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Abstract

Crohn’s disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has
been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic
and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that
were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed
several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many
proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism,
bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the
link between the gut microbiota and functional alterations in the pathophysiology of Crohn’s disease and aids in
identification of novel diagnostic targets and disease specific biomarkers.
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Introduction

Humans live in close association with communities of micro-

organisms (the human microbiota) that inhabit every exposed

surface and cavity in the body [1]. The collective genetic

information of the human microbiota represents a second genome,

the human microbiome, currently the focus of intense interna-

tional sequencing and research efforts [2–7]. To date the main

focus has been on using high throughput sequencing to determine

the composition of the human microbiome in healthy individuals

(e.g. characterization of the human microbiome across different

body sites [5] and across different ages and geographic areas [7].

Several of these studies have found a large variation in the gut

microbial community composition between individuals, but

considerable functional redundancy [5], [8].

The next step is to determine how the human microbiome

varies with disease. As part of a demonstration project funded

through the NIH Human Microbiome Project (HMP) we have

focused on the impact of the inflammatory bowel disease (IBD),

Crohn’s disease on the gut microbiota. Although most human

host-microbe associations are beneficial, several studies using both

culture-dependent and molecular approaches have suggested that

there is a dysbiosis in the gut microbiota of patients with Crohn’s

disease (CD) compared to healthy subjects [9–13]. In the current

study we specifically aimed to focus on functional differences in the

gut that may account for the previously observed dysbiosis.

Although recent advances in DNA sequencing and proteomics

technologies have opened the door to investigation of the structure

and function of the gut microbiota without the necessity for

cultivation, there have been very few efforts to date that have used

a multi-‘‘omics’’ approach to study the complex ecosystem in the

human gut [14]. The ability to combine information about the

identities of microbial community members (obtained from 16S

rRNA gene-based measurements), metabolic potential (obtained from

metagenome sequence data) and expression (obtained from
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metaproteome data) should enable exploration of the gut

microbiota at multiple molecular levels simultaneously.

This study was focused on a subset of stool samples collected

from a large Swedish twin cohort with inflammatory bowel disease

(IBD) that was previously characterized with respect to their

bacterial community composition by deep 16S rRNA pyrotag

sequencing [15] and metabolite profiling [16]. Previous data

indicated that healthy twin pairs had a similar gut microbiota,

even when they had been living separately for decades [11], as also

supported by other studies showing higher similarity between twins

than between unrelated individuals [8]. By contrast, twin pairs in

which one or both subjects had CD harbored very dissimilar gut

microbial compositions [11]. This disparity of the gut microbiota

was particularly striking for subjects with inflammation in the

ileum (ileal CD, ICD) compared to healthy subjects [11], [15],

[16] and was primarily characterized by the reduced abundance of

several key beneficial members of the community, such as

Faecalibacterium prausnitzii.

Here our aim was to further explore a subset of the same

Swedish twin cohort for functions that were correlated to CD by

applying non-targeted, shotgun metagenomics [17] and metapro-

teomics [18]. Although we know from our previous studies

mentioned above that there were differences in the microbial

communities and metabolite profiles between individuals with CD

and healthy in this cohort, what is lacking is an understanding of

the reasons for the differentiation of the samples in a functional

context. By application of an eco-systems biology approach [19],

here we were able to detect and directly correlate genes, proteins,

and metabolic pathways for the first time in complex human gut

samples. It was particularly valuable to include discordant twin

pairs in the sample set, where one twin was diseased and one was

healthy, thus representing some level of internal control of host

genetics on the microbiome (Table S1 in Supporting Information

S1).

The specific questions that we set out to address in this study

were: (1) What genes are actually expressed as proteins in the gut

and could play a functional role in the gut environment? (2) Are

there specific genes and proteins that could help to explain the

previously observed differentiation of the samples according to

Crohn’s disease etiology?

Shotgun metaproteomics is a relatively new technology in its’

application to complex and highly diverse microbial communities,

such as the human gut, and only recently have there been reports

about protein compositions in the gut and from only a few healthy

subjects [18], [20–23]. Therefore, in this study we deliberately

selected samples that were previously well characterized and

shown to significantly differ between healthy and CD for

optimization of the methodology and to increase our chances of

detecting proteins that could correlate to disease etiology. The

sample cohort included one healthy twin pair, one colonic Crohn’s

(CCD) twin pair, two ICD concordant twin pairs and two ICD

discordant twin pairs (Table S1 in Supporting Information S1). To

perform these analyses we optimized a shotgun metaproteomics

pipeline with matched metagenomes to obtain the most compre-

hensive coverage of human distal gut proteins to date.

Results

Data generation and sequence clustering
We generated shotgun metagenomic (Table S2 in Supporting

Information S1) and shotgun mass spectrometry (MS)-based

metaproteomic (Tables S3, S4, S5, S6) datasets from the same

stool samples for direct comparisons. Metagenomic data were used

to assess whole-community gene content and predicted functional

capabilities of the gut microbiome, while metaproteomics was used

to identify the measurable microbial and human proteins being

expressed in the system.

