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Abstract

INTRODUCTION:While Alzheimer’s disease (AD) is defined by amyloid-β plaques and
tau tangles in the brain, it is evident thatmanyother pathophysiological processes such

as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derange-

ments also contribute to the disease process and that varying contributions of these

pathways may reflect the heterogeneity of AD. Here, we used a previously validated

panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different

pathophysiological domains are dysregulated in AD and how they relate to each other.

METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical

diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively

unimpaired controls negative for CSF AD biomarkers (CU-N, n= 26) using commercial

single- andmulti-plex immunoassays.

RESULTS:We noted that while AD was associated with increased levels of only three

biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD partici-

pants had increased levels of biomarkers belonging to at least two pathophysiological

domains reflecting the diversity in AD. LASSOmodeling showed that a panel of FABP3,

24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally

correlated set of variables differentiating AD from CU-N. Interestingly, factor analy-

sis showed that twomarkers of metabolism and oxidative stress (24OHC and 8OHdG)

contributed independent information separate from MMP-10 and FABP3 suggestive

of two independent pathophysiological pathways in AD, one reflecting neurodegener-

ation and vascular pathology, and the other associated with metabolism and oxidative

stress.

DISCUSSION: Better understanding of the heterogeneity among individuals with AD

and the different contributions of pathophysiological processes besides amyloid-β and
tauwill be crucial for optimizing personalized treatment strategies.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2024 The Authors. Alzheimer’s &Dementia: Translational Research &Clinical Interventions published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

Alzheimer’s Dement. 2024;10:e12440. wileyonlinelibrary.com/journal/trc2 1 of 11

https://doi.org/10.1002/trc2.12440

mailto:pkivisakk@mgh.harvard.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/trc2
https://doi.org/10.1002/trc2.12440


2 of 11 TROMBETTA ET AL.

KEYWORDS

Alzheimer’s disease, biomarkers, cerebrospinal fluid, FABP3, 8OHdG, heterogeneity, metabolic,
MMP10, pathophysiological processes, profiling, vascular

Highlights

∙ A panel of 25 highly validated biomarker assays weremeasured in CSF.

∙ MMP10, FABP3, and 8OHdGwere increased in AD in univariate analysis.

∙ Many individuals with AD had increased levels of more than one biomarker.

∙ Markers of metabolism and oxidative stress contributed to an AD multianalyte

profile.

∙ Assessing multiple biomarker domains is important to understand disease hetero-

geneity.

1 BACKGROUND

Molecular biomarkers have come to play important roles in the diag-

nosis of Alzheimer’s disease (AD). Amyloid-β PET imaging and cere-

brospinal fluid (CSF) levels of amyloid-βx-42 (Aβ42), total tau (tTau),

and phospho-tau (pTau) are now considered to be almost as good as

autopsy for the diagnosis of AD.1 These biomarkers are strongly asso-

ciated with the presence of amyloid-β plaques and/or paired helical

filament tau neurofibrillary tangles in the brain that are the signa-

ture neuropathological lesions of AD.2 It is, however, evident that

many additional pathophysiological processes such as inflammation,3,4

neurovascular dysfunction,5 oxidative injury,6,7 and other metabolic

derangements8 also contribute to the neurodegenerative process.

These mechanisms act in pathophysiological cycles as the disease

progresses,9,10 eventually resulting in synaptic loss through microglial

phagocytosis and impaired repair plasticity, and ultimately causing

neuron death through apoptosis11 and necrosis.12–14 This complexity

in the disease process combinedwith the high prevalence of co-morbid

pathologies15 renders it impossible to fully characterize ADwith a sin-

gle biomarker. Broadening the array of biomarkers beyond amyloid

and tau is important to characterize the degree to which the differ-

ent associated processes of inflammation, vascular injury, metabolic

derangements, and others may contribute at the disease and at the

individual levels. We hypothesize that varying contributions of these

processes reflect the heterogeneity within AD in terms of risk fac-

tors and genetics, regional pathological vulnerability, co-morbid illness

and pathologies, symptom profiles, progression, and likely treatment

responses. Understanding this heterogeneity is necessary to guide per-

sonalized treatment strategies and choose appropriate combinations

of treatments for different people at different phases of disease.

