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Molecular networking connects mass spectra of molecules based on the similarity of their

fragmentation patterns. However, during ionization, molecules commonly form multiple ion

species with different fragmentation behavior. As a result, the fragmentation spectra of these

ion species often remain unconnected in tandem mass spectrometry-based molecular net-

works, leading to redundant and disconnected sub-networks of the same compound classes.

To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that

integrates chromatographic peak shape correlation analysis into molecular networks to

connect and collapse different ion species of the same molecule. The new feature relation-

ships improve network connectivity for structurally related molecules, can be used to reveal

unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate

the expansion of spectral reference libraries. IIMN is integrated into various open source

feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries

with a broad coverage of ion species are publicly available.
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Molecular networking (MN)1 within the GNPS web plat-
form (http://gnps.ucsd.edu)2 has been used for the ana-
lysis of nontargeted mass spectrometry data in various

fields3,4. MN relies on the principle that similar structures tend to
form similar patterns in fragmentation mass spectra (MS2). MN is
built up through the pairwise spectral comparisons of a dataset,
creating an MS2 spectral network. This network is then enriched by
annotating the experimental MS2 spectra against MS2 spectral
libraries2,5 or compound databases (Fig. 1). In the resulting mole-
cular networks, annotations can be propagated through the network
edges to adjacent nodes6. MN can be used to map the chemical
space of complex samples to facilitate the discovery of new mole-
cules, especially analogs of known compounds2. For the analysis of
liquid chromatography-mass spectrometry (LC-MS2) data, feature-
based molecular networking (FBMN) combines MN with chro-
matographic feature-finding tools7.

During LC-MS ionization, a given compound can generate
multiple ion species (e.g., protonated and sodiated adducts),
which appear as individual nodes in a molecular network, due to
different precursor mass-to-charge ratios (m/z). As various
commonly detected ion adducts exhibit different fragmentation
behavior during collisional activation (e.g., in collision-induced
dissociation (CID) mode) (Supplementary Fig. 1), MS2 spectral
networking on its own does not necessarily connect all ion
adducts produced by a single compound. This often contributes
to the unwanted separation of molecular families (subnetworks)
and limits the propagation of library annotations through the
networks. The two ion species that are most frequently repre-
sented in spectral libraries ([M+H]+ and [M+Na]+) typically
stay unconnected.

Various tools have been developed for the grouping and
annotation of ion species in LC-MS data. The first step, feature

grouping, typically involves a retention time filter and the cor-
relation of feature intensities across samples10–12. Other tools,
such as CAMERA and CliqueMS, add a pairwise correlation of
feature shapes to the grouping metric13,14. RAMClust provides an
option to simultaneously process LC-MS data with MS2 from
data-independent acquisition (DIA)10. While many tools10,12–15

directly interoperate with the feature-finding software XCMS16,
MS-FLO was developed to process exported feature lists from
MZmine17, MS-DIAL18, and XCMS. Generally, after feature
grouping, ion species can be identified based on known mass
differences. Connecting all ions that originate from the same
molecule results in MS1-based groups, here referred to as ion
identity networks (IIN).

In this work, we present Ion Identity Molecular Networking
(IIMN) and showcase how to fuse MS2-based spectral networks
with an additional networking layer based on MS1 feature shape
correlation of identified ion species that originate from the same
molecule. IIMN addresses this central bottleneck of unconnected
ion adducts in MN and the general problem of feature redun-
dancy in MS-based metabolomics8,9. We further show the initial
validation of IIMN with a ground truth dataset with induced
adduct formation by post-column infusion of salt solutions.
Furthermore, we present IIMN results for two datasets of natural
products standards as well as 24 publicly available experimental
datasets.

Results
Workflow development. The IIMN workflow annotates and
connects related ion species in feature-based molecular networks
within the GNPS web platform. We integrate IIN into MS2-based
molecular networks and demonstrate the application to LC-MS2
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Fig. 1 The concept of ion identity molecular networking (IIMN). The workflow integrates aMS1 feature grouping to connect different ion species of the same
compound and b feature-based molecular networking to connect similar compound structures based on MS2 spectral similarity to yield c combined networks. d
highlights the data processing steps to create IIMN networks in MZmine and GNPS. After feature detection and alignment across multiple samples, features are
grouped based on the correlation of their chromatographic feature shapes (intensity profiles) and other MS1 characteristics. Subsequently, ion species of grouped
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After uploading these results to the GNPS web server, the IIMN workflow generates combined networks and an alternative output with all IIN collapsed into single
molecular nodes to reduce complexity and redundancy.
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studies that make use of product ion scans acquired in data-
dependent acquisition (DDA) mode. The IIMN workflow com-
prises feature grouping, feature shape correlation, and identifi-
cation of ion species using a variety of feature-finding software
tools, such as MZmine17, XCMS16, and MS-DIAL18 that make
use of different algorithms for the identification of ion adducts. A
table of extracted MS1 features, each with a consensus MS2

spectrum, together with IIN results are then uploaded to GNPS to
run the IIMN workflow on the web server. The resulting ion
identity molecular networks contain two layers of feature (node)
connectivity, linking ion identities of the same compound by MS1

characteristics and structurally similar compounds by MS2

spectral similarity (Fig. 1). A detailed description of the IIMN
workflow as well as a step-by-step tutorial are provided in the
method section and can be found online in the GNPS doc-
umentation (https://ccms-ucsd.github.io/GNPSDocumentation/
fbmn-iin/). The IIMN workflow is available online (https://
gnps.ucsd.edu/) and the source code is shared on GitHub under
an open source license.

