
NeuroImage: Clinical 34 (2022) 103023

Available online 25 April 2022
2213-1582/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A resting-state fMRI pattern of spinocerebellar ataxia type 3 and 
comparison with 18F-FDG PET 

Harm J. van der Horn a,*, Sanne K. Meles a, Jelmer G. Kok a, Victor M. Vergara b, Shile Qi b, 
Vince D. Calhoun b, Jelle R. Dalenberg a, Jeroen C.W. Siero c,f, Remco J. Renken d, 
Jeroen J. de Vries a, Jacoba M. Spikman e, Hubertus P.H. Kremer a, Bauke M. De Jong a 

a Department of Neurology, University Medical Center Groningen, University of Groningen, the Netherlands 
b Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA 
c Department of Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands 
d Department of Neuroscience, University Medical Center Groningen, University of Groningen, the Netherlands 
e Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands 
f Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
BOLD 
Ataxia 
ICA 
Brain glucose metabolism 
Disease-related pattern 

A B S T R A C T   

Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of 
SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this 
disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed 
SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and sub
sequent regression with bootstrap resampling, we identified a pattern of differences between patients and 
healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior 
striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously 
published 18F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was 
found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were 
found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the 18F-FDG 
PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively rep
resenting changes in default network activity. This rs-fMRI identification of additional regions is proposed to 
reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, 
compared to the more static 18F-FDG PET methodology. Altogether, our findings shed new light on the neural 
substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as im
aging biomarker for future research and clinical use.   

1. Introduction 

Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative 
disease caused by a trinucleotide (CAG) repeat expansion in exon 10 of 
the ATXN3 gene on chromosome 14 (p32). Neuropathological studies in 
SCA3 have revealed variable neuronal loss in cerebellum, brainstem, 
thalamus, subthalamic nucleus, pallidum, and motor cortex (Rüb et al., 
2008, 2013; Seidel et al., 2012). The cerebellum is most severely 
affected, with ataxia as the presenting and most prominent feature, but 
patients may also develop pyramidal and extra-pyramidal signs, neu
ropathy, oculomotor dysfunction, and cognitive problems (Pilotto & 

Saxena, 2018; Ruano et al., 2014; Yap et al., 2021). More than direct 
effects of local pathology, clinical manifestations are likely to be a 
consequence of more widespread functional changes in cerebellar- 
thalamo-cerebral and striatal-cortical networks. In-vivo insights into 
brain networks involved in SCA3 can be provided with functional neu
roimaging combined with advanced computational algorithms. The 
main principle of functional neuro-imaging is that brain activity can be 
mapped by measuring energy metabolism or hemodynamics, (indi
rectly) reflecting the underlying cellular events. In the present study we 
employed Functional Magnetic Resonance Imaging (fMRI) to measure 
resting-state regional cerebral hemodynamics in order to identify SCA3- 
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related network impairment. Moreover, we compared these results with 
functional network changes recently identified with metabolic mea
surements in the same patient group (Meles et al., 2018), which provides 
insight in the overlap and possible differences that might be expected 
from the two methods of data acquisition. 

Local glucose metabolism and oxygen utilization are coupled with 
local brain activity, which implies that in vivo measurement of regional 
glucose consumption with 18F-2-fluoro-2-deoxy-D-glucose Positron 
Emission Tomography (18F-FDG PET) provides an index of regional 
neuronal activity (Reivich et al., 1979). Under physiological steady-state 
conditions, cerebral blood flow (CBF) is tightly coupled to the level of 
cerebral oxygen and glucose consumption (Sokoloff, 1977). Studies of 
brain metabolism with 18F-FDG PET are typically static and capture 
accumulation of the 18F-FDG tracer in brain tissue during the uptake and 
scanning periods of around 30 and 5 min, respectively. Brain regions 
with altered 18F-FDG uptake can be identified in patients as compared 
with controls using univariate models. Regions with decreased 18F-FDG 
uptake may reflect (i) impaired neuronal function due to localized pa
thology, but (ii) also neuronal dysfunction in unaffected tissue, 
secondarily caused by dysfunction of a distant region, if these two re
gions are organized in the same functional brain network (e.g., Reesink 
et al., 2018). 

Spatial covariance analysis of 18F-FDG PET data is designed to take 
into account the functional relationships between brain regions. In this, 
principal component analysis (PCA) can be used to reduce the large 
number of voxels for every subject to a limited number of orthogonal 
dimensions (eigenvectors) that explain the major sources of variance in 
the data. A disease-related pattern (or ‘network’) is identified among the 
eigenvectors that discriminate between controls and patients (Eidelberg, 
2009). Although spatial covariance analysis provides a better approxi
mation of network-level effects on brain metabolism than classic uni
variate approaches, spatial covariance patterns do not reflect true 
functional connectivity. 

