remained in the pool of USV candidates. Thus, the Local Median Filter

step effectively eliminates segmentation noise from the pool of USV candidates, which provides two

main advantages: first, it decreases the number of USV candidates used in downstream analysis and,

second, it reduces the number of false positives.

In an ideal experimental setting with complete sound insulation and without the generation of

noise by the movement of the animal, no further step is required to detect USVs using VocalMat.

Since this is difficult in experimental conditions, we applied a second step in the noise elimination

process.

Using convolutional neural network for noise identification
To identify USVs in the pool of USV candidates that passed the Local Median Filter step, we trained

a convolutional neural network (CNN) to classify each USV candidate into one of 11 USV categories

or noise (see Figure 4A for examples of the different USV categories). We used a data set containing

10,871 samples manually labeled as one of the 11 USV categories and 2083 samples manually

labeled as noise (see Materials and methods). The output of the CNN is the probability of each USV

candidate belonging to one of the 12 categories. The most likely category defines the label of the

USV candidate (Figure 3A).

To evaluate the performance of VocalMat in distinguishing between USVs and noise, we used the

5171 USV candidates in the test data set that passed the Local Median Filter step (Materials and

methods). We compared the probability for the label Noise (PðNoiseÞ) to the sum over the probabili-

ties of the 11 USV categories (PðUSVÞ). The rate of detected USVs labeled as such (true positive or

sensitivity) was 99.04 ± 0.31% (mean ± SEM; median = 99.37; 95% CI [98.27, 99.80]). The rate of

detected USVs labeled as noise (false negative) was 0.96 ± 0.31% (mean ± SEM; median = 0.61; 95%

CI [0.20, 1.73]). The rate of detected noise labeled as noise (true negative rate or specificity) was

94.40 ± 1.37% (mean ± SEM; median = 95.60; 95% CI [91.60, 97.74]). The rate of detected noise

labeled as USV (false positive) was 5.60 ± 1.37% (mean ± SEM; median = 4.40; 95% CI [2.26, 8.94]),

representing a total of 42 wrongly detected USVs out of the 5171 USV candidates in the test

data set. Altogether, the accuracy in identifying USVs was 98.63 ± 0.20% (mean ± SEM;

median = 98.55; 95% CI [98.14, 99.11]) for manually validated audio recordings. (The performance

of VocalMat in identifying USVs in individual audio recordings is provided in Table 1.) Thus, Vocal-

Mat presents high accuracy to detect USVs from audio recordings and to remove noise (Figure 3B),

failing to identify approximately 1 in 75 USVs.

We further calculated other measures of performance (Figure 3C). For USVs wrongly labeled as

noise (false negative), the probability of being a USV was 0.15 ± 0.03 (mean ± SEM; median = 0.04;

95% CI [0.09, 0.22]; Figure 3C), while for noise labeled as USV (false positive), the probability of

being USV was 0.85 ± 0.03 (mean ± SEM; median = 0.86; 95% CI [0.80, 0.91]; Figure 3C). These

probabilities contrast with cases in which VocalMat correctly identified USV and noise. USVs that

were correctly identified had a probability of being USV of 0.99 ± 3.78 � 10�4 (mean ± SEM;

median = 1.00; 95% CI [0.99, 0.99]; Figure 3C). Noise that was correctly identified had a probability

of being noise of 0.99 ± 1.78 � 10�3 (mean ± SEM; median = 1.00; 95% CI [0.98, 0.99]; Figure 3C).

These results indicate that the probability assigned by VocalMat flags likely errors in classification.
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These flagged candidates (i.e., with assigned low probability) can be manually inspected to correct

the misclassification and retrain VocalMat.

Performance of VocalMat compared to other tools
Next, we tested the performance of VocalMat in comparison to other software tools. We first

searched for validated data sets that were used by previous tools. We obtained 15 audio recordings

made publicly available by USVSEG (Tachibana et al., 2020) and one audio recording made publicly

available by DeepSqueak (Coffey et al., 2019).

The USVSEG data set consisted of five audio recordings of 5–6 days old mouse pups containing

409 USVs and 10 audio recordings of adult mice containing 2401 USVs. The accuracy of VocalMat in

identifying USVs in the USVSEG data set was 98.62 ± 0.53 (mean ± SEM, median = 99.61, 95% CI
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Figure 3. VocalMat ultrasonic vocalization (USV) classification using a convolutional neural network. (A) Illustration

of the AlexNet architecture post end-to-end training on our training data set. The last three layers of the network

were replaced in order to perform a 12-categories (11 USV types plus noise) classification task. The output of the

CNN is a probability distribution over the labels for each input image. (B) Linear regression between the number

of USVs manually detected versus the number reported by VocalMat for the audio files in our test data set (see

Figure 4—figure supplement 1 for individual confusion matrices). (C) Distribution of probabilities PðUSVÞ for the

true positive (green), false positive (red), false negative (cyan), and true negative (magenta). Ticks represent

individual USV candidates.

Table 1. Summary of performance of VocalMat in detecting ultrasonic vocalizations (USVs) in the test data set.

Audio file True positive False negative True negative False positive Accuracy (%)

1 316 1 58 2 99.20

2 985 1 105 15 98.55

3 696 12 73 5 97.84

4 862 13 51 4 98.17

5 44 1 216 3 98.48

6 696 2 87 4 99.24

7 787 5 122 5 98.91
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[97.49, 99.76]), which is comparable to the approximately 98% accuracy reported by USVSEG

(Tachibana et al., 2020). However, VocalMat detected approximately 6% more USVs than USVSEG.