Assessment of expressed genes using metaproteomics
Metagenomic data does not reveal the identities and abun-

dances of expressed gene products (proteins) under the conditions

studied. Therefore, to directly address gene function and protein

abundance, we performed database searches with tandem mass

spectra (MS/MS) of peptides from the same samples collected via

multi-dimensional liquid chromatography tandem mass spectrom-

etry (2d-LC-MS/MS). These extensive MS/MS datasets were

searched either against their corresponding matched metagenome

(MM) (Table S2 in Supporting Information S1) or a representative

set of 51 sequenced human microbial isolate reference genomes

(HMRGs) (Table S7), each concatenated with the predicted

human protein database (July 2007 release, NCBI). Although 51

reference genome sequences cannot capture all of the protein

diversity within the human gut microbiota, we chose to select these

as a minimal set of reference genomes based on genera that have

been previously found in these samples [15]. By selecting only a

subset of the larger bank of human isolate reference genomes that

are being produced through the Human Microbiome Project [3],

we aimed to reduce the sequence redundancy between species/

strains that is a limitation of current MS database searching

algorithms. While the isolate genomes chosen represent about

75% of the genera estimated by 16S analysis [15], the rest of the

community is comprised of genera that represent less than 1% of

the total community, or are unknown (Figure S1A in Supporting

Information S1). The HMRGs provided complete gene sequences

for many of the most abundant genera (Figure S1A in Supporting

Information S1), in contrast to the MMs that had more

fragmented sequence data from all of the taxa in the microbiota.

However, relying solely on reference genomes for proteome

identification limits the protein families identified to those in

sequenced organisms, which is a small percentage of the total

bacteria in the gut. To address the issue of gene redundancy

between strains/species belonging to the same genera in the

metagenome data, we developed a novel method for clustering of

proteins from the MM datasets to provide a more robust method

of assigning peptide-spectrum counts for relative quantification

[23].

On average, a total of 1,250 (healthy), 850 (ICD), and 788

(CCD) orthologous protein clusters were identified with MM

searches and 2,904 (healthy), 1,928 (ICD), and 2,241 (CCD)

proteins using HMRG searches. Together, these data represent

the largest metaproteome analysis of the human gut to date

(Tables S3 and S4). To gauge the overlap in protein sequence

coverage between the MM (read-based protein spectrum matches,

PSMs) and HMRG databases, we compared the assigned, non-

redundant spectra with high mass accuracy (610ppm) with PSMs

from both searches. Of the total spectra that have peptide

assignments to microbial and human proteins, 64% and 33% of

the PSMs were unique to the MM and HMRG databases,

respectively (Figure S1B in Supporting Information S1). These

results suggest that these databases are complimentary, each

containing a large set of unique peptides that individually are a

sampling of these very complex proteomes. This approach enabled

us to take advantage of both MMs and HMRGs to identify

disease-specific proteins associated with the human gut microbi-

ota, including those with unknown function.

Integrated Omics of Crohn’s Disease
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General overview of metagenomic and metaproteomic
datasets

By broad comparison of the metagenomes and metaproteomes,

CD clustered separately from healthy (Figures 1 and S2), as also

seen by prior analysis of 16S rRNA gene sequence data [15] and

metabolite data [16] from the same cohort. The distinct clustering

according to disease phenotype observed in the metaproteome

data was statistically significant (p = 0.004) (Figure 1). The

clustering of samples from discordant twin pairs into their

respective disease category, instead of with their co-twin, suggests

that the disease phenotype was a stronger discriminator than

genetics (Figure S2 in Supporting Information S1). Therefore, for

the rest of the analyses we only considered disease phenotype for

comparisons, not twin status, and the four healthy individuals and

six ICD individuals were treated as separate phenotypic groups.

Although healthy and CCD metaproteomes could be distin-

guished from another, they clustered more closely together

compared to the ICD metaproteomes that were clearly distinct

(Figure 1 and S2). This also substantiates previous findings that

there is a more substantial dysbiosis of the gut microbiota

associated with ICD [11], [13], [15]. Therefore, we primarily

focused on functions that differentiated ICD from healthy, but

included comparisons to CCD when relevant.

Taxonomic profile differences
Taxonomic profiles of the metagenomic data were determined

using nucleotide alignments and compared based on disease status

(healthy, CCD, ICD). Greater than 60% of the metagenomic

sequence reads in the samples from healthy subjects could not be

assigned at the phylum, family or genus level, compared to ,40%

of the reads in ICD or CCD subjects, potentially reflecting the

reduced bacterial diversity in the gut of CD patients. Of the

metagenomic reads for which a taxonomic assignment could be

made, 396 genera were represented in all of the samples, and nine

of those were present at .5% of reads, representing the core taxa.

Some members of the Firmicutes phylum, such as Faecalibacterium,

were significantly depleted in ICD compared to healthy (p,0.05;

Figure 2A), a result consistent with 16S rRNA gene sequencing

gene sequencing of the same samples [15].