During an increase of local brain activity, regional CBF exceeds ox
ygen extraction, resulting in a relative decrease in the oxygen extraction 
fraction (Iadecola & Nedergaard, 2007; Raichle et al., 2001). The sub
sequent increase of oxygenated hemoglobin can be detected with fMRI, 
a measurement which is coined is called the blood oxygenation level- 
dependent (BOLD) response (Logothetis et al., 2001; Ogawa et al., 
1990). BOLD fMRI provides a time-series of fluctuations in the BOLD 
signal for each voxel, which is a reflection of fluctuations in CBF caused 
by changes in neuronal activity. Synchronization of BOLD fluctuations 
across regions implies that these regions are functionally connected and 
participate in the same brain network. Loss of integrity (i.e., synchro
nization) of one of the participating regions will affect the entire 
network. With independent component analysis (ICA), functional con
nectivity networks can be identified. This method enables separation of 
a mixture of sources and noise into independent components (i.e., (parts 
of) brain networks) and thus is very suitable for detecting pathophysi
ological changes in specific brain networks (Calhoun et al., 2001). 

As regional CBF and glucose metabolism are both related to local 
neuronal activity, fMRI and 18F-FDG PET are expected to quantify sig
nals from a similar source. However, from the above it also follows that 
18F-FDG PET patterns reflect the spatial covariance relationships be
tween voxels across subjects, whereas fMRI-ICA also delineates re
lationships between voxels over time. As a consequence, certain regions 
may show altered temporal fluctuations, but normal FDG uptake in a 
static situation. Thus, BOLD fMRI potentially gives additional informa
tion concerning dynamical aspects of functional network changes. 

Until now, only two fMRI-studies have been conducted in SCA3, both 
of which made use of a motor activation paradigm (Duarte et al., 2016; 
Stefanescu et al., 2015; Wan et al., 2020). These studies have demon
strated changes in activation of the cerebellar cortex and nuclei, basal 
ganglia, thalamus and cerebral cortex. These regional changes were 
more widely distributed than regional atrophy. In the present fMRI 
study, we used the BOLD technique for scanning in resting state, which 

can be expected to yield valuable information about coherent time- 
variant aspects of spatially distributed brain function. So far, no 
resting-state fMRI studies on SCA3 have been published. 

In a previous study, we identified a disease-related cerebral meta
bolic pattern in 18F-FDG-PET scans of SCA3 patients and age-matched 
controls using PCA (Meles et al., 2018). This SCA3 related pattern 
(pSCA3-RP) was characterized by relative decreases in the cerebellum, 
brainstem, caudate nucleus and posterior parietal cortex, co-varying 
with relatively increased activity in several limbic regions and the so
matosensory cortex. An advantage of the PCA approach is that 18F-FDG 
PET brain pattern expression can be quantified in individual scans. The 
degree of pattern expression is denoted by a z-score. In our previous 
study, pSCA3-RP z-scores were significantly correlated with the severity 
of ataxia as measured by the Scale for Assessment and Rating of Ataxia 
(SARA). However, SARA scores did not correlate with 18F-FDG uptake in 
any single region, supporting the notion that the SCA3-RP represents 
network-level changes underlying ataxia in SCA3. 

Integrating fMRI and 18F-FDG PET may provide new and comple
mentary insights in the underlying network changes in SCA3. In this 
study, we aimed to investigate the changes in resting-state brain net
works in SCA3 using fMRI combined with ICA. Although the ICA 
approach has had limited applicability to quantify scans at an individual 
basis, an adapted ICA approach, analogous to the 18F-FDG PET PCA 
analysis, has been shown to enable identification of resting state fMRI 
networks and quantification of their activity in individual cases (Vo 
et al., 2017). Using this approach, we set out to identify independent 
components (ICs) that reflect the main neural changes underlying SCA3, 
and that could potentially be used to quantify disease-related changes on 
a scan-by-scan basis, analogous to the previously identified SCA3- 
related 18F-FDG PET pattern in the same dataset (Meles et al., 2018). 
We examined whether individual pattern scores on the resting state 
fMRI SCA3-related pattern (fSCA3-RP) are linked to (i) the 18F-FDG PET 
pattern scores, (ii) patterns of grey matter atrophy, and (iii) clinical 
measures, such as ataxia severity and cognitive functioning. 

2. Materials and methods 

2.1. Participants and clinical measures 

A group of 17 patients with SCA3 and a group of 16 age-, sex-, and 
education-matched healthy controls were included from a previous 
study (for details, see (Meles et al., 2018)). Onset age of SCA3 was 
estimated after a review of each patient’s medical chart, as the age at 
which the patient first reported symptoms to the treating neurologist 
(most often this included gait problems). For both groups, the severity of 
ataxia was assessed by an experienced neurologist (H.P.H.K., or J.J.d.V.) 
using the Scale for Assessment and Rating of Ataxia (SARA) (Schmitz- 
Hübsch et al., 2006). Anxiety and depression was measured using the 
hospital anxiety and depression scale (HADS) (Zigmond & Snaith, 
1983). Neuropsychological metrics included semantic and letter fluency 
tests to measure language and executive functioning, the Dutch version 
of the Rey Auditory Verbal Learning Test (RAVLT) to measure memory, 
and the Symbol Digit Modalities Test (SDMT) to measure mental pro
cessing speed (Rey, 1964; Smith, 2007). The selection of these tests was 
based on previous publications on cognitive functioning in SCA3 (Braga- 
Neto et al., 2012; Braga-Neto et al., 2014). Raw scores were used for 
statistical analyses. 