More precisely, in the audio recordings from pups, VocalMat presented a true positive rate of 97.53

± 1.04% (mean ± SEM, median = 98.41, 95% CI [94.65, 100.4]), detecting 15 more USVs than USV-

SEG. In the audio recordings from adult mice, VocalMat presented a true positive rate of 99.05 ±

0.37% (mean ± SEM, median = 99.39, 95% CI [98.20, 99.90]), detecting 152 more USVs than

USVSEG.

Similar to VocalMat, DeepSqueak uses deep learning to detect USVs (Coffey et al., 2019). To

directly compare DeepSqueak and VocalMat, we evaluated the performance of both tools on the

single audio recording provided by DeepSqueak (Coffey et al., 2019). First, we manually inspected

the spectrogram and labeled each of the 762 USVs identified. Of these 762 USVs, VocalMat

detected 747 with a true positive rate of 91.73%, whereas DeepSqueak detected 608, with a true

positive rate of 77.95%. Thus, when tested in data sets from different laboratories, VocalMat shows

better sensitivity for USV detection than DeepSqueak and USVSEG.

As described above, the test data set was fully curated by manual identification of USVs. To take

advantage of this large data set, we further compared the performance of VocalMat with four tools

(see Materials and methods). In addition to USVSEG (Tachibana et al., 2020) and DeepSqueak

(Coffey et al., 2019), we also tested the performance of Ax (Neunuebel et al., 2015) and MUPET

(Van Segbroeck et al., 2017). (Table 2 summarizes the performance of these tools in our test set.)

Ax requires a series of manual inputs for their detection algorithm (Neunuebel et al., 2015).

Combining the best configurations tested (Supplementary file 1), the percentage of missed USVs

was 4.99 ± 1.34% (mean ± SEM; median = 4.07, 95% CI [1.73, 8.26]) and the false discovery rate was

37.67 ± 5.59% (mean ± SEM; median = 42.56, 95% CI [23.99, 51.34]). In comparison to Ax, MUPET

has a lower number of parameters to be set by the user. Combining the best configurations tested

(Supplementary file 2), the percentage of missed USVs was 33.74 ± 3.81% (mean ± SEM;

median = 33.13, 95% CI [24.41, 43.07]) and the false discovery rate was 38.78 ± 6.56% (mean ± SEM;

median = 32.97, 95% CI [22.72, 54.84]). Similar to Ax and MUPET, USVSEG requires setting parame-

ters manually for USV detection (Supplementary file 3). USVSEG displayed the best performance

out of the manually configured tools, presenting a missed vocalization rate of 6.53 ± 2.56% (mean ±

SEM; median = 4.26, 95% CI [0.26, 12.80]) and a false discovery rate of 7.58 ± 4.31% (mean ± SEM;

median = 3.27, 95% CI [�2.97, 18.15]). It is important to emphasize that the tests with Ax, MUPET,

and USVSEG did not explore all possible combinations of parameters and, therefore, other settings

could potentially optimize the performance of these tools to detect USVs in the test data set.

Finally, we compared the performance of DeepSqueak with VocalMat (Supplementary file 4).

The best values obtained were a rate of missed USVs of 27.13 ± 3.78% (mean ± SEM; median = 24.22,

95% CI [17.86, 36.40]) and a false discovery rate of 7.61 ± 2.35% (mean ± SEM; median = 4.73, 95%

CI [1.84, 13.39]). The manual inspection of the USVs detected by DeepSqueak revealed cases of

more than one USV being counted as a single USV, which could lead to an inflated number of

missed USVs. Since we did not train DeepSqueak with our data set, it is possible that DeepSqueak

could present much better performance than what we report here when custom-trained. Thus, using

both external data sets from different laboratories and our own fully validated test data set, Vocal-

Mat presents high performance in detecting USVs in audio recordings without the need for any

parameter tuning or custom training of the CNN.

Table 2. Summary of detection performance.

Tool Missed ultrasonic vocalizations (USVs) rate (%) False discovery rate (%)

Ax 4.99 37.67

MUPET 33.74 38.78

USVSEG 6.53 7.58

DeepSqueak 27.13 7.61

VocalMat 1.64 0.05
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Detection of harmonic components
To measure the performance of VocalMat for the detection of harmonic components, we compared

the output of VocalMat with the test data set. The rate of true positives was 93.32 ± 1.96% (mean ±

SEM; median = 92.18; 95% CI [88.54, 98.11]). The rate of USVs wrongly labeled as having a harmonic

component (false positive) was 5.39 ± 1.18% (mean ± SEM; median = 5.17; 95% CI [2.50, 8.27]). The

rate of missed harmonic components (false negative) was 6.68 ± 1.96% (mean ± SEM; median = 7.82,

95% CI [1.89, 11.46]). All combined, the error rate in identifying harmonic components was 12.19 ±

3.44% (mean ± SEM; median = 11.92, 95% CI [3.34, 21.03]). Thus, VocalMat presents satisfactory

performance in detecting the harmonic components of the USVs.