In the metaproteome data we also found a sigificant depletion of

proteins from members of the Firmicutes phylum in ICD,

p = 0.00025 (Figure 2B). For example, proteins from Faecalibacter-

ium, Roseburia, Dialister and Coprococcus were significantly less

Figure 1. Clustering of distal gut metaproteomes according to disease. Non-metric multidimensional scaling (nMDS) of distal gut
metaproteomes from CD twin cohort. The different colored square symbols represent the metaproteomic profiles for each sample (Blue = CCD, Grey
= Healthy, Red = ICD). The numbers beside the symbols refer to the specific patient ID from Dicksved et al., 2008 (proteomes were run in technical
duplicates). The axes are dimensionless: the coefficients of determination for the correlations between ordination distances and distances in the
original n-dimensional space are. 472 and. 831 for Axis 1 and 2, respectively. A matrix of normalized spectral counts per protein (HMRG database
search) from each duplicate metaproteome was imported into PCORD v5 software. nMDS was performed using the Bray-Curtis distance measure A
three-dimensional solution was found after 119 iterations. The final stress for the nMDS was 6.47458. The white spots with grey shading correspond
to individual proteins identified using HMRG database. Arrows indicate strength of correlation of specific bacterial strains to ordinated data. Pearson
correlation coefficients for Faecalibacterium prausnitzii, Anaerofustis stercorihominis, Clostridium leptum, Bacteroides ovatus, Bacteroides sp. 4_3, and
Bacteroides sp. 3_1 were 20.875, 20.851, 0.784, 0.8, 0.788, and 0.817, respectively.
doi:10.1371/journal.pone.0049138.g001
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abundant in ICD relative to healthy subjects (Figure 2B;

Table S8). This finding demonstrates that the systems biology

approach used was consistent at both the gene and protein level.

Broad metagenome-metaproteome comparisons
A larger proportion of genes in the metagenomes were

expressed and identified as proteins in healthy subjects compared

to CD patients (8% H versus 2% ICD or 2% CCD) (Figure 3A).

This finding was also supported by a significant decrease in

functional richness in the metagenomes of individuals with CD,

examined comparing KEGG Orthologous groups (KOs) identified

in each sample (Figure 3B). Due to the redundancy of orthologous

genes in the HMRG and MM databases, microbial ORFs, which

shared .80% sequence identity were clustered into orthologous

clusters (OCs), reducing 890,000 ORFs to 68,000 clusters. This

generated a total of 5,692 and 3,101 orthologous clusters (OC)

from the HMRGs and MMs, respectively, across all metapro-

teome datasets. Of the OCs that were identified using the MM

searches, 344 were identified across all subjects (core) and included

general housekeeping proteins (such as ribosomal proteins);

whereas 1,221, 720, and 145 OCs were unique to either the

healthy, ICD, or CCD core metaproteomes, respectively (Ta-

ble S9). Analysis of these OCs revealed that 1,017 proteins from

the MM searches were unique (i.e., they were singletons), in

contrast to all identified proteins from the HMRG search,

suggesting that there is considerable protein diversity within the

human gut microbiota that is not captured in current reference

genome sequences.

Each dataset contained a subset of genes and proteins of

unknown function. For example, ,17% of predicted ORFs in the

metagenomic data were either conserved with no known function

or were not homologous to any known proteins. Approximately

31% of the proteins identified with the HMRG database

(Table S6) and 29% of proteins identified using MM microbial

OCs (including proteins that did not cluster) had no known

functions (Table S6). Interestingly, one OC comprising 11

unknown proteins was significantly correlated with ICD, whereas

five OCs (10–100 s of unknown proteins) were significantly

correlated with healthy subjects. These findings support the need

for better coupling of phenotypic assays with -omics strategies to

aid in the characterization of potentially important unknown genes

and proteins.

Differences between ICD and healthy metaproteomes
There were significant differences in several COG categories

when comparing the metaproteomes of ICD to healthy, primarily

due to a decrease in abundance of proteins in ICD (Figure 4).

General COG categories that were significantly less represented in

ICD compared to healthy included ‘‘carbohydrate transport and

metabolism’’, ‘‘energy production and conversion’’, ‘‘amino acid

transport and metabolism’’, ‘‘lipid transport and metabolism’’,

‘‘nucleotide transport and metabolism’’, ‘‘transcription, ‘‘intracel-
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Figure 2. Taxonomic assignments in metagenome and metaproteome datasets. Relative abundance (log scale) of genera in (A)
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doi:10.1371/journal.pone.0049138.g002
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lular trafficking’’, and ‘‘defense mechanisms’’; suggesting that these

general processes are deficient in ICD (Figure 4). Only one

category, ‘‘replication, recombination and repair’’, was signifi-

cantly higher in the ICD metaproteomes compared to healthy

(Figure 4).