The study was approved by the Medical Ethics Committee of the 
University Medical Center Groningen, The Netherlands, and all subjects 
gave written informed consent (NL45036.042.13). All procedures were 
carried out in accordance with the Declaration of Helsinki. 

2.2. Image acquisition and preprocessing 

Fig. 1 depicts the analysis pipeline. The details on the acquisition 
parameters and fMRI preprocessing pipeline can be found in our 
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Fig. 1. Resting-state fMRI analysis pipeline. Preprocessed fMRI data was subject to a group independent component analysis (GICA). Euclidean Distance (L2) 
variability loadings (Ci,j) were computed, and Bootstrapped Feature Selection via Lasso Regression was applied. After selecting the most robust predictors using the 
frequency histogram, final model estimates were calculated using Bootstrapped Logistic Regression. During each bootstrap iteration (n of nBoot), the components 
(IC1 ⋯ nComps) of the final model were linearly combined in a new spatial map (consisting of IC19, 22, and 10 out of nComps). The fSCA3 related pattern was computed 
by taking the mean (spatial map) across all bootstrap iterations (nBoot = 5,000). Accordingly, subject scores were calculated by taking the mean of the linearly 
combined variability loadings (Ci,j) obtained during each iteration. 
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previously published fMRI-study performed by the Department of 
Neuroscience of the University Medical Center Groningen (Dalenberg 
et al., 2018). In brief, 300 resting-state (eyes closed) functional brain 
images were recorded using a multi-echo sequence (FOV 224 × 224 ×
157.5 mm3 (rl, ap, fh); 45 axial slices; voxel size 3.5 × 3.5 × 3.5 mm; 
matrix size 64 × 61; slice gap 0 mm; echo times 8.02, 22.03, and 36.03 
ms; flip angle 80◦; SENSE factors: 3, 1 (ap, os); repetition time 2.45 s; 
descending slice acquisition). In addition, a 3D T1-weighted image was 
acquired for anatomical reference, and analysis of grey matter atrophy. 
Functional data were denoised at the subject-level using the meica.py 
pipeline, consisting of realignment, slice timing correction, TE- 
dependent ICA, T2*-weighted time course combination (Kundu et al., 
2012; Kundu et al., 2013). This was followed by co-registration to the 
T1-weighted volume, normalization and smoothing (6 mm FWHM) 
using SPM12 (Wellcome Department, University College London, En
gland) implemented in MATLAB version 2020a (MathWorks, Natick, 
Massachusetts, USA). Detailed information regarding acquisition pa
rameters and preprocessing of T1 (resulting in smoothed grey matter 
segmentations), and [18F]-FDG PET images, as well as the generation of 
a metabolic pattern (pSCA3-RP) using the scaled sub-profile model 
(SSM) PCA method, can be found in our previously published work on 
the same sample (Meles et al., 2018). For 14/17 patients with SCA3, and 
10/16 healthy subjects fMRI and [18F]-FDG PET acquisition was done on 
the same day. 

2.3. Independent component analysis 

The group ICA of fMRI toolbox (GIFT; https://trendscenter.org/soft 
ware/gift), implemented in MATLAB, was used for ICA (Calhoun 
et al., 2001). The first three volumes were discarded to ensure signal 
equilibrium. The number of independent components was estimated 
using the minimum description length (MDL) with a smoothness kernel 
of 6 mm at FWHM. For fMRI the optimal number of ICs was 34. Group 
ICA (Infomax algorithm) was then run multiple times (20 iterations) 
using ICASSO, and the best estimate (centrotype of cluster) for every 
component was selected (Himberg et al., 2004). This ultimately resulted 
in a set of group ICs (each consisting of a spatial map and a time course). 
Subject-specific ICs were generated based on linear back-reconstruction 
with scaling to z-scores. Voxel z-scores of an IC can be either positive or 
negative, and express how strongly voxels are correlated (for positive 
values) or anti-correlated (for negative values) with the IC time course 
(or in other words, values reflect relative functional connectivity of a 
voxel within a specific IC). In the GIFT output, positive voxels of an IC 
are larger in amplitude, and if necessary, the sign of an IC is flipped to 
ensure this will happen. 

Prior to further analyses, individual ICs (maps, time courses and 
power spectra) were inspected independently by two raters (H.J.v.d.H. 
and S.K.M.) and discussed until consensus was reached regarding the 
neural or artefactual nature of components. This resulted in a set of 23 
retained independent neural components, and 11 non-neural compo
nents that were discarded (all ICs, and their corresponding power 
spectra, are shown in Suppl. Material 1). Subsequently, a matrix called 
Ci,j, containing IC variability loadings for every subject i and component 
j, was generated by calculating the squared Euclidean (L2) distances 
between subjects’ spatial maps and the group (average) maps (Qi et al., 
2019). These variability loadings reflect how spatially different subjects’ 
ICs are from the average group components. 