Classification of USVs in categories
To evaluate the performance of VocalMat in classifying the detected USVs in distinct categories, we

compared the most likely label assigned by the CNN to the labels assigned by the investigators (i.e.,
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Figure 4. VocalMat performance for ultrasonic vocalization (USV) classification. (A) Example of the 11 categories of

USVs plus noise that VocalMat used to classify the USV candidates. (B) Confusion matrix illustrating VocalMat’s

performance in multiclass classification (see also Supplementary file 5 and Figure 4—figure supplement 1 for

individual confusion matrices). (C) Comparison of classification performance for labels assigned based on the most

likely label (Top-one) versus the two most likely labels (Top-two) (see Supplementary file 6). Symbols represent

median ±95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Confusion matrix illustrating VocalMat’s performance in multiclass classification per
recording file.
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ground-truth). The accuracy of the VocalMat classifier module is 86% (Figure 4B,C, Figure 4—figure

supplement 1, and Supplementary file 5). VocalMat shows lower accuracy to detect rare USV types

(e.g., reverse chevron; Figure 4A–C) or USVs with multiple components (e.g., multiple steps and

two steps; Figure 4A–C). When we expanded our analysis to consider the two most likely labels

assigned by the CNN, the accuracy of VocalMat was 94% (Figure 4E and Supplementary file 6).

These observations suggest a possible overlap between the definition of categories. Based on these

analyses, we reasoned that the distribution of probabilities for each of the 11 categories of USV

types calculated by the CNN could provide a more fluid classification method to analyze the vocal

repertoire of mice.

Using VocalMat to analyze and visualize the vocal repertoire of mice
To illustrate the use of the probability distribution of USV classification by VocalMat, we used data

previously published by our group with over 45,000 USVs (Zimmer et al., 2019). In this published

data set, two groups of 10 days old mice were studied. At this age, mice vocalize in the ultrasonic

range when separated from the nest. Two groups of mice were analyzed (control versus treatment)

during two contiguous time points (baseline versus test). The difference between the two groups

was that in the treatment group, a specific population of neurons in the brain was activated to

induce higher rates of USV emission (Zimmer et al., 2019).

To visualize the probability distribution of USV classification by VocalMat, we used Diffusion Maps

(see Materials and methods). Diffusion Maps is a dimensionality reduction algorithm that allows the

projection of the probability distribution into a Euclidean space (Coifman et al., 2005). We com-

pared all four experimental conditions against each other and visually verified that the manifolds rep-

resenting the USV repertoires showed a degree of similarity (Figure 5A).

To quantify the similarities (or differences) between the manifolds, we calculated the pairwise dis-

tance between the centroids of USV types within each manifold (Figure 5B). The pairwise distance

matrices provide a metric for the manifold structure, allowing a direct comparison between the vocal

repertoire of different groups. When we compared the similarity between the pairwise distance

matrices in the four experimental conditions, we observed that the treatment group in the test con-

dition presented a robust structural change in the vocal repertoire, which can be effectively repre-

sented by a matrix correlation (Figure 5C). The degree of similarity between the experimental

conditions can also be visualized by comparing the structure of the manifolds. Since the manifolds

are calculated separately, their coordinate system needs to be aligned to allow visual comparisons,

which we achieve using the Kernel Alignment algorithm (Figure 5—figure supplement 1 and Mate-

rials and methods) (Tuia and Camps-Valls, 2016; Wang and Mahadevan, 2011). The quality of the

manifold alignment is assessed by Cohen’s coefficient and overall projection accuracy into a joint

space (Figure 5—figure supplement 1), showing the lowest scores for the treatment group in the

test condition when compared to the other experimental conditions. Hence, these later analyses

illustrate the use of the probability distribution for vocal classification and the power of dimensional-

ity reduction techniques – such as Diffusion Maps – to provide a detailed analysis of the vocal reper-

toire of mice.

Discussion
The premise of ethology is that to understand how the brain works, it is first important to quantify

behavior (Pereira et al., 2020; Tinbergen, 1963). The vocal behavior of animals is especially tracta-

ble for precise quantification as sound waves can be recorded with extreme resolution in multiple

dimensions (time, frequency, intensity). Methods for quantifying vocal behavior, however, are often

dependent on labor-intense customization and parameter tuning. Here, we reported the develop-

ment of VocalMat, a software to automatically detect and classify mouse USVs with high sensitivity.

VocalMat eliminates noise from the pool of USV candidates, preserves the main statistical compo-

nents for the detected USVs, and identifies harmonic components. Additionally, VocalMat uses

machine learning to classify USV candidates into 11 different USV categories. VocalMat is open-

source, and it is compatible with high-performance computing clusters that use the Slurm job sched-

uler, allowing parallel and high-throughput analysis.

VocalMat adds to the repertoire of tools developed to study mouse USVs (Van Segbroeck et al.,

2017; Burkett et al., 2015; Chabout et al., 2015; Arriaga et al., 2012; Holy and Guo, 2005;
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Coffey et al., 2019; Tachibana et al., 2020). These other tools depend on several parameters

defined by the user, so it is difficult to compare their performance to VocalMat effectively. Neverthe-

less, our tests show that VocalMat outperforms other tools in both sensitivity and accuracy in detect-

ing USVs. More importantly, VocalMat uses differential geometry to automate the task of USV

detection that in combination with CNNs maximizes sensitivity without sacrificing accuracy without

the need for any customization or parameter tuning.

Moreover, VocalMat provides a flexible classification method by treating USV classification as a

problem of probability distribution across different USV categories. This approach allows the analy-

sis, visualization, and comparison of the repertoires of USVs of different mice and experimental

groups using dimensionality reduction algorithms.