Validation of IIMN by post-column infusion of salt solutions.
To validate the identification of ion species with IIMN, we created
an LC-MS2 benchmark dataset of a natural product mixture
containing 300 compounds, in which we promoted adduct for-
mation by post-column infusion of ammonium acetate or sodium
acetate at different concentrations (Fig. 2a–e). The IIMN net-
works can be depicted in alternative layouts that illustrate com-
plementary results within the same dataset. GNPS also provides
networks with collapsed IIN to reduce the redundancy of dif-
ferent ion species by merging them into a single neutral molecule
(M) node (Fig. 2c). In this dataset, IIMN successfully connects ion
identities and reduces the size of a complex network by 56% to

four major compounds. The increased connectivity facilitates the
propagation of structure annotations to neighboring in-source
fragments and an unannotated compound. Finally, the abun-
dance change of identified adducts ([M+H]+, [M+NH4]+, [M
+Na]+) in our benchmark dataset is in agreement with the
different post-chromatography salt infusion conditions (H2O,
Na-Acetate, or NH4-Acetate, Fig. 3), which validates ion species
identification on a dataset level. For instance, the abundance of
[M+Na]+ and [M+NH4]+ ion identities was significantly (p <
0.001) higher in the corresponding samples with the post-column
infusion of sodium acetate or ammonium acetate, respectively,
when compared to the control samples. The exclusive formation
of an uncommon [M+ACN+NH4]+ in-source cluster after
infusion of ammonium ions into an ACN-water gradient further
verifies connected ion identities.

Application of IIMN to 24 public datasets. To test the workflow
with data generated from various sample types and on different
experimental platforms, 24 public datasets were processed using
the MZmine workflow and its metaCorrelate algorithm for fea-
ture grouping and ion identity networking (Fig. 4, Supplementary
Table 1). All the specific parameters for processing are provided
in the methods section (under Dataset processing). MZmine
feature-finding parameters were optimized for each dataset by
various coauthors, while the feature grouping and ion identity
networking parameters were kept constant for better compar-
ability. IIMN identified biologically relevant metal-binding com-
pounds via post-column-induced ion species. In a native ESI-
based metabolomics study, IIMN specifically revealed that the
known siderophore yersiniabactin also acts as a zincophore
(Supplementary Note 1, Supplementary Fig. 2)19 and was vali-
dated in animal experiments.
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Fig. 2 Ion identity molecular networking. Depicted are three visualizations of the same ion identity molecular network from the post-column salt infusion
experiments. a Sorting by ion identities reveals that MS2 similarity edges (blue) often link sodiated ions (e.g., [M+Na]+ and [2M+Na]+) into a
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For a dataset with 88 extracts from feces and gall bladder of
various animals, the comparison between feature-based molecular
networking with and without the additional edges from ion
identity networking demonstrates how IIMN complements and
improves FBMN (Fig. 5). Here, IIMN combined multiple smaller
networks and unconnected nodes into a large network of free bile
acids and those conjugated to amino acids or sulfate. These
results prove that IIMN is a suitable method to connect
structurally similar compounds, such as isomers, based on MS2

spectral similarity scoring and feature shape correlation. FBMN
only established one edge between subnetworks of free and
conjugated bile acids. Overall, bile acid analogs were separated
into multiple subnetworks and unconnected nodes with a clear
trend of separating sodiated and protonated ion identities.
Finally, the complexity and redundancy are reduced by collapsing
all IINs into corresponding representative nodes. The final
network has a reduced number of nodes and a higher density
of edges between nodes with annotations to the same compound
classes.

IIMN also yielded additional structural information in the case
of samples from the mold Stachybotrys chartarum (Supplemen-
tary Note 2, Supplementary Fig. 3). In this project, IIMN revealed
novel phenylspirodrimane derivatives, which were verified by
nuclear magnetic resonance spectroscopy (NMR)20. In the
network, the increasing number of aliphatic hydroxyl groups
was reflected by the maximum number of in-source water losses,
whereas acetylation of hydroxy groups reduced this number. The
manual inspection of IIMN results was facilitated by additional
MS1 annotations provided by ion nodes that lack MS2

fragmentation data and are consequently unavailable to the
FBMN workflow. During the creation of IIMN networks, further
layers of additional feature connections can be supplied. One
example is a relationship between ion identity networks based on
neutral mass differences that annotate putative structure
modifications between compounds (Supplementary Note 3,
Supplementary Fig. 4).

From a global view on all 24 datasets, IIMN successfully
reduced the number of unconnected LC-MS2 features and
increased the connections to annotated compound structures

(Supplementary Fig. 5, Supplementary Table 2). Annotation rates
in all 24 datasets of 6% and 12% are in the expected range with
contemporary MS2 library matching21,22 and MS1 ion annota-
tion, respectively, especially with the here chosen restrictive IIN
parameters (Fig. 4a). By propagating spectral library matches to
first neighboring IIN nodes, the annotation rates of the test
datasets were increased by an average of 35% (Fig. 4a, b). On the
individual dataset level, the highest increase (325%) was observed
for dataset 4 with more MS1 data points per feature and thus
better feature shape correlation on the cost of a lower MS2

acquisition rate. Most datasets (16 out of 24) experienced an
increase greater than 10%, while eight datasets were below this
value. After inspecting the LC-MS2 files, we found various
reasons for this difference. Datasets 11 and 12, for example, had a
higher focus on MS2 acquisition with a high topN of MS2 events
in the DDA settings that caused lower MS1 survey scan
frequencies and hence fewer data points per features, resulting
in lower IIN correlation and connectivity. For datasets 7 and 19,
the MS2 annotation rate was low to begin with and hence few
annotations could be propagated by IIMN.