2.4. Identification of the fSCA3-related pattern 

We identified a fSCA3-RP using a two stage bootstrap feature selec
tion method adapted from a previous study on Parkinson’s disease (Vo 
et al., 2017). To find a set of components that best discriminated SCA3 
from HC (i.e., the response variable), a matrix (33 subj × 23 ICs) con
taining all subjects’ IC variability loadings (Ci,j) (i.e., predictor data) was 
fed into lasso regression (lassoglm function of the Statistics and Machine 

Learning toolbox in MATLAB). This type of regression uses L1- 
regularization to reduce coefficient sizes for unimportant predictors 
(to a minimum of zero), thereby preventing overfitting, and adequately 
dealing with multicollinearity, which makes it highly suitable for 
selecting the most important features in a dataset. Lasso uses a range of 
regularization values, or lambda values, and computes the cross- 
validated error (deviance) for every lambda (using 10 fold cross- 
validation) (Hovens et al., 2019). The largest lambda value was used 
so that the deviance was within one standard error of the minimum 
deviance. To obtain a robust selection of ICs that best discriminated 
between patients and HC, we performed a bootstrap resampling pro
cedure (5,000 iterations) with lasso regression performed during each 
bootstrap iteration. This resulted in a frequency histogram delineating 
how well ICs discriminate between the two groups. Subsequently, a 
selection of ICs was made based on the inflection point of the histogram, 
using the discrete first and second derivative (forward difference used 
for the first point, centered differences for the midpoints, and backward 
difference for the last point). 

Because in the feature selection step all neural ICs were entered, 
coefficients were not specific for the final selected set of ICs. Therefore, 
an additional bootstrap resampling procedure (5,000 iterations) was 
conducted to compute a pattern image and associated individual subject 
scores by using only the selected ICs (as described in (Vo et al., 2017)). 
We now used logistic regression (stepwiseglm function in MATLAB) so 
that no further shrinkage was applied to the regression coefficients 
(which is the case for lasso regression). During every iteration, a linear 
combination of IC maps was made, based on the coefficients out of the 
fitted general linear model. Subsequently, a mean image was created 
across iterations, and coined the fSCA3-RP (Fig. 3). An additional image 
was created by masking out voxels for which the bootstrapped 99% 
confidence interval straddled zero, which were considered non- 
informative. Thus, the most stable voxels were visualized with this 
additional image. Subject scores were computed during every iteration 
by linearly combining the variability loadings (Ci,j) of the selected ICs 
based on the coefficients out of the general linear model. The final set of 
subject scores was established by calculating the mean score across it
erations for every IC, and scaling these to the absolute sum of all ICs’ 
coefficients. 

2.5. Structural analyses 

To analyze brain atrophy, we performed ICA on grey matter seg
mentations using the so-called source based morphometry (SBM) 
toolbox, which is an extension of GIFT (Xu et al., 2009). A total of 10 ICs 
was extracted after MDL (FWHM) estimation, using Infomax and 
ICASSO (20 iterations) with selection of the best estimate for every IC 
(all ICs are shown in Suppl. Material 2). Mixing coefficients in the ICA 
mixing matrix Aij, where i represents subjects and j components, reflect 
how strong a subject contributes to a group grey matter component; 
these coefficients were used for subsequent analyses. 

2.6. Statistical analyses and visualization 

Continuous demographical and neuropsychological data were 
examined for group differences using independent t-tests, or Mann 
Whitney U tests (depending on the distribution) in SPSS version 27 (IBM 
Corp., Armonk, NY, USA). Shapiro Wilk tests were performed to assess 
continuous data for normality. Nominal variables were analyzed using 
Chi-square tests. 

Associations of subjects’ fSCA3-RP scores with SARA, grey matter 
component subject scores, pSCA3-RP scores (i.e., the 18F-FDG PET 
pattern scores as published in (Meles et al., 2018)), disease duration, 
HADS scores, and neuropsychological test scores were investigated with 
Pearson or Spearman correlations using the corr and partialcorr functions 
in MATLAB. Shapiro-Wilk tests (swtest MATLAB function, provided by A. 
B. Saïda) were performed to test for normality. For neuropsychological 
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test scores that were significantly correlated with SARA scores, we 
computed partial correlations (with SARA as covariate). 

Group differences in grey matter component coefficients were 
calculated using independent t-tests, or Mann Whitney U tests 
(depending on the distribution) using MATLAB. Overall alpha was set at 
0.05 with FDR-corrections in case of multiple comparisons (mafdr 
function in matlab). 