VocalMat uses a pattern recognition approach, based on CNNs, which learns directly from the

training set without the need for feature extraction via segmentation processes (Schmidhuber, 2015;

Krizhevsky et al., 2012). This characteristic provides the possibility for adaptability of VocalMat to
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Figure 5. Vocal repertoire visualization using Diffusion Maps. (A) Illustration of the embedding of the ultrasonic

vocalizations (USVs) for each experimental condition. The probability distribution of all the USVs in each

experimental condition is embedded in a Euclidean space given by the eigenvectors computed through Diffusion

Maps. Colors identify the different USV types. (B) Pairwise distance matrix between the centroids of USV types

within each manifold obtained for the four experimental conditions. (C) Comparison between the pairwise

distance matrices in the four experimental conditions by Pearson’s correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Alignment of the manifolds between pairs of experimental conditions.
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different experimental settings, including its use with other species and vocal types. Because Vocal-

Mat preserves the features of the detected USVs – including temporal dynamics, frequency, inten-

sity, and morphology – it also provides a rich data set to quantify vocal behavior.

In summary, VocalMat is a tool to detect and classify mouse USVs with outstanding sensitivity and

accuracy while keeping all the relevant spectral features, including harmonic components. With

VocalMat, USVs can be quantified with precision, thus creating the opportunity for a more detailed

understanding of this behavior.

Materials and methods

Animals
All mice used to record the emission of USV were 5–15 days old from both sexes. Dams used were

2–6 months old and were bred in our laboratory. To maximize variability in the audio recordings, dif-

ferent mouse strains were used (all from The Jackson Laboratories): C57Bl6/J, NZO/HlLtJ, 129S1/

SvImJ, NOD/ShiLtJ, and PWK/PhJ. Each mouse was only recorded once. All mice were kept in tem-

perature- and humidity-controlled rooms, in a 12/12 hr light/dark cycle, with lights on from 7:00 AM

to 7:00 PM. Food and water were provided ad libitum. All procedures were approved by the IACUC

at Yale University School of Medicine.

Audio acquisition
Mice were recorded in different conditions to maximize the levels of environmental noise and other

experimental factors in the audio recordings. Mice were placed in a small box made of Plexiglas (15

� 15 � 10 cm). This small box was placed inside an open field (40 � 40 � 40 cm) with the walls cov-

ered by anechoic material (2’ Wedge Acoustic Foam, Auralex) or inside an environmental chamber

(CAB-8, Sable System International). For the audio recordings from inside the environmental cham-

ber, the heater was either turned on at 35˚C or turned off, as summarized in Table 3. By turning the

heater on, we increased the levels of ambient noise to train and test VocalMat in a wide range of

conditions. Sound was recorded using the recorder module UltraSoundGate 416H and a condenser

ultrasound microphone CM16/CMPA (Avisoft Bioacoustics, Berlin, Germany) placed 15 cm above

the animal. The experiments were recorded with a sampling rate of 250 kHz. The recording system

had a flat response for sounds within frequencies between 20 kHz and 140 kHz, preventing distor-

tions for the frequency of interest. The recordings were made by using Avisoft RECORDER 4.2 (ver-

sion 4.2.16; Avisoft Bioacoustics) in a Laptop with an Intel i5 2.4 GHz processor and 4 GB of RAM.

Using these settings, 10 min of audio recording generated files of approximately 200 MB.

Spectral power
USVs were segmented on the audio files by analysis of their spectrograms. Aiming the configuration

that would grant us the best time-frequency resolution, the spectrograms were calculated through a

short-time Fourier transformation (STFT, MATLAB’s spectrogram function) using the following

parameters: 1024 sampling points to calculate the discrete Fourier transform (NFFT = 1024), Ham-

ming window with length 256, and half-overlapping with adjacent windows to reduce artifacts at the

Table 3. Summary of experimental conditions covered in the test data set.

Age Microphone gain Location Heating

P9 Maximum Environmental chamber No

P9 Maximum Environmental chamber No

P9 Maximum Environmental chamber No

P10 Intermediary Open field No

P10 Intermediary Open field No

P10 Maximum Environmental chamber Yes

P10 Maximum Environmental chamber Yes
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boundary. The mathematical expression that gives us the short-time Fourier Transform is shown

below:

STFTfx½n�gðm;!Þ ¼ Xðn;!Þ ¼
X¥

n¼�¥

¼ x½n�w½n�m�e�j!n (1)

where the original signal x½n� is divided in chunks by the windowing function w½m�. The Fourier Trans-

formation of the chunks result in a matrix with magnitude and phase for each time-frequency point.

The spectral power density, represented in the logarithmic unit decibels, is then given by

Pðm;!Þ ¼ 10 log
X¥

m¼�¥

x½m�w½n�m�e�j!n

�����

�����

2

(2)

We used a high pass filter (45 kHz) to eliminate sources of noise in the audible range and to

reduce the amount of data stored (Grimsley et al., 2011).

Normalization and contrast enhancement
Since USVs present higher intensity than the background and to avoid setting a fixed threshold for

USV segmentation, we used contrast adjustment to highlight putative USV candidates and to reduce

the variability across audio files. Contrast adjustment was obtained according to the following re-

scaling equation:

J ¼

j10logðPÞj
maxð10logðPÞÞ�Lin

Hin�Lin

 !g

(3)

where Hin and Lin are the highest and the lowest intensity values of the adjusted image, respectively,

and P is the power spectrum for each time-frequency point (pixel of the spectrogram). The parame-

ter g describes the shape of the mapping function between the original and the corrected image,

such that g<1 results in darker pixels and g>1 in brighter pixels. We used a linear mapping for our

application (g¼ 1, MATLAB’s imadjust function).