At a finer scale of resolution, there were 116 statistically

significant differentiating specific COGs between disease catego-

ries in the metaproteome data (spectra count difference $5 and

adjusted p-value (q-value) of #0.05; Table S10 for complete

listing). In particular there was a depletion of microbial proteins in

ICD compared to healthy. The general depletion of microbial

proteins in ICD could either result from decreased expression,

increased protein degradation, or decreased microbial diversity

(i.e. reduction of Firmicutes). However, nine COGs belonging to

‘‘translation’’, ‘‘carbohydrate metabolism’’, ‘‘amino acid metabo-

lism’’ and ‘‘inorganic ion metabolism’’ (i.e., COG 4771, an outer

membrane receptor for ferrienterochelin and colicins), were

statistically more abundant in ICD relative to healthy metapro-

teomes, suggesting that they are potential stool indicators of ICD.

Metabolic pathways that differentiate ICD and healthy
phenotypes

The metaproteome data indicated significant differences in

carbohydrate degradation pathways between ICD and healthy

(Figure 4). Similar to a recent study [24] we also found by

screening the metagenomes that the healthy subjects had a higher

abundance of genes encoding carbohydrate active enzymes

‘‘CAZymes’’ typical of those that degrade complex carbohydrates

in the plant cell wall (e.g. glycoside hydrolases: GH78, GH9,

GH30, GH28 and GH26 and polysaccharide lyase PL11),

compared to those for degradation of animal-type carbohydrates

such as starch and glycogen (e.g. glycoside hydrolases: GH33,

GH0109, GH92 and GH89) (Figure S3 in Supporting Informa-

tion S1). By contrast, the ICD subjects had lower relative amounts

of genes encoding CAZymes for degradation of both plant and

animal-type carbohydrates compared to healthy. Because IBD and

Crohn’s patients, in particular, are discouraged from eating fibrous

foods, these changes could reflect functional shifts driving these

dietary recommendations. However, we do not have detailed

metadata about the diet of these subjects. Additionally, the

abundance of the protein in CAZy family GH112, which is

involved in mucin degradation [25], was depleted in ICD

compared to healthy (p,0.01) (Figure 5B), despite more of the

corresponding genes (i.e. mucin-desulfating sulfatase (Mds) genes)

in ICD (Figure 5A). Mucin desulfation is a rate-limiting step in

mucin degradation by colon bacteria [26]. In the colon, secreted

mucins have oligoscaccharide side chains that are more heavily

sulfated than the side chains of secreted mucins in regions of the

digestive tract with lower bacterial numbers. Sulfation of mucins

could make them less susceptible to degradation by bacterial

glycosidases.

There was also a depletion of butyrate and other short-chain

fatty acid (SCFA) production pathways in ICD in both the

metagenome (Figure 5A) and metaproteome (Figure 5B) datasets;

corresponding to a depletion of members of the Firmicutes

(Figure 5C). KEGG pathway analysis of the metaproteomic

datasets also revealed that central metabolic pathways, such as

glycolysis, were under-represented in ICD compared to healthy

(Figure 6A). Butyrate is known to be a major energy source for

colonocytes, is involved in the maintenance of colonic mucosal

health and can elicit anti-inflammatory effects, thus its depletion

could be one reason for the inflammation in CD. In addition, the

reduction of proteins involved in butyrate production in

Faecalibacterium was even lower than would be expected by the

abundance of this organism (Figure 6B), suggesting that their

expression was down regulated.

Bacterial-host interactions and defense
Some specific genes and proteins had a higher relative

abundance in ICD. For example, by close examination of both

gene and protein abundance measurements we found that several

Gram-negative bacterial outer membrane proteins (e.g. OmpA,

RagB, SusC/D and TonB) had a higher representation in the ICD

microbiota compared to healthy (Figure 5). Based on matches to

the HRMG database, these proteins largely corresponded to

Bacteroides proteins (Figures 5C and 6A). These different membrane

proteins have different predicted roles. For example, TonB-

dependent receptors take up large macromolecular complexes,

including iron/siderophore complexes, vitamin B12 and sulfate

esters [27]. OmpA, a pore-forming protein in the outer membrane

of many Gram-negative bacteria, harbors diverse functions

including maintenance of cell structure, binding various substanc-

es, adhesion, and resistance to antimicrobials [28], and is

suggested to be involved in gut mucosal association [29]. One
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hypothesis is that because OmpA is highly represented and highly