We previously reported a fit-for-purpose validation approach to

qualify a broad selection of commercially available immunoassays

across multiple pathophysiological domains for use in CSF samples

in clinical trials.16 Beyond amyloid-β and tau, we identified high-

performing assays spanning neurodegeneration/neural injury, inflam-

mation, vascular injury, and metabolism. Here, we applied a focused

panel of assays of 25 analytes to describe multi-pathophysiological

profiles of AD in comparison to cognitively unimpaired controls.

2 METHODS

2.1 Study participants

A “high-contrast” cohort consisting of 80 CSF samples was selected

from the MassGeneral Institute for Neurodegenerative Disease

(MIND) Tissue Bank for Biomarker Discovery (n = 30) and the Penn

Memory Center biorepository (PMC, n = 50). Clinical diagnoses were

verified in consensus conference and/or chart review by an experi-

enced neurologist (S.E.A.) according to the 2011 National Institute

of Aging—Alzheimer’s Association diagnostic criteria for AD17 and

MCI due to AD.17,18 AD status was furthermore verified by CSF

AD biomarker status1 (Aβ42/40 ratio, pTau181, and tTau using in-

house derived thresholds for AD [Figure S1]) measured by Euroimmun

enzyme-linked immunosorbent assay (ELISA) assays (Lübeck, Ger-

many). The cohort consisted of two groups (Table 1):

(1) AD (n=54) consisting ofADdementia (n=39) andmild cognitive

impairment due to AD (MCI; n = 15). Mini-Mental State Examina-

tion (MMSE) scores were available in 42 participants (median: 23.5;

interquartile range: 21.7–26).

(2) Cognitively unimpaired participants negative for AD biomark-

ers (CU-N; n = 26), consisting of healthy volunteers (HC; n = 17) and

individuals with other non-dementia-causing neurological disorders

(OND; n= 9).

2.2 Sample collection and biomarker analysis

Selected CSF samples were collected by lumbar puncture with adher-

ence to ADNI CSF collection protocols,19 including rapid processing

and freezing using low-binding polypropylene collection tubes and

cryovials, and stored at−80◦C until use.
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TABLE 1 Demographic and AD biomarker information.

AD (n= 54) CU-Na (n= 26) p-Value

Age, years

Median (range) 71 (49–86) 69 (48–83) 0.10

Sex, n (%)

Female 31 (57%) 11 (42%) 0.3

Male 23 (43%) 15 (58%)

Aβ42/40 ratio

Mean (SD) 0.038 (0.014) 0.113 (0.026) <0.001

tTau, pg/mL

Mean (SD) 940 (269) 556 (218) <0.001

pTau-181, pg/mL

Mean (SD) 142.1 (36.9) 43.4 (31.2) <0.001

APOE e4, n (%)

e4 31 (57%) 5 (19%) <0.002

No e4 11 (20%) 15 (58%)

Unknown 12 (22%) 6 (23%)

aCognitively unimpaired controls (CU-N) consisting of healthy volunteers

(n = 17) and individuals with other non-dementia-causing neurological dis-

orders [neuropathies (n = 4), headaches (n = 1), idiopathic intracranial

hypertension (n = 1), essential tremor (n = 1), stiff-person syndrome (n
= 1), and spinocerebellar atrophy (n = 1)]. Adjusted p-values (Benjamini-

Hochberg)were calculatedusingunpaired t-tests for age,Aβ42/40 ratio, tTau,
and pTau181. Fisher’s exact test was used for sex and APOE e4 carrier

status.

Abbreviations: AD, Alzheimer’s disease; APOE e4, apolipoprotein E e4; SD,
standard deviation.