Adaptive thresholding and morphological operations
Due to non-stationary background noise and dynamic changes in the intensity of USVs within and

between the audio files, we use adaptive thresholding methods to binarize the spectrograms. The

threshold is computed for each pixel using the local mean intensity around the neighborhood of the

pixel (Bradley and Roth, 2007). This method preserves hard contrast lines and ignores soft gradient

changes. The integral image consists of a matrix Iðx; yÞ that stores the sum of all pixel intensities

f ðx; yÞ to the left and above the pixel ðx; yÞ. The computation is given by the following equation:

Iðx;yÞ ¼ f ðx;yÞþ Iðx� 1;yÞþ Iðx;y� 1Þ� Iðx� 1;y� 1Þ (4)

Therefore, the sum of the pixel values for any rectangle defined by a lower right corner (x2;y2)

and upper left corner (x1;y1) is given as:

Xx2

x¼x1

Xy2

y¼y1

f ðx;yÞ ¼ Iðx2;y2Þ� Iðx2;y1� 1Þþ Iðx1 � 1;y2Þ� Iðx1 � 1;y1� 1Þ (5)

Then, the method computes the average of an s� s window of pixels centered around each pixel.

The average is calculated considering neighboring pixels on all sides for each pixel. If the value of

the current pixel intensity is t percent less than this average, then it is set to black; otherwise it is set

to white, as shown in the following equation:

Cðx;yÞ ¼
1

ðy2 � y1Þðx2 � x1Þ
:
Xx2

x¼x1

Xy2

y¼y1

f ðx;yÞ (6)

where Cðx;yÞ represents the average around the pixel ðx;yÞ.
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The binarized image is then constructed such as that pixels ðx; yÞ with intensity t percent lower

than Cðx; yÞ are set to black (Bradley and Roth, 2007):

Bðx;yÞ ¼
0; if f(x,y) �(1-t)C(x,y)

1; otherwise

�
(7)

where t represents the sensitivity factor, and it was empirically chosen as t¼ 0:2 for our application.

The resulting binarized image consists of background pixels (intensity = 0) and putative vocal seg-

ments (contiguous areas with intensity = 1). The segments are then subjected to a sequence of mor-

phological operations: (i) opening (erosion followed by a dilation; MATLAB’s imopen) with a

rectangle 4 � 2 pixels as kernel; (ii) dilation with a line of length l = 4 and ff relative to the horizontal

axis as kernel (MATLAB’s imdilate); (iii) filtering out candidates (i.e., dense set of white pixels)

with <60 pixels (correspondent to approximately 2 ms syllable); and (iv) dilation with a line of length

l = 4 and ff 0˚, making the USV candidates proportional to their original shape.

Local median filter
The image processing pipeline used for segmentation can create artifacts or noise that were not

originally present in the spectrogram, especially in the binarization step. These noises that occur due

to the segmentation process are not associated with an event in the recording (a real USV or exter-

nal noise) and are part of the pool of USV candidates. To determine if a USV candidate is relevant

for further analysis, we used a contrast filter – Local Median Filter – to compare the median intensity

of the pixels in the USV candidate k (referred to as bXk) to the intensity of the pixels in a bounding

box that encompasses the USV candidate (referred to as cWk). The Local Median Filter then deter-

mines if a USV candidate k is discarded based on the cumulative distribution of intensity ratio over

all the USV candidates detected in the audio file bX= bW. The bounding box that defines the window

Wk is a rectangle with its four vertices defined as a function of the frequencies (Fk) for USV candidate

k and its time stamps (Tk). Thus, the bounding box is defined as follows:

Wk ¼

ðmaxðFkÞþ 2:5ÞkHz;

ðminðFkÞ� 2:5ÞkHz;

ðmaxðTkÞþ 0:1Þs;

ðminðTkÞ� 0:1Þs

8
>>><

>>>:
(8)

As seen in (8), a 200 ms interval is analyzed around the USV candidate. Such a wide interval may

present more than one USV in Wk. However, the amount of pixels in Xk represents only 2.43 ± 0.10%

(mean ± SEM; median = 1.27, 95% CI [2.22 , 2.63]; n = 59,781 images analyzed) of the total number

of pixels contained in the window Wk. Given this proportion between the number of pixels in Xk and

Wk, the median of the intensity distribution of the whole window (cWk) tends to converge to the

median intensity of the background.

We used the ratio Ck ¼ bXk=cWk to exclude USV candidates that correspond to segmentation noise.

We first calculated the CDF of Ck over all the USV candidates in an audio file (now referred to as �).