conserved in many enteric bacteria, the immune system has

acquired the ability to recognize and to be activated by this class of

protein [30]. Because these proteins are more abundant in ICD,

the immune system may respond with a heightened immune

response. Our study also provides the first evidence of elevated

abundance of other major OMPs, such as RagB, SusC/D

associated with CD (Figures 5 and 6A). An elevated IgG response

to RagB was previously reported in subgingival samples of patients

with periodontitis [31] and virulence of the rag locus was

demonstrated in Porphyromonas gingivalis strains [32]. While the

role of RagB/Sus in the etiology of CD warrants further study, our

data suggest that there is a shift from a healthy microbiota towards

a microbial consortium that can elicit an inflammatory immune

response. This finding would support the current hypothesis that

CD is manifested by an aberrant mucosal response to otherwise

harmless bacterial antigens in genetically susceptible individuals

[33], [34]. These differences could also be due to broad shifts in

Gram-negative versus Gram-positive bacteria, since we see a

reduction in Gram-positive Firmicutes relative to Gram-negative

Proteobacteria based on 16S studies [11], [12], [15]. Although

there was no observed shift in total Bacteroides, previously we found

that there were differences in proportions of specific Bacteroides

species in individuals with ICD compared to healthy [11].
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Figure 5. Specific genes and proteins that differ in relative amounts according to disease state. Relative Abundance of mucin-
desulfating sulfatase (Mds), RagB and SusC/D, Outer Membrane Protein A (OmpA), TonB, Short-Chain Fatty Acid production (SCFA) and Butyrate
production in (A) metagenomes and (B) MM metaproteomes. Error bars in (A) and (B) represent the standard error of the mean of the samples from
Healthy (3 MG, 4 MP), ICD (5 MG, 6 MP) and CCD (2 MG/MP). (C) Specific outer membrane proteins and proteins involved in SCFA pathway that
differed between disease categories. Protein abundances were calculated as normalized spectral abundance using the HMRG database search. The
presence-absence heatmap indicates which of the 51 bacterial strains each protein matched to in the HMRG database search: black = species
present, white = species absent. Grey = Healthy, Blue = CCD, Red = ICD.
doi:10.1371/journal.pone.0049138.g005
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Broad functional comparisons of the human proteome
Because we are able to measure both bacterial and human

proteins in the same samples using metaproteomics, a total of

1,646 human proteins were experimentally identified in addition

to the microbial proteins discussed above. Gene ontology (GO)

analysis revealed that human proteins found in all 3 subject groups

(core) are enriched in functions associated with the structural

integrity of the mucosal epithelium such as regulation and activity

of actin cytoskeletal components. Proteolysis, digestion, and

carbohydrate catabolism were also among the most abundant

‘core’ functional terms, as would be expected in the human GI-

tract (Figure S4A in Supporting Information S1). For human

proteins that varied in healthy compared to CD, the majority were

involved in epithelial integrity and function, as detailed below.

Impaired epithelial integrity in ICD
The observation of several human proteins detected in higher

abundance in CD supports the hypothesis that subjects with ICD,

even in remission, have a defective epithelial barrier. The higher

abundance of human proteins could also be a consequence of

surgical resection of the ileum. For example, a higher abundance

of proteins involved in inflammatory and host defense, wounding

response, intracellular transport, and epithelial development and

differentiation were enriched in ICD subjects (Figure S4B in

Supporting Information S1). Furthermore, other proteins that

function in maintaining mucosal integrity were identified as being

statistically under-represented in ICD (q-value = 0.022), including

protocadherin LKC, a calcium dependent mediator of cell-cell

adhesion that associates with the mucosal actin cytoskeleton [35]

and type 1 collagen (alpha-2), the major collagen in the intestinal

extracellular matrix [36]. A depletion of these proteins might

compromise host defense at the mucosal interface.

A defective epithelial barrier is thought to result in an aberrant

host response to luminal antigens leading to an exaggerated

adaptive immune response and chronic inflammation [37].

Human alpha defensin 5, a protein implicated in regulation of

bacterial concentrations in the ileal intestinal crypt [38–40] was

also statistically more abundant in ICD (q-value = 0.022), suggest-

ing that the host may increase expression of defensins in response

to aberrant microbiota in these subjects, or that the products are

leaking from the intestinal site of action and therefore detected in

higher amounts in the stool samples.

Impaired intestinal absorption in ICD
Several pancreatic enzymes that are largely broken down in the

small intestine: chymotrypsinogen B1 and B2, pancreatic car-

boxypeptidase A1 and B1 and pancreatic lipase, were identified

with higher abundance in stool samples of the subjects with ICD.

These enzymes are synthesized in the pancreas as inactive

precursors that are activated in the intestine where they aid in

digestion. Relatively high amounts of pancreatic enzymes in stool

samples may be indicative of pancreatitis, which has been linked to

CD [41], but remains to be confirmed since the subjects in this

study did not have active pancreatitis at the time of sampling.

Discussion

In this study we used a combination of large and complemen-

tary ‘‘-omics’’ datasets to provide the most comprehensive view of

the functional role of the gut microbiota in CD to date. We studied

the same stool samples obtained from twelve individuals that were

previously characterized with respect to microbial community and

metabolite compositions as part of a large CD twin cohort [11],

[12], [15], [16]. Here our aim was to specifically gain insight into

functional differences at the gene and protein level that were

correlated to Crohn’s disease. The results of this study not only

support existing lines of evidence but also add more pieces of

information to help fill in the complex puzzle of CD etiology.

Similar to the previous studies of 16S rRNA genes [11], [12], [15]

and metabolites [16], this study also found that the proteins

extracted from the samples clustered separately according to

disease status. Together these different omics datasets provide an

enormous amount of information, with dozens of species,

thousands of metabolites and hundreds of proteins that vary in

relative amounts, particularly when comparing ICD to healthy.