Biomarker levels were measured using commercial single- and

multi-plex immunoassays that were previously validated in-house for

sensitivity and technical reproducibility in CSF.16 Twenty-six biomark-

ers displaying high precision and short-term longitudinal stability in

healthy volunteers were validated for the CSF biomarker panel, of

which 25 passed the initial QC analysis (Table 2). All assays were

performed in duplicate according to manufacturer protocols. Median

coefficient of variation (CV) for replicates for the different analytes

was 6.1± 11.0% (mean± SD) and all analytes except vascular endothe-

lial growth factor-C (VEGF-C), which was excluded from subsequent

analyses, had a median CV <15% (Table S1). Samples were random-

ized over multiple plates and assay performance and QC analysis were

performed blinded to the clinical groups. Four pooled QC samples

were included on all plates to normalize for plate-to-plate variabil-

ity. Normalization was performed by dividing analyte concentrations

by the normalization factor for the plate the sample was measured

on. Normalization factors were derived from the ratio of the individ-

ual plate QC concentrations to the mean QC concentration across all

plates. Median plate-to-plate CVs for the QC samples was 14.6± 9.0%

(mean ± SD) before normalization and 8.2 ± 6.0% after normalization

(Table S1).

Apolipoprotein E (APOE) e4 carrier status was determined using a

colorimetric ELISA (BioVision, Milpitas, CA), which had been previ-

ously validated in-house for specificity and sensitivity for APOE e4

phenotype in CSF from individuals with known genotype.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed existing lit-

erature on cerebrospinal fluid biomarkers and patho-

physiological processes in Alzheimer’s disease (AD) using

PubMed, Google Scholar, and reference lists from rele-

vant papers. These relevant citations are appropriately

cited.

2. Interpretation: Our findings indicated a heterogeneity in

biomarker profiles on an individual level and suggested

that biomarkers for metabolism and oxidative stress con-

tributed independent information to more established

biomarker for neurodegeneration consistent with exist-

ing literature showing that AD is a complex disease that

cannot be fully explained by a single biomarker.

3. Future directions: The development of assays profil-

ing the contributions of the different pathophysiological

processes associated with AD is needed to understand

the heterogeneity of the disease process and to guide

personalized treatment strategies.

2.3 Statistical analysis

Statistical analyses were completed in R (4.0.2 GUI 1.72 Catalina

build) and RStudio (Version 1.3.1056). All biomarker data was log

transformed prior to statistical analysis due to non-normal distribu-

tion. Between-group differences (AD vs. CU-N) of key demographic

variables were analyzed via independent sample t-tests for con-

tinuous variables and with the Fisher’s exact test for categorical

variables.

To investigate the effects of demographic variables (age, sex, and

APOE e4 carrier status) and AD biomarkers (Aβ42/40 ratio, tTau, and

pTau-181) on each analyte, standard linear regression models (analyte

∼ covariate) were performed. The regression models were run sepa-

rately by diagnosis (AD vs. CU-N) to examine the influence of these

covariates on analyte within each sub-group. Multivariate models

were run for each analyte to examine the association with diagnostic

group, using a standard linear regression model (analyte ∼ diagnosis

+ age + sex) using all samples (n = 80) and separately in a sensitiv-

ity analysis using only AD and HC samples (n = 71). All p-values were

adjusted using theBenjamini-Hochbergmethod, and significance set at

p< 0.05.

To assess heterogeneity of biomarker profiles, individualswere clas-

sified as positive for a biomarker domain if they had at least one

biomarker in that domain that exceeded 2 SD of the mean of the CU-

N group. Fisher’s exact test was used to compare frequency of positive

markers across groups (AD vs. CU-N).

Age and log-transformed biomarker concentrations were z-score

transformed and standardized to 0–1 for the following analysis.

The least absolute shrinkage and selection operator (LASSO) logistic
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TABLE 2 Assays included in the cerebrospinal fluid multi-pathophysiology panel (CMP3).