Generation of IIMN-based spectral libraries. Besides the
increase in feature annotations in individual datasets, IIMN also
enables the generation of propagated spectral libraries, increasing
and diversifying the library coverage beyond commonly con-
sidered ion species. In positive ion mode, for example, most mass
spectrometrists routinely consider [M+H]+ and [M+Na]+

adducts, but less frequently [M+NH4]+, [M+ Ca]2+, [M+K]
+, and in-source fragments in their data analysis and hence
library contributions. However, while inspecting the relative
distribution of ion identities within all 24 datasets, marine sam-
ples showed a higher percentage of [M+NH4]+ adducts (24 ±
5%) when compared to all other datasets (10 ± 8%). Sodiated
adducts that were expected to be elevated in marine samples (due
to anticipated higher salt contents in the original sample), in
contrast, are evenly distributed between all datasets with an
average of 26 ± 6% (Fig. 4c). On average, protonated species
contribute to 23 ± 6% of the overall ion identities in our test
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datasets, indicating spectral bias in public MS2 libraries such as
MassBank of North America (66% [M+H]+) and GNPS (65%
[M+H]+) (Fig. 6), and suggests that the community should
provide MS2 spectra for other ion species of the same molecules
to reference libraries. Here, IIMN can be used to expand the
spectral libraries with additional adducts and in-source fragments
in LC-MS experiments, which can significantly increase spectral

library coverage and thus MS2 annotation rates. The potential to
use IIMN to propagate spectral library matches to adjacent
unannotated features with ion identity is evident from a mean
increase of the annotation rate by 35% (Fig. 4a, b). By propagating
high confident spectral matches (in this case, cosine >0.9 or
authentic standards) to connected ion identities from the 24
public datasets and two datasets of natural products from the
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Fig. 5 Comparisons of a subnetwork with matches to bile acids from 88 feces and gall bladder samples of various animals (MSV000084170). This
overview compares a the FBMN results to IIMN b before and c after collapsing all ion identity networks into single representative nodes. In the top row,
nodes are colorized depending on the adduct that ion identities are based on. In contrast, the lower three networks emphasize nodes with MS2 spectra that
match library spectra of specific compound classes, mainly bile acids and their conjugates. The collapsed network (c) reduces the complexity and
redundancy of having multiple nodes per compound and only keeps MS2 spectral similarity edges.
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NIH ‘ACONN’ collection from which an original reference
library was created, we created IIMN spectral libraries with a total
of 2657 entries with a broader and more representative ion spe-
cies coverage (e.g., 24% [M+H]+, 22% multimeric species, 17%
[M+Na]+, 15% in-source fragments, and 13% [M+NH4]+).
Such spectral libraries better represent ion species observed in
typical metabolomics experiments (Supplementary Table 3 and
Fig. 6).

Discussion
In conclusion, by establishing relationships between different ion
species originating from the same compound and structurally
similar compounds, IIMN facilitates molecular network inter-
pretation and compound annotation. The combined networks
with two layers of feature connectivity enable strategies to present
and analyze mass spectrometry data. Networks with collapsed IIN
especially reduce the redundancy of detecting multiple ion species
per compound. IIMN successfully connected more related com-
pound annotations in datasets from different analytical platforms
and over a variety of small molecule compound classes, hence
reducing the number of unconnected nodes and increasing the
annotation density in molecular networks. An exciting applica-
tion of IIMN is the expansion of spectral libraries by (re)-pro-
cessing public datasets and propagating spectral library
annotations to create library entries of connected ion identities.
The identification of ion adducts can reveal novel ionophores,
some of which will be biologically relevant and are still under-
appreciated in the function of small molecules19,23. The integra-
tion into FBMN and the GNPS environment provided a platform
to utilize IIMN in other related bioinformatics tools, e.g.,

SIRIUS24, CANOPUS25, and Qemistree26 for molecular formula
and compound class level annotation, which will also facilitate
additional validation of network connectivity. Direct interfaces to
the GNPS-Dashboard and MASST27 support collaborative data
visualization and repository scale MS2 queries, respectively. Fur-
thermore, the open source code and generic connection between
feature finding, ion identity molecular networking, and the online
GNPS workflow encourage the implementation of interfaces to
other feature grouping and ion identification algorithms. We
anticipate that the option to add orthogonal relationships
between features to IIMN will stimulate the integration and
development of additional tools for spectral alignment and
measures of feature–feature relationships28.

To reach a broad user base, we interfaced the IIMN workflow
with three widely used open source MS processing tools
(MZmine17, MS-DIAL18, and XCMS13,16). Detailed documenta-
tion and training videos are available online (https://ccms-ucsd.
github.io/GNPSDocumentation/fbmn-iin/). The option to
directly submit IIMN analysis from MZmine to GNPS in parti-
cular provides a simple entry point for new users.

Methods
Post-column salt infusion experiments. For salt addition UHPLC-MS2 experi-
ments, a mixture of 300 natural products from the NIH NCGC collection was
prepared in 100 µL methanol-water-formic acid (80:19:1, Fisher Scientific, San
Diego, USA) at a concentration of 0.01 µM of which 2 µL were injected into a
Vanquish UHPLC system coupled to a Q-Exactive quadrupole orbitrap mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany) in three technical
replicates. For the chromatographic separation, a reversed-phase C18 porous core-
shell column (Kinetex C18, 50 × 2 mm, 1.8 um particle size, 100 Å pore size,
Phenomenex, Torrance, USA) was used. For gradient elution, a Vanquish (Thermo
Fisher Scientific, Bremen, Germany) high-pressure binary gradient system was
used. The mobile phase consisted of solvent A H2O+ 0.1% formic acid (FA) and
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solvent B acetonitrile (ACN)+ 0.1% FA. The flow rate was set to 0.5 mL/min.
Samples were eluted with a linear gradient from 0–0.5 min, 5% B, 0.5–8 min 5–50%
B, 8–10 min 50–99% B, followed by a 2 min washout phase at 99% B and a 3 min
re-equilibration phase at 5% B. Post-column we infused ammonium acetate or
sodium acetate solutions (50, 5 and 0 mg/L) at 10 µL/min (dilution factor 50) with
a syringe pump to yield a final concentration of sodium or ammonium acetate of 1,
0.1, and 0 mg/L. Data-dependent acquisition (DDA) of MS2 spectra was performed
in positive mode. Electrospray ionization (ESI) parameters were set to 52 psi sheath
gas pressure, 14 AU auxiliary gas flow, 0 AU sweep gas flow, and 400 °C auxiliary
gas temperature. The spray voltage was set to 3.5 kV and the inlet capillary to 320 °
C. 50 V S-lens level was applied. MS scan range was set to m/z 150–1500 with a
resolution at m/z 200 of 17,500 with one micro-scan. The maximum ion injection
time was set to 100 ms with an automatic gain control (AGC) target of 1E6. Up to 5
MS2 spectra per MS1 survey scan were recorded in DDA mode with a resolution of
17,500 at m/z 200 with one micro-scan. The maximum ion injection time for MS2