The majority of the metabolites [16] and many of the proteins that

differed according to disease status have not yet been character-

ized and their functions are unknown. Specifically, the unknown

proteins detected here that were expressed in higher amounts in

ICD are of particular interest for further exploration because they

were expressed and not merely hypothetical proteins predicted

from sequence data and therefore potentially play functional roles

of importance to ICD.

The value of the eco-systems biology approach used here comes

from the ability not only to examine the structure and function of

the microbiota from multiple perspectives, but also from the ability

to integrate data from the gut microbiota and the host. New

findings from this study suggest several malfunctions in ICD, both

with respect to the intestinal microbiota and the host. For

example, dysbiosis of the bacterial community in ICD resulted in

expression of higher levels of several bacterial cell surface proteins,

many of which are antigenic and could contribute to an

exaggerated immune response. This imbalance came at the

expense of loss of proteins produced by many beneficial members

of the microbiota, including proteins involved in butyrate

production and degradation of mucin, thus supporting the

previously observed decrease in abundance of the corresponding

species in the same samples using 16S rRNA gene fingerprinting

approaches [11], [12]. At the same time, there were several

preliminary indications that the host epithelial barrier was

impaired, both with respect to structural integrity of the mucosal

boundary and with respect to its ability to absorb secreted

enzymes; although these findings could also be a consequence of

ileal resection. This finding correlates to the previously reported

increase in bile acid metabolites in the same samples from the ICD

individuals [16].

Together these large omics datasets point towards several new

targets for further investigation in the pursuit for diagnosis and

therapeutic treatments for Crohns disease. This study also

highlights the value of using an eco-systems biology approach to

obtain a more complete picture of the complex interactions

between the thousands of bacterial species in the distal gut with the

(species-separated) modules that are significant between ICD and H (Wilcoxon rank-sum test; 5% FDR). Colored symbols inside the interval are
significantly different but are in line with what would be expected from the species difference. Colored symbols outside the blue lines are higher/
lower than expected. Specific Faecalibacterium proteins that are down regulated in the butyrate module (green squares) include the following:
butyryl-CoA dehydrogenase (EC 1.3.99.2), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), enoyl-CoA hydratase/carnithine racemase, and acetyl-CoA
acetyltransferases; as well as the module for lysine fermentation to acetate and butyrate (pink square). Specific Bacteroides proteins that are down
regulated in the DNA-directed RNA polymerase module are the following (red X’s): alpha and beta subunits (EC 2.7.7.6).
doi:10.1371/journal.pone.0049138.g006
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human host. It will be of great value to extend these studies to

larger cohorts of CD patients and to carry out longitudinal studies

to assess i) how the composition and function of the gut microbiota

changes over time with respect to disease inflammation and ii) how

the microbiota is impacted by other factors including drug therapy

and surgery.

Materials and Methods

Patient cohort
The Swedish twin cohort was previously described in several

studies [11], [12], [15], [16], [42], [43]. For this study, we focused

on six monozygotic twin pairs including: one set of healthy twins

with existing metaproteome data [18] one set of concordant twins

with Crohn’s disease inflammation localized in the colon (CCD),

two sets of concordant twins with Crohn’s disease inflammation

localized in the ileum (ICD) and two sets of ICD discordant twins

(Table S1 in Supporting Information S1). Representatives of both

sexes were included in the study (6 females and 6 males) and the

subjects were all adults (youngest, born 1962; oldest born 1947).

None had taken antibiotics within 12 months of sampling. Three

of the subjects had gastroenteritis within 3 months prior to

sampling. Most of the patients had undergone surgery as

indicated, but all were many years prior to the sampling event

(Table S1 in in Supporting Information S1). All patients were in

endoscopic remission, or had minor inflammatory activity in the

neo-terminal ileum only, at the time of sampling. In addition, the

16S rRNA gene composition was determined for all samples

previously by 454 pyrotag sequencing [15] and the metabolite

compositions were determined from fecal water collected from the

same samples [16].

Community DNA preparation
Stool samples were shipped to the Orebro University Hospital,

Orebro, Sweden, at most one day after sample collection and

immediately frozen at 270uC upon arrival. The samples were

stored continuously frozen until use and small portions were

excised and thawed immediately prior to DNA extraction to avoid

freeze-thaw damage. DNA was extracted from 250 mg of each

stool sample in duplicate using the MoBio Power Soil DNA Kit

(MoBio, Solana Beach, CA, USA), as previously described [15],

and if necessary to get higher yields we also used an optimized

IGS-Zymo DNA extraction protocol reported previously [44].

Shotgun metagenomic sequencing
DNA isolation from stool samples yielded 3–5 ug of purified

metagenomic DNA from each of twelve samples. Each sample was

subjected to picogreen and gel-based QC assays prior to library

construction. Unpaired, shotgun fragment sequencing libraries

were constructed using our customized, automated library

construction procedure. Our method modifies the manufacturer-

provided protocol by adjusting enzymatic reaction volumes and

replacing gel-based fragment size-selection steps with AMPure

SPRI magnetic beads to enable automation of the process using

liquid-handling robotics. Following library construction, each

sample was subjected to emPCR amplification and 454 sequenc-

ing according to manufacturer specifications. Raw sequence data

was processed using the Roche/454 run processing software to

filter short, mixed, and low-quality reads. Whole metagenomic

shotgun sequencing generated a total of 15,307,850 reads and

more than 5,428,202 kilobases (or 5 Gbp) of high-quality, passed-

filter sequence data (Table S2 in Supporting Information S1).