Jittered data plots were made using notBoxPlot (version 1.31, by Rob 
Campbell) implemented in MATLAB. Histograms and scatter plots were 
created using custom made MATLAB scripts. Scatter plots in Supple
mentary Material 3 (Suppl. Fig. 5) were made using the fncCorrMa
trixPlot function (version 2.0.0.01, by John Chow) implemented in 
MATLAB. Pattern images were overlaid on 2D brain slices using Chris 
Rorden’s MRIcroGL version 1.2.20210317. 

3. Results 

3.1. Demographics and clinical measures 

Table 1 shows the demographics and clinical characteristics. Patients 
showed higher SARA scores, and impaired cognitive performance. Letter 
fluency scores were significantly negatively correlated with SARA scores 
in the group of patients with SCA3 (r = -0.6, PFDR = 0.012). One patient 
had dystonic features, and two patients had parkinsonism. 

3.2. fSCA3 related pattern identification 

The frequency results of the lasso regression analysis with bootstrap 
resampling procedure are depicted in Fig. 2. It is clear that the first 
derivative has a minimum at IC10, and the second derivative crosses the 
x-axis between IC 10 and 13. Therefore, IC19, 22 and 10 were selected as 
predictive components, corresponding with a left frontoparietal, cere
bellar, and anterior default network component, respectively. 

The linear combination of these components using logistic regression 
coefficients (0.8740, 0.2831, and 0.6826 for IC19, 22 and 10, respec
tively; for the histograms of coefficients see Supplementary Materials 3 
(Suppl. Fig. 1). resulted in the fSCA3-RP (Fig. 3A). The fSCA3-RP 

involved the cerebellar hemispheres and vermis, the medial temporal 
lobe (parahippocampal gyrus), the orbitofrontal cortex, the medial 
frontal cortex, the antero-lateral frontal cortex of particularly the left 
hemisphere, the cingulate, and the caudate nuclei. A figure showing the 
most stable voxels outside the 99% confidence interval can be found in 
Supplementary Materials 3 (Suppl. Fig. 2). When the (full) mean positive 
pattern was shown, a more global left cerebral hemisphere lateralization 
was seen, contralateral to the dominant right-sided cerebellum 
involvement. Both statistical measures demonstrated this stronger right 
than left cerebellar involvement. 

Fig. 3C shows that scores on the fSCA3-RP were highly correlated 
(rho = 0.78, P = 0.0003) with scores on a 18F-FDG-PET pattern (Fig. 3B) 
that was published previously. 

A jittered data plot (including mean, 95% confidence interval, and 
one standard deviation) showing the subject scores per group can be 
found in Supplementary Materials 3 (Suppl. Fig. 3). 

3.3. Associations with clinical measures 

The subject specific fSCA3-RP scores were significantly correlated 
with SARA scores within the SCA3 group (r = 0.63, P = 0.007; Fig. 4). 

No significant correlations were found between fSCA3-RP scores and 
neurocognitive measures in the SCA3 group. However, when investi
gating the three components in the fSCA3-RP separately, we found a 
significant negative correlation between SDMT scores (mental process
ing speed, with higher scores indicating a higher speed) and L2 distances 
for a cerebellothalamic (IC22) component in the SCA3 group (-0.65, P =
0.0045). 

There were no significant correlations between fSCA3-RP scores and 
HADS-scores, or disease duration. 

3.4. Associations between fSCA3-RP scores and brain atrophy 

For a cerebellar grey matter component (GM-IC1), significantly 
lower mixing coefficients were found for SCA3 patients relative to HC 
(PFDR = 0.006; Fig. 5). However, no significant correlations were found 
of these mixing coefficients with fSCA3-RP scores, nor with subject 
scores on the individual fMRI ICs. Also, there was no significant corre
lation between GM-IC1 mixing coefficients and SARA scores. For several 
grey matter components, however, significant or trend significant group 
differences were found at an uncorrected alpha of 0.05 (Fig. 4 in Suppl. 
Materials 3). For these components, moderate to strong correlations 
were found with pSCA3-RP, fSCA3-RP and/or SARA scores (Fig. 5 in 
Supplementary Materials 3). 

4. Discussion 

This study reports resting-state brain network changes using fMRI in 
patients with SCA3. We identified a resting-state fMRI pattern (the 
fSCA3-RP) that was characterized by functional connectivity changes 
within cerebellar-cerebral and striatal-cortical networks. Individual 
fSCA3-RP expression scores correlated significantly with the SARA 
scores, a clinical scale that reflects the severity of ataxia. Further support 
for the biological relevance of the fSCA3-RP is provided by the strong 
correlation between subject scores on the fSCA3-RP and its previously 
discovered metabolic counterpart, the pSCA3-RP (Meles et al., 2018). 

The fSCA3-RP is characterized by altered (relative) functional con
nectivity in the cerebellum, parahippocampal areas, the medial pre
frontal / cingulate cortex, caudate nuclei, thalamus and lateral 
frontoparietal cortical regions. Previous task-based activation fMRI and 
resting-state 18F-FDG-PET studies have also found activity changes in 
the cerebellum and basal ganglia, and also in frontoparietal cortical 
areas (Duarte et al., 2016; Meles et al., 2018; Stefanescu et al., 2015; 
Wang et al., 2007). This is likely a reflection of altered connectivity in 
cerebellar-cerebral and striatal-cortical networks due to SCA3- 
associated pathology in cerebellum, striatum, brainstem and 

Table 1 
Participant characteristics.   