scans was set to 100 ms with an AGC target of 3.0E5 ions and a minimum 5% C-
trap filling. The MS2 precursor isolation window was set to m/z 1. The normalized
collision energy was set to a stepwise increase from 20 to 30 to 40% with a single
charge as the default charge state. MS2 scans were triggered at the apex of chro-
matographic peaks within 2–15 s from their first occurrence. Dynamic precursor
exclusion was set to 5 s. Ions with unassigned charge states were excluded from
MS2 acquisition as well as isotope peaks.

Ion identity molecular networking-workflow overview. In general, the ion
identity molecular networking (IIMN) workflow starts with LC-MS2 data proces-
sing in one of the supported open source feature-finding tools. After the creation of
an aligned feature list of all samples, ion species that originate from the same
analyte are grouped and annotated by MS1 criteria, such as their retention time,
feature shape correlation, and m/z difference. Here, such groups are named ion
identity networks. Subsequently, information of detected features and their
representative MS2 spectra, ion identities, and connections to other ion identities
are exported and transferred to the GNPS web server for the molecular networking
part (refer to tool-specific sections for details). After the construction of ion
identity molecular networks, features share connectivity based on MS2 spectral
cosine similarity and MS1-based feature shape correlation. In addition to this
combined network, GNPS calculates a version with collapsed IIN, where one node
represents multiple ions of the same molecule. Results are available in the GNPS
web interfaces and as downloads in various open formats as tables and networking
files to allow local visualization, reviewing, and post-processing.

The IIMN workflow aids the feature-based molecular networking workflow7 by
adding MS1 specific information, which is provided as new columns in the
quantification table and as additional edges in a Supplementary Pairs text file
within the GNPS-FBMN workflow. The option of additional edges from other tools
was introduced to stimulate and facilitate the development of new computational
methods that link nodes in the resulting molecular networks and was initially
developed for IIMN. The text format follows a generic comma-separated style with
the columns ID1 and ID2 (matching the feature IDs in the feature quantification
table and mgf), EdgeType (defining the method), Score (numerical), and
Annotation. To enable a broad user base to employ ion identity molecular
networking in their studies, three popular mass spectrometry processing tools,
namely, MZmine17, MS-DIAL30, and XCMS(+ CAMERA)13,16, were modified or
adapted with additional export scripts or modules. In comparison to FBMN, IIMN
can include features that are lacking MS2 fragmentation spectra but are connected
to other feature nodes by MS1 IIN edges. Regarding a higher detectability by MS1

compared to triggered MS2 acquisition, the additional nodes with ion identities
complement the resulting networks with information otherwise lost in FBMN or
classical MN.

The general steps to create ion identity molecular networks.

(1) If needed, convert the spectral data files to an open format (e.g., mzML)
(2) Import the data into one of the open source tools: MZmine, MS-DIAL,

or XCMS
(3) Process the data to create a feature list (aligned overall samples)
(4) Perform MS1-based feature grouping and ion identity annotation
(5) Export the feature list as a feature quantification table (.csv), an MS2 spectral

summary file (.mgf), which contains a representative fragmentation
spectrum for each feature, and a supplementary edges files (IIN files, .csv)
(more information in the tool-specific workflow sections)

(6) Create a metadata file to group samples for statistics (optional)
(7) Upload all files to GNPS and start a new feature-based molecular

networking job (MZmine can directly submit and start a new IIMN job
on GNPS)

(8) Download and visualize the results in a network analysis software (e.g.,
Cytoscape31, https://cytoscape.org/)

(9) The option Download Cytoscape Data provides two.graphml networking
files

(a) The standard FBMN and IIMN networks (base directory)
(b) IIMN networks with collapsed ion identity networks (in the gnps_mo-

lecular_network_iin_collapse_graphml directory)

(10) The option Direct Cytoscape Preview/Download provides the IIMN
network and its collapsed version as Cytoscape projects with various style
presets

Refer to the documentation on how to run FBMN within GNPS and multiple
mass spectrometry data processing tools.

https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnet
working/

For IIMN, refer to the related part of the GNPS documentation.
https://ccms-ucsd.github.io/GNPSDocumentation/fbmn-iin/

Generation of collapsed ion identity networks. One result of the GNPS-IIMN
workflow is the combined networks with IIN collapsed into single nodes. For this,
all ion nodes with the same IIN ID are merged into a representative node based on
the feature with the highest library match score, if available, or otherwise the
feature with the maximum abundance. While all IIN edges are collapsed, MN edges
of all ion identities are redirected to their representative nodes so that duplicates
replace existing edges if their edge score (cosine similarity) is higher. Limiting the
number of MN edges to the one with the highest cosine similarity. Furthermore,
representative collapsed nodes are extended by multiple attributes, including the
intensity of each ion identity and their summed intensity. This enables the direct
comparison of ionization tendencies and provides new visualization options. An
example with pie charts of the ion abundances is demonstrated in Supplementary
Fig. 3.