The metagenome sequence data can be retrieved using the

following URL for the NCBI SRA data deposit, under project ID

46321: http://www.ncbi.nlm.nih.gov/sites/entrez?db = biopro-

ject&cmd = Retrieve&dopt = Overview&list_uids = 46321.

Metagenomic taxonomic classification
Metagenomic reads were compared to publically available

human-associated bacterial reference genomes using NUCMER

(80% id, 80% coverage) for taxonomic assignment. In cases where

reads did not match reference genomes taxonomic classification

was made using sequence comparison against known proteins in

NCBI NR using BLASTX (90% id). In cases where reads had high

identity matches to multiple sequences, the taxonomic nearest

neighbor was chosen. Taxonomic classification for each MS

spectrum was determined by the protein sequence predicted from

metagenomic contig sequences, where the taxonomy of a contig is

based on the nearest neighbor classification of the read sequences

composing the contig. In cases where no classification was

obtained, the ‘human gut microbiome classification’ was given.

Family assignments are based on the NCBI taxonomic tree.

Potential 16S sequences were identified using RNA-HMM and

classified using RDP 2.0. Clustering of samples by taxonomy was

done using Ginko, with a log10(X+1) normalization, euclidean

distances and Ward’s method for hierarchical clustering.

Metagenomics gene finding and protein clustering
Sequences were assembled with the Newbler Assembler

(v2.0.01.14) and genes were predicted on contigs greater than

500 bp using METAGENE [45]. Genes on contigs less than

500 bp were searched against a database of reference genomes

using FASTX [46]. Genes were predicted from alignments to

homologous sequences. In regions where no homologous sequenc-

es are found, METAGENE [47] was used for de novo gene

prediction and generated 594,362 genes, greater than 50 nt, across

10 metagenomic datasets.

An all-vs-all BLASTP [47] search was performed against the

human associated bacterial reference genome protein database

using thresholds of percent identity .80 and e-value ,1025,

protein clusters were created using an MCL [48] with an inflation

value of 1.5. Predicted ORFs from metagenomes were mapped to

17,408 of these clusters using BLASTP with an 80% identity

threshold; 196,002 genes did not map to a cluster.

Functional analysis
ORFs were searched against the eggNOG [49], CAZY [50] and

KEGG Orthologous groups [51] databases using NCBI-BLAST

[47] using e-value cutoff of 1026 and bits per position cutoff of 1.

COG and NOG functional assignments were assigned based on

this comparison. In addition sequences were searched against a

library of HMMs consisting of TIGRFAMS [52], and PFAM [53],

[54] using HMMPFAM [55]. Relative abundances of annotations

were determined using a random sampling of the smallest number

of reads in contigs as the sample size with 100 iterations. The

mean of this random sampling was calculated to determine the

relative abundance of a gene or function in the sample.

Cell lysis and protein extraction
Approximately 10 g portions of the same stool samples used for

DNA extractions were processed by differential centrifugation to

enrich the bacterial cell fraction as previously described [18]. The

microbial cell pellets (,100 mg) were processed via single tube cell

lysis [56] protein digestion and peptide desalting prior to 2d-LC-

MS/MS analyses [18], [57]. Briefly, the cell pellet was

resuspended in 6 M Guanidine/10 mM DTT to lyse cells,

denature proteins, and reduce disulfide bonds. The guanidine
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concentration was diluted to 1 M with 50 mM Tris buffer/10 mM

CaCl2 and sequencing grade trypsin (Promega, Madison, WI) was

added to digest proteins to peptides. Following proteome digestion,

the peptide solution was treated again with 10 mM DTT to

reduce disulfide bonds. We have found this method of double

reduction to be as effective as blocking with iodoacetamide. The

complex peptide solution was desalted via C18 solid phase

extraction, concentrated, solvent exchanged into 100% water/

0.1% formic acid, filtered (0.45 um filter), and aliquoted.

2D-LC-MS/MS
All samples were analyzed in technical duplicates via two-

dimensional (2D) nano-LC MS/MS with a split-phase column

(RP-SCX-RP) [58], [59] on a LTQ Orbitrap (Thermo Fisher

Scientific) with 22 hr runs per sample. For each sample, peptide

mixtures were separated by a 12 step, multidimensional high-

pressure liquid chromatographic elution consisting of eleven salt

pulses (ammonium acetate) followed by a 2 hr reverse-phase

gradient from 100% solvent A (A: 95% H2O, 5% acetonitrile,

0.1% formic acid) to 50% solvent B (B: 30% H2O, 70%

acetonitrile, 0.1% formic acid). The last salt pulse was followed

with a gradient from 100% solvent A to 100% solvent B. During a

single chromatographic separation (22 hr run), mass spectral data

acquisition was performed with Xcalibur software (version 2.0.7;

Thermo Fisher Scientific). Precursor full MS spectra (from 400–

1700 m/z) were acquired in the Orbitrap with resolution

r = 30,000 followed by five data-dependent MS/MS scans at

35% normalized collision energy in the LTQ with dynamic

exclusion enabled (repeat count 1).