To find the inflection point in �, a second-order polynomial fit for every set of three consecutive

points was used to obtain local parametric equations (�ðtÞ ¼ ðxðtÞ; yðtÞÞ) describing the segments of

�. Since the calculation of the inflection point is done numerically, the number of points chosen for

this calculation should be such that we can have as many points of curvature as possible while pre-

serving information of local curvature. Then, after a screening for the best number of points, � was

down-sampled to 35 equally spaced points and the inflection point was calculated. Using the local

parametric equations, we calculated the tangent and normal vectors on each of the 35 points. Using

these vectors, we estimated the changing rate of the tangent toward the normal at each point,

which is the curvature k (O’neill, 2006) and can be calculated as follows:

k¼
det ð�0;�

00

Þ

�03
(9)

or by using the parametric equations:
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k¼
x0y

00
� x

00
y0

ðx2þ y2Þ3=2
(10)

The inflection point is then determined as the point with maximum curvature of the CDF curve,

and adopted as threshold t. This threshold is calculated individually for each audio file since it can

vary according to the microphone gain and the distance of the microphone from the sound source.

In audio files with a very low number of USVs, the point of maximum curvature of the CDF curve was

not detected, and no t was estimated. In these cases, a default threshold t ¼ 0:92 was adopted as a

conservative threshold, since no audio file presented inflection point as high as 0.92 in our training

set. Only the USV candidates satisfying (Equation 11) are kept for further analysis.

Xk 2 �j bXk � t cWk

n o

(11)

where c represents the set of USV candidates that survived the Local Median Filter. Of note, the

intensity of each pixel is calculated in decibels, which is given in negative units due to the low power

spectrum.

CNNs for USV classification
We use CNNs to eliminate external noise from the pool of USV candidates and classify USVs in dis-

tinct types (see below). We use a transfer learning approach with an AlexNet (Krizhevsky et al.,

2012) model pre-trained on the ImageNet data set, and perform end-to-end training using our USVs

data set. Briefly, the last three layers of the network were replaced in order to handle a 12-catego-

ries classification task for our data set (11 USV types + noise).

The outputs of the segmentation process with detected USV candidates were centralized in win-

dows of 220 ms. These windows were twice the maximum duration of USVs observed in mice

(Grimsley et al., 2011) and were framed in individual 227 � 227 pixels images. Each image was

then manually labeled by an experienced experimenter as noise (including acoustic or segmentation

noise) or one of the USV categories. The labeled data set was used to train the CNN to classify the

USV candidates.

The images in our data set were manually labeled based on definitions for USV classes found in

previous studies (adapted from Scattoni et al., 2008 and Grimsley et al., 2011). The USV classes

are described below:

Complex
One-note syllables with two or more directional changes in frequency >6 kHz. A total of 350 images

were used for training.

Step up
Two-notes syllables in which the second element was �6 kHz higher from the preceding element

and there was no more than 10 ms between steps. A total of 1814 images were used for training.

Step down
Two-notes syllables in which the second element was �6 kHz lower from the preceding element and

there was no more than 10 ms between steps. A total of 389 images were used for training.

Two steps
Three-notes syllables, in which the second element was �6 kHz or more different from the first, the

third element was �6 kHz or more different from the second and there was no more than 10 ms

between elements. A total of 701 images were used for training.
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Multiple steps
Four-notes syllables or more, in which each element was �6 kHz or more different from the previous

one and there was no more than 10 ms between elements. A total of 74 images were used for

training.

Up-frequency modulation
Upwardly frequency modulated with a frequency change �6 kHz. A total of 1191 images were used

for training.

Down-frequency modulation
Downwardly frequency modulated with a frequency change �6 kHz. A total of 1775 images were

used for training.

Flat
Constant frequency syllables with modulation �5 kHz and duration �12 ms. A total of 1134 images

were used for training.

Short
Constant frequency syllables with modulation �5 kHz and duration �12 ms. A total of 1713 images

were used for training.

Chevron
Shaped like an inverted U in which the peak frequency was �6 kHz than the starting and ending fre-

quencies. A total of 1594 images were used for training.

Reverse chevron
Shaped like an U in which the peak frequency was �6 kHz than the starting and ending frequencies.

A total of 136 images were used for training.

Noise
Any sort of mechanical or segmentation noise detected during the segmentation process as a USV

candidate. A total of 2083 images were used for training.

In order to purposely create some overlap between the categories, USVs with segments oscillat-

ing between 5 and 6 kHz were not defined or used for training. The assumption is that the CNN

should find its transition method between two overlapping categories.

Our training data set consisted of 12,954 images, wherein 2083 were labeled as noise. This

data set correspond to mice of different strains (C57Bl6/J, NZO/HlLtJ, 129S1/SvImJ, NOD/ShiLtJ,

and PWK/PhJ) and ages (postnatal day (P)5, P10, and P15) from both sexes.

The CNN was trained using stochastic gradient descent with momentum, a batch size of M = 128

images, and with a maximum number of epochs set to 100. Through a screening process for the set

of hyper-parameters that would maximize the average performance of the network, the chosen

learning rate was a = 10�4, momentum of 0.9, and weight decay l = 10�4. To validate the training

performance, each data set was randomly split into two disjoint sets; training set (90%) and a valida-

tion set (10%). The training and validation sets were independently shuffled at every epoch during

training. The training was set to stop when the classification accuracy on the validation set did not

improve for three consecutive epochs. When running in a GeForce GTX 980 TI, the final validation

accuracy was 95.28% after 17 min of training.

Testing detection performance
To evaluate the performance of VocalMat, neonatal mice were recorded for 10 min upon social isola-

tion in different conditions (Table 3) to increase the variability of the data. To cover most of the

recording setups, we included recordings with different microphone settings (maximum and interme-

diary gain), environments (open field or enclosed environmental chamber), and machinery noise

(heater on or off). The spectrograms were manually inspected for the occurrence of USVs. The
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starting time for the detected USVs was recorded. USVs automatically detected by VocalMat with a

start time matching manual annotation (±5 ms of tolerance) were considered correctly detected.