Vendor Assay Catalog number

Dilution

factor

AD biomarkers

Aβ42 Euroimmun Beta-amyloid (1–42) Assay EQ 6521-9601-L 1:1

Aβ40 Euroimmun Beta-amyloid (1–40) Assay EQ 6511-9601-L 1:21

Total tau Euroimmun Total tau assay EQ 6531-9601-L 1:1

Phospho-tau 181 (pTau181) Euroimmun P-Tau (pT181) Assay EQ 6591-9601-L 1:1

Neurodegeneration

NfL Quanterix NF-light Simoa assay advantage kit 103186 1:25

FABP3 MSD Human FABP3 kit K151HTD 1:2

YKL-40 MSD Human YKL-40 kit K151NHD 1:50

Inflammation

IL-6, IL-7, IL-8, IL-12/IL-23p40,

IL-15, IL-16,MCP-1,MDC,MIP-1β
MSD Special order human biomarker assay N05JA 1:2

Vascular injury

Flt-1, PlGF, VEGF, VEGF-Ca,

VEGF-D

MSD V-PLEX angiogenesis panel 1 K15190D 1:2

ICAM-1, VCAM-1 MSD V-PLEX Vascular injury panel 2 K15198D 1:5

MMP-2,MMP-10 MSD HumanMMP2-plex ultra-sensitive panel K15033C 1:2

Metabolism

8-OHdG Cell biolabs, Inc. OxiSelect oxidative DNA damage ELISA STA-320 1:2

24-OHC Enzo lifesciences 24(S) hydroxycholesterol ELISA ADI-900-210-0001 1:2

Adiponectin MSD Human adiponectin kit K151BXC 1:10

Leptin MSD V-PLEX human leptin kit K151V5D 1:2

Soluble IR BioVendor Insulin receptor human ELISA RD1991041200R 1:2

aVEGF-C did notmeet quality control criteria andwas not included in further analysis. Analytes were grouped into five pathophysiological domains based on

their predominant biological activities: AD biomarkers, neurodegeneration, inflammation, vascular injury, andmetabolism.

Abbreviation: AD, Alzheimer’s disease.

regression was performed to select a panel of predominant biomark-

ers that distinguish AD from CU-N. Resampling techniques were used

to understand the confidence of the LASSO model: An 80%/20% ran-

dom split on the entire dataset was performed 1000 times to create

1000 unique training and test sets. These training and test sets had an

equal proportion of CU-N (34%) and AD (66%) participants to simulate

the proportion of AD participants in the entire dataset. LASSO logis-

tic regressionwas performed on each of the 1000 training sets. In each

LASSO model, a five-fold cross-validation method was used to deter-

mine the best penalty for minimizing error. Python and R “glmnet” and

“pROC” packages were used for analyses.

To assess the importance of each biomarker, twometrics were used:

(1) the number of times the biomarker remained in the 1000 LASSO

models, and (2) the coefficients of each biomarker. Next, principal com-

ponent analysis (PCA) was performed to categorize biomarkers based

on the eigenvectors. The variance of each biomarker was standardized

across all the dimensions and plotted via a heatmap. The heatmap.2()

function in the R gplots packagewas used to generate a heatmap of the

Pearson correlation coefficientmatrix, combinedwith adendrogram to

visualize the degree of collinearity between analytes.

3 RESULTS

3.1 Sample characteristics and demographic
effects

Participant characteristics are presented in Table 1. There were no

differences in age nor sex between the AD and the CU-N subgroups.

The AD subgroup contained a greater proportion of APOE e4 carriers

(57% vs. 19%; p < 0.002) as expected.20 Initial analysis showed that

8 biomarkers increased with age within the CU-N sub-group (Figure

S2). The correlation was moderately strong with an r2 > 0.4 for IL-15

(r2 = 0.49) and YKL-40 (r2 = 0.42), while the correlation was weak for

the remaining markers (ICAM1: r2 = 0.30; VCAM-1: r2 = 0.29; MCP-1:

r2 = 0.26; MMP2: r2 = 0.26; PlGF: r2 = 0.24; and FABP3: r2 = 0.19).