Cross-validation of MS2 spectral library matches and MS1 ion identities. In IIMN,
nodes may combine annotations from MS2 spectral library matching and MS1 ion
identity networking. As cross-validation, GNPS parses and harmonizes the ion
species string of both the detected ion identity and matching spectral library entry
before checking for equality. The results are reported as an additional column in
the node table. This equality check facilitates manual reviewing and the spotting of
discrepancies between the MS1 and MS2 annotations.

The ion string parser harmonizes an input (e.g., [M−H2O+ 2H]2+) in the
following steps:

(1) Spaces are removed
(2) Charge state is detected and removed from the input (2+)
(3) Brackets are removed ([]())
(4) Input is split into added (+2H) and removed (−H2O) parts
(5) Both lists are sorted alphabetically (+2H sorted by letter H)
(6) If the charge state is missing, it is calculated for all parts that are listed in a

lookup table (e.g., +Na or +H correspond to charge 1+)
(7) The harmonized string is constructed by concatenation of [M-all removed

parts+ all added parts]charge state.

As an example, the harmonized string [M+H]+ is produced by the input
strings M+H, M+H+ , and [M+H]+, which are all commonly found in the
GNPS spectral libraries and as an output of various software tools.

The full open source code of the ion string parser and its latest charge lookup
table can be found on GitHub (https://github.com/CCMS-UCSD/GNPS_Work
flows).

IIMN with MZmine. MZmine lacked a functional algorithm to group and annotate
different ion species of the same molecules. Therefore, a workflow was imple-
mented and split into separate modules for feature grouping (metaCorrelate),
annotation of the most common ions (ion identity networking), an option to add
more ion identities to existing IIN iteratively, and modules to validate multimers
and in-source fragments based on MS2 scans. Both the creation and expansion of
ion identity networks follow customizable lists of adducts and in-source mod-
ifications to cover any type of multimers, in-source fragments, and adducts. The
IIN procedure lists all possible ion identity pairs between two features and ranks
them according to the maximum number of features that support a specific
annotation, i.e., the ion identity network size. While a feature might be annotated
as two different ion species that point to different metabolites, the current workflow
will only create additional IIN edges and ion species metadata for the highest-
ranking ion identity per feature. This filter decreases the number of spurious
matches. Finally, the GNPS-FBMN export module was modified to export all
needed files to run IIMN. The quant table (.csv) contains grouping and ion identity
specific columns, and a new Supplementary Pairs text file lists all additional IIN
edges. The user can limit the export to features with MS2 fragmentation spectra or
include those with an ion identity. Consequently, the IIMN workflow on GNPS
connects features without MS2 spectra only by their IIN edges. MZmine is the first
tool to provide a direct submission to GNPS to start analysis jobs, consequently
streamlining the workflow and lowering the entrancing energy needed to apply
IIMN within GNPS.

In detail, the metaCorrelate feature grouping algorithm searches for features
with similar average retention times, chromatographic intensity profiles (feature
shapes) with a minimum percentage of intra-sample correlation and overlap, and
minimum feature intensity correlations across all samples (Supplementary Fig. 6).
The feature shape correlation is a vital filter to reduce false grouping significantly
and can apply either a minimum Pearson correlation (favored) or cosine similarity.
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A requirement is at least five data points, two on each side of the peak apex. If a low
MS1 scan rate leads to chromatographic peaks with less than five data points, it is
advisable to either redesign the acquisition method or to turn off the feature shape
correlation. Note that the latter is expected to reduce the ion annotation
consistency and should be used with caution. Similarly, the feature height
correlation across all samples is optional, provides the same correlation or
similarity measures, and additionally, relies on constant ionization conditions for
all samples. Therefore, this filter should be turned off if the conditions were
changed throughout the study, e.g., by changing the separation conditions or ion
source parameters. The general principle of the feature height correlation is that
different ions of the same molecule should follow a similar trend in abundance
across all samples of the same study. If any feature, such as an [M+H]+ feature,
increases at least 10-fold, all grouped features, e.g., [M+Na]+ or [M+NH4]+,
should never have a negative feature height correlation coefficient and should as
well increase in abundance. If both the feature shape and feature height correlation
filters are omitted, feature grouping is solely filtered by the retention time window
and overlap. To annotate features on an MS1 level, ion identity libraries are created
with a user-defined list of in-source modifications (fragments and clusters), a list of
adducts, and a maximum multimers number parameters (Supplementary Fig. 6).
Each adduct is combined with each modification to fill the library with ion
identities for 1 M to the maximum multimers number. Ion identity networks are
then created by applying all ion identity pairs to all pairs of grouped features to
calculate and compare the neutral masses of features with specific ion identities
(mass difference, charge (z), and multimer number). Optionally, after the creation
of ion identity networks with the main library, further ion identities can be added
iteratively to existing networks. This workflow enables the user to divide into
commonly and uncommonly detected ion identities and ensures that each network
contains at least two or more main ion identities. Finally, an ion identity network
refinement provides filters for minimum network size and to only keep the largest
(most descriptive) IIN per feature.

More on the integration of the new IIMN workflow in MZmine can be found
online (http://mzmine.github.io/iin_fbmn).