SCA3 (n = 17) HC (n = 16) P-value 

Age, years 45.3 ± 11.4 49.4 ± 13.6 0.36 
Sex, % female 50 46.1 0.87 
Age at disease onset, years 35.6 ± 10.2 N/A N/A 
Disease duration, years 9.7 ± 7 N/A N/A 
CAG repeatsa 70 ± 4 N/A N/A 
SARAa 10 ± 3.6 0 ± 0.9 <0.001 
Education (range)a,b  5 (5–6) 5.5 (5–6) 0.31 

Handedness n (%) right 14 (64.7) 11 (87.5) 0.13 
HADS-A 3.5 ± 2.9 4.0 ± 2.4 0.63 
HADS-D 5.3 ± 3.5 1.6 ± 1.5 0.001  

Neuropsychological tests:    
Semantic fluencya 20.0 ± 6.5 26.2 ± 7.8 0.028 
Letter fluencya 24.3 ± 12.0 38.6 ± 11.5 0.001 
RAVLT total 42.6 ± 9.5 50.7 ± 9.0 0.021 
RAVLT delayed 8.8 ± 2.8 11.4 ± 3.0 0.010 
SDMT 44.4 ± 8.2 62.5 ± 9.6 <0.001 

Note: All values are depicted as means ± SD unless stated otherwise. Statistics for 
neuropsychological tests were performed using raw scores. 
aMedian (interquartile range). 
bAccording to (Verhage, 1964). 
Abbreviations: CAG = cytosine-adenine-guanine trinucleotide; HADS-A = hos
pital anxiety and depression scale anxiety; HADS-D = hospital anxiety and 
depression scale depression; N/A = not applicable; SARA = Scale for Assessment 
and Rating of Ataxia; RAVLT = Rey Auditory Verbal Learning Test; SDMT =
Symbol Digit Modalities Test. 

H.J. van der Horn et al.                                                                                                                                                                                                                       



NeuroImage: Clinical 34 (2022) 103023

6

pyramidal tracts (Rüb et al., 2008). Indeed, the fSCA3-RP topography, 
combined with the significant correlation with ataxia severity, suggests 
that the fSCA3-RP reflects network-level changes in (higher-order) 
motor control. The significance of the obvious overlap between the re
gions identified in the fMRI and 18F-FDG PET-derived SCA3 patterns was 
further supported by the strong correlation between subject scores ob
tained from the two data-sets concerning the same patients. Both pat
terns include the cerebellum, medial temporal lobe, the caudate nuclei, 
the cingulate and the posterior parietal cortex. 

However, the two patterns do not correspond exactly. For instance, 
the fMRI pattern shows more extensive alterations in the prefrontal 
cortex, which is particularly strong in the medial frontal cortex, 
including the cingulate cortex. Due to the differences between the two 
modalities, as well as analysis techniques (PCA vs. ICA), a direct com
parison of the two patterns in terms of involved regions cannot be 
provided. That said, it is of interest to speculate about the similarities 
and discrepancies in the identified networks in the context of the basic 
physiological and biophysical differences between the 18F-FDG PET and 
BOLD techniques. Especially large-scale anterior-posterior networks, 
such as the default mode network and frontoparietal executive networks 
have been described to be more strongly connected in BOLD than in 18F- 
FDG PET images (Di & Biswal, 2012). This was explained by the dif
ference between a static (cumulative) metabolic activity of regions, and 
the summation of BOLD fluctuations over the time of scanning. Here the 
higher temporal resolution of rs-fMRI might also explain the identifi
cation of changes in inter-regional connectivity which were not 
observed in the static 18F-FDG PET images. The extensive mediofrontal 
involvement in specifically the fSCA3-RP may thus well represent 
changes in default network activity, which is fluctuating in nature. This 
will be further treated in following paragraph. The coherent dominance 
of change in the right cerebellum and left cerebral cortex, which was 
only observed in the fSCA3-RP, and not in the pSCA3-RP, similarly 
suggest a change in the dynamic nature of a specific left-hemisphere 
function. Although intriguing, we refrain from further speculation on 
this issue. 