There were no effects of sex on any of the biomarkers in the CU-N

subgroup. All subsequent analyses were performed with age and sex

as co-variates unless specified otherwise. CSF levels of FABP3 (p <

0.01), MMP-2 (p < 0.01), NfL (p < 0.01), VEGF (p < 0.05), and YKL-40

(p < 0.001) were increased in individuals with AD carrying at least one

APOE e4 allele compared to non-carriers (Figure S3), while the small
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F IGURE 1 Z-score normalized levels of measured cerebrospinal fluid (CSF) biomarkers. Linear regressionmodeling adjusting for age and sex
was used to determine differences between individuals with Alzheimer’s disease (AD) and cognitively normal controls (CU-N). Presented p-values
(*p< 0.05, ***p< 0.0001) were adjusted for multiple hypothesis testing using Benjamini-Hochberg correction.

number of APOE e4 carriers in the CU-N subgroup (n = 5) precluded

further analysis in this group.

3.2 Levels of individual CSF biomarkers and their
intercorrelations

In order to assess the spectra of underlying pathophysiological pro-

cesses in AD, the 25 biomarkers were categorized into one of four

domains based on their predominant biological activities according

to published literature (Table 2): (1) neurodegeneration (NfL, FABP3,

YKL-40); (2) inflammation (IL-6, IL-7, IL-8, IL-12/23p40, IL-15, IL-16,

MCP-1, MDC, MIP-1B); (3) vascular injury (Flt-1, PlGF, VEGF, VEGF-

D, ICAM-1, VCAM-1, MMP-2, and MMP-10); and (4) metabolism

(8-OHdG, 24-OHC, adiponectin, leptin, and soluble insulin receptor

[sIR]). Using multivariate linear regression models with age and sex

as covariates, we identified three markers, MMP-10 (p < 0.0001),

FABP3 (p < 0.0001), and 8OHdG (p < 0.05), which were signifi-

cantly elevated in participants with AD compared to CU-N (Figure 1).

As the CU-N subgroup was heterogeneous, consisting of both HC

and individuals with OND, we performed a sensitivity analysis com-

paring AD to a more homogeneous group consisting of only HC,

which confirmed that MMP-10 and FABP3 levels were significantly

elevated in AD (p < 0.0001 for both markers), while 8OHdG only

remained significant before adjusting for multiple hypothesis test-

ing (unadjusted p < 0.05; adjusted p = 0.1). Two additional markers,

YKL-40 (p < 0.01) and VEGF (p < 0.05), were differentially expressed

in participants with AD compared to HC in the sensitivity analysis

(Figure S4).

While there were no significant differences between AD and CU-

N on a group level for the remaining markers, we were interested in

understanding heterogeneity in biomarker profiles in individual par-

ticipants. Fifty percent of AD participants had increased biomarker

levels in two or more domains (when classifying individuals as posi-

tive for a biomarker domain if they had at least one biomarker in that

domain that exceeded 2 SD of the mean of the CU-N group), and 28%

of ADparticipantswere positive in one domain (Figure 2). Themajority

were positive for the vascular injury domain (61%), 37% for the inflam-

mation domain, and 26% for the metabolism domain. A total of 41%

were positive for the neurodegeneration domain. The CU-N group had

fewer participants with positive biomarker domains compared to the

AD group (54% vs. 78%; p< 0.05); specifically, fewer participants were

positive for the vascular injury domain (31% vs. 61%; p < 0.02) or the

neurodegeneration domain (14% vs. 39%; p< 0.05).