Refer to the documentation and video tutorials on how to apply IIMN within
MZmine and GNPS. The Youtube playlist “MZmine: Ion Identity Molecular
Networking” contains instructions on data processing for IIMN and FBMN, a
minimalistic and full IIMN workflow within MZmine, and theoretical background
to feature shape correlation and ion identity molecular networking.

https://ccms-ucsd.github.io/GNPSDocumentation/fbmn-iin-mzmine/
https://www.youtube.com/playlist?list=PL4L2Xw5k8ITyxSyBdrcv70LDKsP8Q

NuyN

IIMN with XCMS (CAMERA). The XCMS16 Bioconductor package32 is the most
widely used software for processing untargeted LC-MS-based metabolomics data.
Its results can be further processed with the CAMERA13 package to determine
which of the extracted m/z-rt features might be adducts13 or isotopes33 of the same
original compound. For the integration of XCMS and CAMERA into the IIMN
workflow, utility functions were created (‘getFeatureAnnotations‘ and ‘getEdgelist‘)
to extract and export MS1 based feature and edge annotations (i.e., grouping of
features to adduct/isotope groups of the same compound). In addition, the utility
function ‘formatSpectraForGNPS‘ is used to export MS2 spectra. These functions
are available in the GitHub repository https://github.com/jorainer/xcms-gnps-
tools. R-markdown documents and python scripts with example analyses and
descriptions are available in the documentation. (https://ccms-ucsd.github.io/
GNPSDocumentation/fbmn-iin-xcms/) The files exported by these utility functions
can be directly used for IIMN analysis on GNPS. Note that theoretically, it is
possible to use RAMClust10, CliqueMS14, or other packages available for XCMS
that perform ion annotation. The results of these packages need to be reformatted
to the introduced generic supplementary edges format. The CAMERA integration
might serve as a reference and starting point.

IIMN with MS-DIAL. MS-DIAL34 is a polyvalent mass spectrometry data pro-
cessing software capable of processing various nontargeted LC-MS metabolomics
experiments, including ion mobility mass spectrometry (http://prime.psc.riken.jp/
compms/msdial/main.html). MS-DIAL supports IIMN since version 4.1. After a
standard data processing workflow with MS-DIAL, the alignment results can be
exported for IIMN analysis using the GNPS export option. Detailed documentation
and representative tutorials are available in the GNPS documentations (https://
ccms-ucsd.github.io/GNPSDocumentation/fbmn-iin-msdial).

Dataset processing. All 24 datasets (Supplementary Table 1) were processed with
the MZmine workflow. As each dataset originates from a different study and was
acquired with different LC-MS methods, variable feature detection and alignment
parameters were applied, which are summarized in Supplementary Table 4. For all
datasets, the same parameters were used for the feature grouping module (meta-
Correlate) and the ion identity networking modules, with the only exception that
the feature height correlation filter was turned off to group features for the post-
column salt infusion experiments. As described previously, this filter should only
be applied if the ionization conditions and detection sensitivity are kept constant

overall samples. The post-column infusion of different salt solutions for this study
promotes the formation of specific ion species in the ionization source.

(1) A pair of features were grouped with a retention time tolerance of 0.1 min,
with a minimum overlapping intensity percentage of 50% in at least two
samples in the whole dataset (gap-filled features excluded), a feature shape
Pearson correlation greater equals 0.85 with at least five data points and two
data points on each edge, and a feature height Pearson correlation greater
equals 0.6 with at least three data points.

(2) The initial creation of ion identity networks was performed using the ion
identity networking module and a maximum tolerance of 0.001m/z or 10
ppm, a comparison where a pair of features and a pair of ion identities only
need to match in one sample, and an ion identity library created based on 2
M as the maximum multimers number, a list of adducts ([M+H]+, [M+
Na]+, [M+NH4]+, [M−H+ 2Na]+, [M+ 2H]2+, and [M+H+Na]2+),
and a list of in-source modifications ([M−H2O] and [M− 2H2O]).

(3) Two iterations were applied to add more ion identities to the resulting
networks of step 2 with an unchanged m/z tolerance.

(a) To add a higher variety of adducts, a maximum multimers number of 2,
a list of adducts ([M+H]+, [M+Na]+, [M+ K]+, [M+NH4]+, [M−
H+ 2Na]+, [M−H+ Ca]+, [M−H+ Fe]+, [M+ 2H]2+, [M+H+
Na]2+, [M+H+NH4]2+, [M+ Ca]2+, and [M+ Fe]2+), and an empty
list of modifications were used.

(b) To add a greater variety of modifications and larger multimers, a
maximum multimers number of 5, a list of adducts ([M+H]+, [M+
NH4]+, and [M+ 2H]2+), and a list of modifications ([M−H2O], [M
− 2H2O], [M− 3H2O], [M− 4H2O], [M−HFA], and [M−ACN])
were used.

Dataset statistics. Ion identity molecular networking statistics on all datasets
were extracted with a new MZmine module and exported to a comma-separated
file (csv) for evaluation in Microsoft Excel. The module is included in the special
IIMN build of MZmine. All available statistics were based on the spectral input
file (mgf) and the resulting network file (graphml), which was downloaded from
the dataset’s corresponding GNPS results page. The graphml file contains all ion
identity molecular networking results, namely, the nodes representing individual
features and the edges between nodes. The mgf spectral summary file contains
the corresponding MS2 spectrum for each feature node. While classical MN and
FBMN depend on MS2 data for each node, IIN creates new MS1-based edges that
might include nodes without an MS2 spectrum in the resulting network. For a
comparison between FBMN and IIMN, only nodes present within both networks
(with an MS2 spectrum) are considered. A statistical summary and in-depth
statistics on each dataset are provided in a supplementary Microsoft Excel
workbook (Supplementary Data 1). Excerpts are summarized in Supplementary
Table 2, and the different statistical measures and metadata items are described
in Supplementary Table 5. One important measure is the identification density,
i.e., all identified nodes and nodes with a maximum distance of n edges to at least
one identified compound. Supplementary Figure 5 highlights how the additional
edges of ion identity networking increase the identification density in the
datasets, measured over a maximum distance of 1–5 edges. The increased density
over one edge reflects the new links between unidentified to an identified node
by IIN edge. The identification density is increased for 21 datasets, two datasets
with poor identification rates exhibit no change, and one dataset lacks identi-
fications. The maximum identification density increase of +8% over one edge
results in a total of 42% of the nodes being either identified or directly linked to
an identified compound. The network of the corresponding dataset, i.e., the
post-column salt infusion study, contains a total of 22% identified nodes and
25% nodes with ion identity and MS2 spectrum in 134 ion identity networks. Ion
identity molecular networking decreased the number of unconnected singleton
nodes by −12% to a total of 42%. Filtering out nodes with poor MS2 spectra with
less than four signals, which was used as the minimum number of signals for the
library matching and FBMN networking, decreases the number of unconnected
singleton nodes further to 29%. Consequently, the network contains many nodes
without a match to any library or experimental spectra. Collapsing all nodes with
IIN edges into molecular nodes reduces the total network size by −20%, which
significantly reduces the overall redundancy and facilitates network visualization
and analysis.