USVs manually detected with no correspondent USV given by VocalMat were considered false nega-

tive. The false negatives were originated from missed USVs or USVs that the software labeled as

noise. Finally, USVs registered by VocalMat without a correspondent in the manual annotation were

considered false positive. In order to compare VocalMat to the other tools available, the same met-

rics were applied to the output of Ax (Neunuebel et al., 2015), MUPET (Van Segbroeck et al.,

2017), USVSEG (Tachibana et al., 2020), and DeepSqueak (Coffey et al., 2019).

Diffusion maps for USV class distribution visualization
One of the main characteristics of VocalMat is attributing to USVs a distribution of probabilities over

all the possible vocal classes. Since we classify USV candidates in 11 categories, to have access to

the distribution of probabilities we would need to visualize the data in 11 dimensions. Here, as an

example of analytical methods that can be applied to the output data from VocalMat, we used Diffu-

sion Maps (Coifman et al., 2005) to reduce the dimensionality of the data to three dimensions. Dif-

fusion Maps allow remapping of the data into a Euclidean space, which ultimately results in

preserving the distance between USVs based on the similarity of their probability distribution. A

Gaussian kernel function defines the connectivity between two data points in a Euclidean manifold.

Such kernel provides the similarity value between two data points i and j as follows:

Wij ¼ exp ð
�xi� xj

2

2s2
Þ (12)

where Wij represents the similarity value between observations i and j. The parameter s corresponds

to the width of the kernel, and it is set based on the average Euclidean distance observed between

observations of the same label (i.e., the intra-class distances). For our application, s¼ 0:5 was set

based on the distance distribution observed in our data.

The similarity matrix is then turned into a probability matrix by normalizing the rows:

pðjjiÞ ¼
WijP
kWik

¼D�1W ¼Mij (13)

where
P

kWik ¼Dii has the row sum of W along its diagonal. The matrix M gives the probability of

going from node i to any other node using a random walk. In other words, the probability that the

USV i is close to another USV j given their probability distribution.

Once we take one step in such Euclidean space, the probabilities are updated, since the set of

likely nodes for the next move are now different. This idea of moving from node to node while

updating the probabilities results in a ’diffused map’.

The process of moving from a USV i to j after t steps in this Euclidean space is computed as

follows:

pðt; jjiÞ ¼ eTi M
tej (14)

For our application, we use t¼ 2.

Next, we find the coordinate functions to embed the data in a lower-dimensional space. The

eigenvectors of M give such a result. Because M is not symmetric, the eigendecomposition is com-

puted through a SVD decomposition (Golub and Kahan, 1965):

Ms :¼D1=2MD�1=2 ¼D1=2D�1WD�1=2 ¼D�1=2WD�1=2 (15)

and since D�1=2 and W are symmetric, Ms is also symmetric and allows us to calculate its eigenvectors

and eigenvalues. For the sake of notation, consider:

Ms ¼WLWT¼)M ¼D�1=2WLWTD1=2 (16)

Considering 	¼D�1=2W (right eigenvectors of M) and F¼D1=2W (left eigenvectors of M), we ver-

ify that FT ¼	�1, therefore they are mutually orthogonal and M and Ms are similar matrices. Thus,

M ¼	L	�1 ¼	L	T (17)
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and the diffusion component shown in Equation (14) is incorporated as the power of the diagonal

matrix composed by the eigenvalues of M:

Mt ¼	LtFT (18)

We use the scaled right eigenvectors by their corresponding eigenvalues ðG¼	LÞ as the coordi-

nate functions. Since the first column of G is constant across all the observations, we use the second

to fourth coordinates in our work.

Vocal repertoire analysis via manifold alignment
The result of the embedding by Diffusion Maps allows 3D visualization of the probability distribution

for the USVs. The direct comparison of different 3D maps is challenging to obtain as the manifolds

depend on data distribution, which contains high variability in experimental samples. To address this

problem and compare the topology of different manifolds, we used a manifold alignment method

for heterogeneous domain adaptation (Wang and Mahadevan, 2011; Tuia and Camps-Valls,

2016). Using this method, two different domains are mapped to a new latent space, where samples

with the same label are matched while preserving the topology of each domain.

We used the probability distribution for the USVs for each data set to build the manifolds

(Wang and Mahadevan, 2011). Each manifold was represented as a Laplacian matrix constructed

from a graph that defines the connectivity between the samples in the manifold. The Laplacian

matrix is then defined as L ¼ Wij � Dii (see Equation (12)).

The final goal is to remap all the domains to a new shared space such that samples with similar

labels become closer in this new space. In contrast, samples with different labels are pushed away

while preserving the geometry of the manifolds. It leads to the necessity of three different graph

Laplacians: Ls (relative to the similarity matrix and responsible for connecting the samples with the

same label), Ld (dissimilarity matrix and responsible for connecting the samples with different labels),

and L (similarity matrix responsible for preserving the topology of each domain). Wang and Maha-

devan, 2011 show that the embedding that minimizes the joint function defined by the similarity

and dissimilarity matrices is given by the eigenvectors corresponding to the smallest nonzero eigen-

values of the following eigendecomposition:

ZðLþ�LsÞZ
TV ¼ lZLdZ

TV (19)

where Z is a block diagonal containing the data matrices Xi 2R
di�ni , (where ni samples and di dimen-

sions are constants for the ith domain) from the two domains. Thus, Z ¼ diagðX1;X2Þ. The matrix V

contains the eigenvectors organized in rows for each domain, V ¼ ½v1;v2�
T . The � is weight parame-

ter, which goes from preserving both topology and instance matching equally (�¼ 1) or focusing

more on topology preservation (�>1) (Tuia and Camps-Valls, 2016).