As many participants had increased levels of several biomarkers,

we next explored the relationships between the measured biomarkers

by generating a heat map of Pearson correlation coefficients in con-

junction with hierarchical clustering (Figure 3). FABP3 and MMP-10,

the two main biomarkers identified as differentially expressed in AD

versus CU-N in univariate analyses, were found to be significantly cor-

related to each other (r2=0.61; p<0.0001). FABP3andMMP-10were

also highly correlated with NfL, YKL-40, and ICAM-1 (r2 > 0.55; p <

0.0001), and FABP3 had additional significant associations with Flt-

1 and IL-15 (r2 > 0.55; p < 0.0001). The correlations across domains
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F IGURE 2 Upset plots showing the number (shown on top of
individual bars) and frequency (shown below bars) of participants with
increased levels of biomarkers in the different domains among
cognitively normal controls (CU-N; top panel) and individuals with
Alzheimer’s disease (AD; bottom panel). A participant was considered
positive for a particular domain if they had at least one biomarker
exceeding 2 standard deviations of themean of the CU-N group.
Sample size: AD= 54; CU-N= 26.

raised the question of how well the initial categorization of biomarker

domains based on the literature reflects the different pathophysiolog-

ical processes of the biomarkers and their interactions in AD. Using

unbiased hierarchical clustering, we noted that the biomarkers sepa-

rated into four main clusters: (1) ICAM-1, VCAM-1, sIR, MMP-2, PlGF,

VEGF, adiponectin, and 24-OHC; (2) NfL, MMP-10, FABP3, IL15, YKL-

40, Flt-1, and VEGF-D; (3) IL-12/23p40, MDC, and IL-16; and (4) IL-8,

MIP-1β, IL-6, MCP1, IL-7, and 8OHdG. These clusters appear largely

to align with the different pathophysiological domains, with cluster (1)

containing most metabolic biomarkers, cluster (2) reflecting neurode-

generativepathology, and clusters (3) and (4) containingpredominantly

inflammatorymarkers. Vascular biomarkers were present both in clus-

ter (1) and (2) reflecting both that these clusters were more closely

associated with each other than clusters (3) and (4), and the hetero-

geneity among the markers categorized as vascular markers, many of

which havemultiple biological activities.

To explore the degree towhich the different biomarkers in the panel

reflect AD pathology, we used linear regression analysis to correlate

biomarker levels with established CSF AD biomarkers (Aβ42/40 ratio,

pTau-181, and tTau) within the AD sub-group (Figure S5). Notably,

most biomarkers correlating with CSF AD biomarkers were present

within the neurodegenerative cluster (cluster [2]). FABP3 and Flt-1 lev-

els significantly predicted both pTau-181 (r2 = 0.16 for both markers;

p < 0.005) and tTau (r2 = 0.37 and 0.26, respectively; p < 0.0001),

while IL-15, MMP-10, NfL, YKL-40, and 8OHdG were also found to be

weakly associatedwith tTau levels (r2: 0.13–0.20; p< 0.001). No signif-

icant associations with an r2 > 0.1 were found with the Aβ42/40 ratio.

This suggests that the mechanistic contributions of the metabolic and

inflammatorymarkers in clusters (1), (3), and (4)may reflect alternative

pathogenic processes than that of the classic AD biomarkers.

3.3 Identifying a multi-analyte signature of AD

Given the degree of correlation between the individual biomarkers and

their overlap between thediagnostic groups,wenext sought to identify

a subset of biomarkers that combined contribute themost towards dif-

ferences between AD and CU-N. LASSO modeling with 1000 rounds

of five-fold cross-validation selected FABP3, MMP-10, 24OHC, and

MMP-2 as primary contributing markers to the signature, appearing

in nearly 100% of trials (Figure 4A, B). We compared the performance

of different model permutations of the top markers identified by the

LASSO model using ROC to assess the ability to discriminate between

AD and CU-N. A multi-analyte signature containing FABP3, MMP-2,

MMP-10, 8OHdG, and 24OHC, exhibited the greatest discrimination

between the groups, with a chi-square statistic of 13.59 (p < 0.01).

Including age as a covariate did not significantly alter model outcomes.