To extract the same statistics on any results from IIMN, download the
networking results as a graphml file from a GNPS job page and use the mgf file of
that analysis. The special MZmine IIMN build offers two modules in the Tools tab.
More information and the latest IIMN enabled MZmine version are available
(http://mzmine.github.io/iin_fbmn).

● GNPS results analysis (IIMN+ FBMN)

For a single analysis

This tool also offers the extraction of new spectral library entries
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● GNPS results analysis (IIMN+ FBMN) of all sub

For multiple analyses at once

Generates statistics for each subfolder with exactly one graphml and mgf file
(names do not have to match)

IIMN-based spectral library generation
From experimental datasets. To comprehensively cover the fragmentation behavior of
a molecule, spectral libraries should contain fragmentation spectra of different ion
species acquired with different instrument types and fragmentation methods. IIMN
might serve as a solution to expanded spectral libraries. To create new spectral library
entries based on IIMN, all 24 datasets were searched for ion identity networks that
contain a match to the GNPS spectral libraries with a minimum cosine similarity of 0.9
and a minimum number of shared fragment ions of 4–6, depending on each dataset’s
FBMN parameters. For each matching IIN, all contained ion identity features with an
MS2 spectrum and at least three signals above 0.1% relative intensity were extracted as
new library spectra. The new library entries were constructed based on the highest
library match and its attributes, namely, the compound name, structure strings as
SMILES and InChI, and the neutral mass, the ion identity provided the ion species
information and the precursor m/z, and dataset-specific metadata was added
manually. With these strict rules, a total of 538 spectral entries were extracted from
all 24 datasets. The new library has a broader and more distributed ion identity
coverage when compared to selected representative spectral libraries from MassBank of
North America (MoNA) and GNPS. At the same time, it is similar to spectral libraries
that were generated with the new MSMS-Chooser library creation workflow in the
GNPS ecosystem (Supplementary Fig. 5). The new IIMN-based library was made
publicly available through the GNPS-library batch submission (Supplementary
Tab. 3, https://gnps.ucsd.edu/ProteoSAFe/gnpslibrary.jsp?library=GNPS-IIMN-
PROPOGATED).

From a natural product compound library. The library creation workflow was repe-
ated and refined on the mass spectrometry data collected for the NIH NPAC ACONN
collection of natural products (2179 compounds) provided by Ajit Jadhav (NIH,
NCATS). The IIMN workflow was optimized and then applied to two LC-MS datasets
collected on mass spectrometers operating in positive ionization mode, the
MSV000080492 acquired on a qTOF-MS maXis II (Bruker Daltonics, GmbH) and the
MSV000083472 acquired on a Q-Exactive (ThermoFisher Scientific, MA). During
feature-based molecular networking, library matching was limited to the manually
created GNPS libraries, which were based on the same qTOF-MS dataset (GNPS-NIH-
NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE, minimum matched signals
= 3, minimum cosine similarity= 0.6). A new library for both datasets was created with
new spectral entries with at least two signals above 0.1% relative intensity and with ion
identities matching to the adduct of the library matches. Furthermore, library matches
were filtered by a sample list of compound names contained in LC-MS samples. The
IIMN library creation workflow resulted in 805 and 1314 new library entries for the
qTOF-MS and the Q-Exactive datasets, respectively. The new IIMN-based library
entries were made publicly available through the GNPS-library batch submission and
merged into the existing manually created library GNPS-NIH-
NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE (Supplementary Table 3). In
total, we generated 2,657 IIMN-based new spectral library entries.

MZmine IIMN workflow for spectral library extraction. To extract spectral library
entries from any IIMN results, download the networking results as a graphml file
from a GNPS job page and use the mgf file of that analysis. The special MZmine
IIMN build offers the “GNPS results analysis” module in the Tools tab to create
library entries based on these two files and provided metadata. The minimum
GNPS-library match score sets a threshold for the extraction of library entries.
Furthermore, library matches can be filtered to also match the ion identity to the
adduct of the library match. A simple comparison between the different reporting
formats for adducts was implemented. It removes all spaces, square brackets, and
plus symbols (e.g., harmonizing M+H and [M+H]+). Filters are available for
new library entries with a minimum number of signals above a relative intensity
threshold.

The latest information on the IIMN MS2 library generation workflow in
MZmine is available online:

http://mzmine.github.io/iin_fbmn
Documentation on the GNPS-library batch submission is available at:
https://ccms-ucsd.github.io/GNPSDocumentation/batchupload/