While the fSCA3-RP topography showed a significant correlation 
with ataxia severity, we did not find any significant correlations be
tween fSCA3-RP scores and any of the neurocognitive measures we 
investigated. SCA3 patients, however, do experience cognitive 

dysfunction in addition to their motor symptoms. We did find a negative 
correlation between one of the three components in the fSCA3-RP (a 
cerebello-limbic-thalamo-cortical, but mainly cerebellar component) 
and mental processing speed. This finding fits with the cognitive (and 
affective) functions of the cerebellum, through connections with cortical 
and limbic structures (Schmahmann & Sherman, 1998). A recent sys
tematic review concluded that the neurocognitive profile of SCA3 is 
mainly characterized by impairments of executive function (Yap et al., 
2021). Prefrontal-striatal circuitry is implied in such higher-order 
cognitive functions. On the other hand, we propose that the extensive 
medial prefrontal presence in our fSCA3-RP is not a reflection of change 
in cognitive function of the patients but may represent default mode 
network changes, because this medial prefrontal involvement was 
evidently less extensively present in the 18F-FDG pattern, and the fSCA3- 
RP did not correlate with cognitive impairment. The difference with the 
18F-FDG pattern is consistent with the fact that particularly the BOLD 
fMRI method enables detection of dynamic changes concerning fluctu
ation of neuronal activity, which is an intrinsic characteristic of the 
default network. We do acknowledge that the absence of a correlation 
with cognitive impairment might also be due to the fact that the pattern 
was sought amongst those components that gave maximum discrimi
nation between controls and patients. All patients have ataxia, but the 
presence of cognitive symptoms was variable, and relationships with 
network connectivity might have been hidden in the larger fSCA3-RP. 
But even in that case, based on a strong discriminator between con
trols and patients, the proposed relation of mediofrontal change with 
changed fluctuations in default mode activity gains support. Finally, 
when combining fMRI and 18F-FDG PET studies, care has to be taken 
regarding the spatial mismatch between the two modalities (Jamadar 
et al., 2019). 

Both the fMRI and the 18F-FDG PET pattern thus provide a modality- 
specific signature of SCA3 and they are highly correlated in the same 
individuals, with a biological significance of network changes and their 
metabolic alterations. Although they have complementary components, 
our results suggest that the fSCA3-RP and the pSCA3-RP can be used 
interchangeably to quantify disease-related changes on the single- 
subject level, akin to the conclusions of a previous similar study in 
Parkinson’s disease (Vo et al., 2017). This means that several promising 
results obtained with 18F-FDG PET and PCA in neurodegenerative 

Fig. 2. Bootstrapped feature selection results. Selection of IC 19, 22, and 10 was made based on the inflection point of the histogram (of non-artefactual ICs). It can 
be noticed that the first derivative (red) is minimal at IC10, and that the second derivative (yellow) crosses the x-axis (changes sign) between IC 10 and 13. Therefore, 
IC19, 22 and 10 were selected for further analyses. 
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diseases (Meles et al., 2021; Schindlbeck & Eidelberg, 2018) may also be 
reached using fMRI-ICA based networks. This application of fMRI is thus 
potentially useful as robust neuroimaging biomarkers are necessary for 
these conditions of neurodegenerative disease (regarding diagnosis, 
monitoring disease progression and treatment effects), and fMRI is 
considered less invasive and time-consuming than 18F-FDG PET. 

Aside from its use in diagnostic processes, one might reflect on 

possible therapeutic implications of ‘network knowledge’ involving 
cerebellum, caudate and various cortical cerebral regions. The associa
tion of specific brain circuitry and the representation of distinct cerebral 
functions may, in this respect, help to choose targeted tests in motor, 
cognitive and emotion domains. The results of such tests help to design 
strategies to effectively cope with emerging dysfunction. Regarding 
therapy, one might theoretically speculate that affected network 

Fig. 3. A: The fSCA3-RP (fMRI). Positive voxels 
(thresholded at Z > 0.5) are shown, representing a 
magnitude of changed functional connectivity in the 
marked regions. Color scale reflects the linearly 
combined Z-values of the mean group independent 
components. B: The pSCA3-RP (18F-FDG PET; red 
voxels = relative hypermetabolism, blue = relative 
hypometabolism), as derived from the same dataset 
(Meles et al., 2018). Color scale reflects median of 
voxel values obtained with bootstrap resampling. C: 
Correlation between fSCA3-RP and pSCA3-RP scores 
(rho = 0.78, P = 0.0003). A subject’s fSCA3-RP score 
represents the linear combination (based on regres
sion coefficients) of L2-distances for the selected 
components (IC19, 22 and 10) of the subject. The 
outlier (indicated by an asterisk) on pSCA3-RP used 
levodopa at time of scanning. Patients with parkin
sonism are indicated by a square, and the patient with 
dystonic features is indicated by a triangle.   
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function might be brought in a better functional balance by e.g., deep 
brain stimulation of distinct network nodes. For such a putative strategy, 
much more knowledge about the networks involved and the dynamics of 
change over time is required. Similarly, manipulation of distinct 
network nodes might be guided by knowledge about specific neuro
transmitter modulation of an involved brain region (e.g., dopaminergic 
or serotonergic). 