We further characterized the signature biomarkers using PCA com-

ponent analysis to examine the quality of the selected variables. The

first component accounted for 42.8% of the overall variance in the

dataset, driven by MMP-10, FABP-3, and MMP-2 (Figure 4C, D).

The major contributors to component 2 were MMP2 and 24OHC,

while 8OHdG was the main contributor to component 3. This analysis

revealed two distinct sub-groups of positively correlated biomarkers

with respect to component 2,withMMP-10, FABP3, and 8OHdG form-

ing one group in opposition to a second group containing MMP-2, and

24OHC (Figure 4E).

4 DISCUSSION

While defined by its signature Aβ and tau proteinopathies, AD is a

complicated, heterogeneous disease and clinical syndrome driven by

contributions of diverse risk factors and various underlying pathophys-

iological mechanisms. Amyloid and tau pathologies account for just a

small proportion of the variance of global cognition in old age21 and

poorly explain features such as age of onset, rates of progression,

or diverse clinical symptomatology. We developed a panel of robust

assays with high technical reliability to measure 25 CSF biomarkers

across different domains of pathophysiological importance in AD.16

Here, we used these to explore the degree to which neurodegen-

eration, vascular injury, inflammation, and metabolic derangements

are dysregulated in AD with the goal to identify a multi-analyte

panel to more comprehensively profile the different pathophysiologi-

cal domains and better understand the heterogeneous contributions in

AD.
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F IGURE 3 Heatmap of Pearson correlation values with hierarchical clustering across analytes for all study participants (N= 80) coupled with
dendrogram tree showing relationships between analytes. Significant correlations (p< 0.05) markedwith an asterisk.

We noted that three biomarkers, MMP-10, FABP3, and 8OHdG,

were increased in individuals with AD compared to CU-N in uni-

variate analysis, three markers that previously have been implicated

in AD.22–27 MMP-10 is a zinc-dependent endopeptidase which can

degrade extracellular matrices and other proteins.28 It plays an

important role in vascular remodeling during both development and

in various vascular pathologic processes by degrading extracellular

matrix components and thereby removing barriers to cell migration

facilitating cell growth, proliferation, migration, and differentiation.29

Increased CSF levels ofMMP-10 have been associatedwith higher risk

for progression from MCI to dementia and faster cognitive decline in

AD.22–25

CSF levels of FABP3 are increased in AD, both in individuals with

MCI/dementia and at the preclinical stage, and can predict progres-

sion of MCI to AD dementia.30–34 FABP3 is detected at high levels in

cortical neurons35 and CSF levels are increased after trauma to the

brain such as acute stroke, traumatic brain injury, and Creutzfeldt-

Jakob disease likely through release by damaged cells, making FABP3

a putative biomarker for neuronal damage.36 However, CSF levels of

FABP3maynot simply reflect generalizedneuronal degeneration inAD

as levels are associated with Aβ pathology and risk factors associated

with AD, predict development of AD in healthy individuals, and corre-

late with CSF tau and apolipoprotein levels.30,37–39 FABP3 is a fatty

acid-binding protein facilitating intracellular transport of omega-6

polyunsaturated fatty acids (PUFAs), which participate in the regula-

tion of the lipid composition of membranes, neurite formation, and

synapse plasticity.40 Increased CSF levels of FABP3 in AD may reflect

lipid dyshomeostasis, an established feature in AD.40 Changes in brain

lipid composition can under pathologic conditions result in a range of

pathophysiological changes present in AD such as blood-brain barrier

dysfunction, abnormal processing of amyloid-beta precursor protein

(APP), defects in protein clearance, unbalanced energy metabolism,

and inflammation.41

8OHdG, or 8-hydroxy-2’-deoxyguanosine, is a widely used

biomarker of oxidative stress which is generated by reactive oxy-

gen species (ROS) that oxidize the guanine of DNA.42 Oxidative
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stress is characteristic for AD and increased levels of 8OHdG and the