Documentation. The documentation of the IIMN workflow is shared in the GNPS
documentations on GitHub (https://ccms-ucsd.github.io/GNPSDocumentation/
fbmn-iin/), which also covers FBMN, classical MN, and other related tools. Sug-
gested parameters for FBMN are described elsewhere7 and the reproducible
molecular networking protocol5 describes MN parameters with step-by-step
instructions. MZmine17 provides help dialogs with parameter descriptions for each
module and documentation links on their website (http://mzmine.github.io/

documentation.html). Tutorials and other references for MS-DIAL18 are provided
on their project website (http://prime.psc.riken.jp/compms/msdial/main.html).
Bioconductor hosts the XCMS16 and CAMERA13 packages together with related
information and their documentation (https://bioconductor.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw (.raw) and centroided (.mzXML or .mzML) mass spectrometry data as well as
processed data (.mgf and .csv) and ion identity molecular networks are available through
the MassIVE repository (massive.ucsd.edu). Individual MassIVE dataset identifiers are
listed in Supplementary Table 1. Dataset metadata and MZmine processing parameters
are available in Supplementary Table 4. Links to IIMN job pages for each dataset are
listed in Supplementary Table 6 with options for downloading or online analysis of
results. Job cloning provides access to all parameter values and to reproducible data
reanalysis. The statistical results on all 24 datasets are available in Supplementary Data 1.
The IIMN-based MS2 spectral libraries of propagated spectral entries can be used within
GNPS or downloaded for free. The IIMN-based MS2 spectral library from experimental
datasets is available on GNPS (https://gnps.ucsd.edu/ProteoSAFe/gnpslibrary.jsp?library
=GNPS-IIMN-PROPOGATED). The IIMN-based MS2 spectral libraries from 2 datasets
generated for the NIH Natural Products Library (NIH NPAC ACONN) were merged
into the existing manually created GNPS library (NIH Natural Products Library Round
2), available on GNPS (https://gnps.ucsd.edu/ProteoSAFe/gnpslibrary.jsp?library=GNPS
-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE). Individual download
links for the two libraries are https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c39d7
88d30f9408a9e53e68ec84868c6 (Q-Exactive dataset) and https://gnps.ucsd.edu/Proteo
SAFe/status.jsp?task=904e6d42b5024c5cacef6dd86f02b714 (Q-TOF-MS dataset). The
datasets are available with their accession IDs in the MassIVE repository: MSV000082081
[https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=f65bfac6208a436fab483cd284f52
a33], MSV000084116 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=81538c459
d0447ef972d267d2fb0111d], MSV000084008 [https://massive.ucsd.edu/ProteoSAFe/
dataset.jsp?task=93f45e7eba2e456083a35a92610fff52], MSV000084099 [https://massive.
ucsd.edu/ProteoSAFe/dataset.jsp?task=6ab3caf2593e4310a6516357f0657aeb], MSV0000
84119 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=fb0ca514a168427d817a29
ba90c4b9f2], MSV000084024 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=ce
840c3053d04c9b8ef1d6daf7068a98], MSV000082045 [https://massive.ucsd.edu/Proteo
SAFe/dataset.jsp?task=64e3aacbbbfd4b8681e7e788cb6b16fa], MSV000084101 [https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=3b3d495b93c047adb2d8d25bf6205dc9],
MSV000083729 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=552dca562b1e4
dd8a2ddbeb5e162d290], MSV000083772 [https://massive.ucsd.edu/ProteoSAFe/dataset.
jsp?task=eaf6dfcfddc94612a4aa85e9c2e308db], MSV000083601 [https://massive.ucsd.
edu/ProteoSAFe/dataset.jsp?task=48dc7250e98e45ffb988cfd353d53a3d], MSV0000840
45 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=43e2ce9cd85c47678bf3250db
b9e047b], MSV000084112 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=a0363
9b5a08d42d283b714b64146087c], MSV000082630 [https://massive.ucsd.edu/ProteoSA
Fe/dataset.jsp?task=90cefc55f6464e20a873e471c5b962e1], MSV000084007 [https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c809f27dd91445f68c8cc522936119f4],
MSV000084056 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=bea6f8e8a5f140
74bd884ee6dd659ab9], MSV000084107 [https://massive.ucsd.edu/ProteoSAFe/dataset.
jsp?task=469779645cd94f159280a88e07c9cf7a], MSV000084063 [https://massive.ucsd.
edu/ProteoSAFe/dataset.jsp?task=9d478e5f428443ff829f3decbd5759d6], MSV000081832
[https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=3720644eead2496f8b48f6c09b8d
4790], MSV000084134 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=1ce9d22
90ad04fc4bb4acf143ffe0b92], MSV000084148 [https://massive.ucsd.edu/ProteoSAFe/
dataset.jsp?task=af4486f029a546d09e1dd572b66ddac5], MSV000084158 [https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=1fedc205b6104024a901297a9c0ef151],
MSV000084170 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=17709af0ba294
e1387192091a1c541e7], MSV000084118 [https://massive.ucsd.edu/ProteoSAFe/dataset.
jsp?task=a13ac7b7be10421c8a168176752cc586]. Source data are provided with
this paper.

Code availability
The IIMN workflow is available as an interface on the GNPS web platform (https://gnps-
quickstart.ucsd.edu/featurebasednetworking). The workflow code is open source and available
on GitHub (https://github.com/CCMS-UCSD/GNPS_Workflows). It is released under the
license of The Regents of the University of California and free for nonprofit research (https://
github.com/CCMS-UCSD/GNPS_Workflows/blob/master/LICENSE). The workflow was
written in Python (ver. 3.7) and deployed with the ProteoSAFE workflow manager employed
by GNPS (http://proteomics.ucsd.edu/Software/ProteoSAFe/). We also provide documentation,
support, example files, and additional information on the GNPS documentation website
(https://ccms-ucsd.github.io/GNPSDocumentation/), and we invite everyone to contribute to
the documentation on GitHub. The source code of all modules which were implemented into
MZmine, e.g., the Export for IIMN module, the metaCorrelate grouping module, the ion
identity networking modules, and the results and spectral library generation module, is
available at http://mzmine.github.io/iin_fbmn under the GNU General Public License. The
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http://proteomics.ucsd.edu/Software/ProteoSAFe/
https://ccms-ucsd.github.io/GNPSDocumentation/
http://mzmine.github.io/iin_fbmn
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source code for the custom GNPS export functions for XCMS is available at https://github.
com/jorainer/xcms-gnps-tools under the GNU General Public License.
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