While functional brain imaging may identify disease-related changes 
ahead of structural imaging, the identification of regional atrophy 
evidently marks the loss of tissue. In SCA3, disease progression has been 
demonstrated to occur with a spread of successively affected brain re
gions (Guo et al., 2020). Using T1 MRI and structural covariance anal
ysis, Guo and colleagues demonstrated a pattern of progressive grey- 
matter atrophy in a cohort of 47 SCA3 patients with similar CAG 
repeat lengths, by dividing them into subgroups based on disease stage 
(pre-manifest, early (1–5 years), intermediate (6–10 years) and final 
(11–20 years after onset). Atrophy started in the cerebellar vermis in 
pre-manifest carriers, and extended into the cerebellar hemispheres in 
the early stage. In the intermediate stage, degeneration also affected the 
striatum, and in the final stage, atrophy of the motor and association 
cortex, including the paracentral gyrus, the pre-central gyrus, and the 
supplementary motor area was identified. The patients in our cohort had 
a variable disease duration (range 3–30; median 7 years). The regions 
identified in the fSCA3-RP and pSCA3-RP partly overlap with the atro
phy patterns of the final stage described by Guo et al (11–20 years; 

cerebellum, striatum, motor and association cortex) (Guo et al., 2020). 
However, the primary motor cortex itself is not implicated in our 
functional imaging patterns. Furthermore, some regions show alter
ations on a functional level (lateral frontal and posterior parietal asso
ciation areas, parahippocampal gyrus, cingulate cortex), whereas they 
remain unaffected structurally throughout the disease course. This may 
provide support for the concept that these regions show altered neuronal 
activity due to disconnection (or other downstream network effects) 
from cerebellum and striatum, two core structures that are directly 
affected by local pathology. Regarding structural disconnection, studies 
have also found evidence for affected (infratentorial) white matter 
structures, and an association with disease progression and ataxia 
severity (Faber et al., 2021; Rezende et al., 2018). 

Interestingly, neither fSCA3-RP, nor pSCA-RP subject scores were 
significantly correlated with grey matter atrophy. fSCA3-RP scores 
specifically, did not correlate with mixing coefficients of a grey matter 
component that was significantly different between groups. The varia
tion in disease duration (3 – 30 years), clearly associated with variation 
in distributed atrophy, may play a role in this seeming discrepancy. 
While the end-stage pattern of gray matter atrophy may show the best 
correlation with the functional imaging patterns (see also above listed 
regional distribution of Guo et al), the fSCA3-RP and pSCA3-RP repre
sent extended network dysfunction that emerge at earlier stages of dis
ease, exceeding nodes in the network that are affected by atrophy. 
Nonetheless, several grey matter components, that were not (yet) 
significantly different between SCA3 and controls, correlated with 
scores on the pSCA3-RP, fSCA3-RP and/or SARA scores (Suppl. Mate
rials 3). Therefore, we have reason to believe that these components 
reflect early changes in grey matter degradation that occur alongside 
changes in metabolic and dynamic BOLD fluctuations. In this respect, 
our results suggest that the changes detected by our functional neuro
imaging modalities indeed precede atrophy and provide a better un
derstanding of the widespread network-level alterations in SCA3. 

Although limitations of this study are the small sample size and the 
lack of a validation sample, we are confident that the fSCA3-RP repre
sents distinct pathophysiological changes and did not arise by chance, 
since fSCA3-RP subject scores are clearly correlated with a clinical scale 
of disease severity. Furthermore, it is striking that these subject scores 
also correlated strongly with pattern scores derived from a different 
modality (18F-FDG PET). The latter can be considered as an indirect 
measure of internal validity. We also used bootstrap resampling to 
obtain a more stable selection of components as compared to only using 
the sample itself. Our group component maps (4D NIfTI file) are avail
able upon request (to be used for reference-based ICA and generation of 
subject scores using our regression coefficients), and we kindly invite 
other researchers on SCA3 to corroborate our findings. Lastly, in the 
current study we only focused on cognitive functioning as a non-ataxia 
sign. Future studies may benefit from the use of other tools, such as the 
Inventory of Non-Ataxia Signs, to further delineate disease-related 

Fig. 4. Correlation between fSCA3-RP scores and SARA scores for the SCA3- 
group. The patient who used levodopa at time of scanning is indicated by an 
asterisk; patients with parkinsonism are indicated by a square; the patient with 
dystonic features is indicated by a triangle. 

Fig. 5. Grey matter IC1. To enhance interpretability only voxels with positive z-scores are shown. A clear group difference was found, with SCA3 patients have lower 
mixing coefficients (i.e., their spatial maps contribute less to the average group map), indicating grey matter loss. 
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patterns in SCA3 and the relationship with different phenotypes (Jacobi 
et al., 2012). 

5. Conclusion 

In contrast to most ICA-based fMRI studies, we provide a quantifi
cation of disease activity in resting-state fMRI scans of individual sub
jects with SCA3. Such quantification may provide a biomarker for SCA3 
and could be useful in predicting disease onset in pre-manifest carriers, 
tracking disease progression, or perhaps even as an outcome measure in 
future clinical trials. To that end, it is crucial to investigate the genetic – 
phenotypical relation over time, and to determine the specificity of the 
fSCA3-RP for SCA3, and possible overlap with other ataxias. The present 
findings encourage future research directed towards these goals. 
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