related oxidation product 8-hydroxyguanosine (8OHG) are present in

mitochondrial DNA (mtDNA) from postmortem brain tissue in AD43

as well as in CSF from individuals with AD.26,27 Oxidative stress is

involved in Aβ- and tau-mediated neurotoxicity and contributes to

synaptic loss, while also participating in abnormal Aβ accumulation and

neurofibrillary tangle deposition, forming a vicious cycle promoting

the initiation and progression of AD pathology.44

Large neuropathology studies have demonstrated that AD pathol-

ogy commonly coexistswithvascular pathology in individuals bothwith

and without dementia.15 More than half of the participants with AD

had increased CSF levels of MMP-10, considered a vascular marker, in

our study. In addition, 86% of the participants had increased CSF levels

of one or more of the other vascular biomarkers under study (MMP-2,

ICAM-1, VCAM-1, Flt1, PlGF, VEGF, and VEGF-D). The contribution of

vascular pathology in the pathophysiology ofADand its clinical expres-

sion is still not clear, but there may be a synergistic effect between

vascular andADpathologies bothwhen it comes to the development of

tissue injury and cognitive impairment.15 Using a simplified approach

and ignoring contributions of other processes on cognitive decline in

ADmay lead to disappointing results in clinical outcomes in clinical tri-

als. Even the recently successful anti-amyloid immunotherapies which

target Aβ and effectively reduce its biomarker levels to normal in some

people only seem to slow progression of dementia, not stop or reverse

it. As with other complex disorders like cancer or heart failure, suc-

cessful treatment of AD will almost certainly require multi-targeted

therapy based on biomarker profiles.

A surprising finding when applying factor analysis to define a multi-

analyte profile of AD was the contribution of 24OHC, a marker

associated with metabolism. While included in the multi-analyte pro-

file, 24OHC was not associated with AD in the univariate analysis.

Analytes that do not differ significantly between two groups should

not automatically be discounted, as statistical methods evaluating

groupaverages largely disregard the informationprovidedby the inter-

individual variability of the analyte andassume that adiseasewill affect

all individuals in a similar way. Processes affecting small subgroups

resulting inmarked differences between individuals in a groupmay not

be sufficient to affect group means. More nuanced differences requir-

ingmuch larger sample sizes to obtain power in univariate analysismay

still contribute to the factor analysis.

Strengths of our study include the large panel of analytes highlight-

ing the contribution of many different pathophysiological domains in

AD and their relationships, that all assays were thoroughly validated

resulting in excellent technical performance, and that a high-contrast

cohort with molecular verification of the AD diagnoses was used. Lim-

itations include the relatively small sample size which may limit the

generalizability of the LASSO approach, that detailed clinical informa-

tion about comorbidities and vascular risk factors were unavailable,

and that sampleswere obtainedwhen participants had established dis-

ease when downstream effects of neurodegeneration may contribute

to the pathological abnormalities in addition to any causal mecha-

nisms. Nevertheless, the median MMSE score in the AD group was

23.5 consistent with that most participants had relatively low cogni-

tive impairment at the time of the sample collection. This is a stage of

the disease when treatments are considered and individualized ther-

apeutic approaches aimed at prominent pathological pathways would

be needed.

In summary, we used a highly validated panel of 25 CSF biomarkers

to better evaluate the heterogeneity of underlying pathophysiologi-

cal processes in AD. We noted that, while AD was associated with

increased levels of three biomarkers (MMP-10, FABP3, and 8OHdG)

on a group level, half of all AD participants had increased levels

of biomarkers belonging to at least two pathophysiological domains

reflecting the diversity in AD. Interestingly, factor analysis showed

that two markers of metabolism and oxidative stress (24OHC and

8OHdG) contributed independent information separate from MMP-

10 and FABP3, associatedwith neurodegeneration and vascular injury.

Better understanding of the heterogeneity among individuals with

AD will be crucial for optimizing personalized treatment strategies

aimed at specific mechanisms contributing to the disease process on

an individual level and at different phases of the disease.
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