From Equation (19), we then extract Nf ¼
PD

i¼1
di features, which is the sum of the dimensions of

the individual domains (see details in Wang and Mahadevan, 2011; Tuia and Camps-Valls, 2016),

and the projection of the data to a joint space F defined by the mapping matrix V will be given by

PF ðXiÞ ¼ vTi Xi (20)

To measure the performance of the alignment, linear discriminant analysis (LDA) (McLa-

chlan, 2004) is used to show the ability to project the domains in a joint space. The LDA is trained

on half of the samples in order to predict the other half. The error of the alignment is given as the

percentage of samples that would be misclassified when projected into the new space (overall accu-

racy) (Tuia and Camps-Valls, 2016).

Another measurement to quantify the quality of the alignment is by calculating the agreement

between the projections, which is given by Cohen’s Kappa coefficient (k) (Agresti, 2018). In this

method, the labels are treated as categorical, and the coefficient compares the agreement with that

expected if ratings were independent. Thus, disagreements for labels that are close are treated the

same as labels that are far apart.

Cohen’s coefficient is defined as:
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k¼
p0� pe

1� pe
(21)

where p0 is the observed agreement (p0 ¼
Pk

i¼1
pii for a confusion matrix p¼ n=N, in which n is the

raw confusion matrix and N is the total number of samples, composed by the projection of the k

labels), which corresponds to the accuracy; pe is the probability of agreement by chance

(pe ¼
1

N2

Pk
i¼1

pi:p:i, where pi: is the number of times an entity of label i was labeled as any category

and p:i is the number of times any category was predicted as label i). Therefore, a k¼ 0 represents

no agreement (or total misalignment of manifolds) and k¼ 1 is a total agreement.

In this context, the overall accuracy (OA) is given by OA ¼
Pk

i¼1
pii=N, where N is the total number

of samples.

The asymptotic variance for k is given as follows:

ŝ2ðk̂Þ ¼
1

N
½
�1ð1� �1Þ

ð1� �2Þ
2
þ
2�1ð1� �1Þð2�1�2 � �3Þ

ð1� �2Þ
3

þ
ð1� �1Þ

2ð�4 � 4�2
2
Þ

ð1� �2Þ
4

� (22)

where

�1 ¼
1

n

Xk

i¼1

nii (23)

(which turns into accuracy once it is divided by N),

�2 ¼
1

n2

Xk

i¼1

ni:n:i (24)

�3 ¼
1

n2

Xk

i¼1

niiðni: þ n:iÞ (25)

�4 ¼
1

n3

Xk

i¼1

Xk

j¼1

nijðnj:þ n:iÞ
2 (26)

From Equation (22) we can calculate the Z-score, which can express the significance of our k:

Z ¼
k

ŝ2ðk̂Þ
(27)

And the 95% confidence interval as

CI ¼ ½kþ 1:96
ffiffiffiffiffiffiffiffiffiffi
ŝ2ðk̂

p
Þ;k� 1:96

ffiffiffiffiffiffiffiffiffiffi
ŝ2ðk̂

p
Þ� (28)

The third form of error measurement is the evaluation of the projection per USV class from each

domain remapped into the new space. This method is based on the fact that this new space is the

one in which the cost function expressed by Equation (19) is minimized and, therefore, the projec-

tion from each domain into the new space has its projection error for each class. As a consequence,

the mean of the projection error from each domain to the new space for each class can be used as a

quantitative measurement of misalignment of projected domains.

Quantification and statistical analysis
MATLAB (2019a or above) and Prism 8.0 were used to analyze data and plot figures. All figures

were created using Adobe Illustrator CS6/CC. Data were first subjected to a normality test using the

D’Agostino and Pearson normality test or the Shapiro–Wilk normality test. When homogeneity was

assumed, a parametric analysis of variance test was used. The Student’s t-test was used to compare

two groups. The Mann–Whitney U-test was used to determine the significance between groups.

Two sample Kolmogorov–Smirnov test was used to calculate the statistical differences between the

contrast of USVs and noise. Statistical data are provided in text and in the figures. In the text, values
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are provided as mean ± SEM. p<0.05 was considered statistically significant. The 95% confidence

intervals are reported in reference to the mean. The true positive rate is computed as the ratio

between true positive (hit) and real positive cases. The true negative rate is the ratio between true

negative (correct rejection) and real negative cases. The false negative rate is the ratio between false

negative (type I error) and real positives cases. The false positive (type II error) is the ratio between

false positive and real negative cases. The false discovery rate is the ratio between false positive and

the sum of false positives and real positives.

Code and data availability
VocalMat is available on GitHub (https://github.com/ahof1704/VocalMat.git; Fonseca, 2021; copy

archived at swh:1:rev:9384fabfc1fbd9bc0ef8ca460b652e72c5b6819f) for academic use. Our data set

of vocalization images is available on OSF (https://osf.io/bk2uj/).
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