Protein database construction
The first database, referred to as the matched metagenome

(MM), was created per sample by directly predicting ORFs from

raw sequencing reads to prevent loss of sequence diversity when

collapsing unrelated sequencing reads for metgenome assembly

(RMPS metagenomic processing method described in detail by

Cantarel et al. [23]. ORFs larger than 50 nt were predicted using

Metagene. Redundant protein sequences were removed, by

pairwise comparisons using 100% identity over 100% of the

shorter proteins (i.e. when aligning 2 proteins, the shorter of the

two must be covered completely by the larger one at 100%

identity), producing 491K – 1.58 M ORFs per sample. Each of

these 12 individual protein databases (6a, 6b, 9a, 9b, 10a, 10b,

15a, 15b, 16a, 16b, 18a, and 18b) included human reference

sequences (July 2007 release, NCBI; ,36,000 protein sequences)

and common contaminants (i.e., trypsin and keratin; 36 protein

sequences).

A second database, referred to as the human microbial isolate

reference genome database (HMRGs), was utilized in a comple-

mentary database search and also contained human reference

sequences and common contaminants. While this reference

genome database is not exactly representative of each sample, it

can provide definitive species/protein identifications, which were

used to support and complement the MM searches. This database

was created by concatenating 51 human-derived reference isolate

genomes from the JGI IMG human microbiome project (IMG-

HMP) into a single FASTA-formatted protein sequence database.

The criteria used to select 51 human-derived microbial isolates

were based on genera that have been previously found in the 16S

data from the same samples [15] in addition to strains that are

known to be common gut inhabitants; while avoiding represen-

tation from similar species and strains to reduce redundancy. A list

of all 51 isolates included in this database can be found in

Table S7. All protein databases, MM and HMRG datasets, and

supporting figures and tables can also be downloaded from: http://

compbio.ornl.gov/crohns_disease_metagenomics_metaproteomics/.

Proteome informatics
All MS/MS from individual runs were searched with the

SEQUEST (v.27) algorithm [60] against a custom-made FASTA

formatted protein sequence databases described below. The

SEQUEST database search required fully tryptic (tryptic at both

termini) peptides with up to 4 miscleavages and a 3 Da mass

tolerance window around the precursor ion mass and 0.5 Da for

fragment ion masses. As previously described [23], all SEQUEST

output files were assembled and filtered using DTASelect (v1.9)

[61] at $2 peptides per protein for the HMRG database searches

and at a 1-peptide level (required minimum of $1 peptides to

confidently identify theoretical peptides from a genomic read

followed by $2 peptides to identify a protein) for the MM

database searches with the following widely accepted parameters:

cross correlation scores (XCorr) of at least 1.8, 2.5, 3.5 for +1, +2,

and +3 charge states, respectively and a minimum deltCN of 0.0

for all 12 samples (24 MS runs). A ‘‘post-database’’ search filter

was applied to the MM identifications where we used the high

mass accuracy capabilities of the Orbitrap to remove all peptides

that did not fall within 210# ppm #10 to the predicted parent

mass of the SEQUEST identified peptide. This was done to

remove the large number of false positives generated from the

minimum of $1 peptides to confidently identify a peptide from a

genomic read. This method of filtering peptides via high mass

accuracy post-SEQUEST database searches is generally an

accepted alternative to filtering during the search via mass

accuracy. Both methods have advantages and disadvantages, but

for our workflow filtering after the SEQUEST search was found to

be most effective.

The acquired mass spectrometry data (mzXML format) from this

publication have been submitted to the Proteome Commons Tranche

repository at www.proteomecommons.org and assigned the hash

identifier: rji3fAXT1XG0PxdrWWrM1M4XXznm6i7XKW2ZMVb-

fyYvo2G44eBimTcv4osnXHyhDvoCOA1av4EywiTFqX8Pf-

JI9SP4EAAAAAAAChfg.

False discovery rates
A target-decoy database [62], [63] was generated for the

HMRGs and the MMs for one healthy (6b, run 1), ICD (18a, run

2), and CCD (9a, run 2) subject and searched against their

corresponding MS experiments (i.e., forward-reverse database for

sample 6b was searched against spectra from run 1) to estimate the

peptide-level false discovery rate (FDR). All target-decoy SE-

QUEST output files were assembled and filtered using DTASelect

(v1.9) [61] with the same XCorr filters of at least 1.8, 2.5, 3.5 for

+1, +2, and +3 charge states, respectively. The HMRGs were

filtered at a $2 peptide per protein with a deltCN 0.0 with an

empirical FDR threshold of #2.0%. The MM data was filtered at

a $1 peptide per predicted genomic read with a deltCN 0.0 and

high mass accuracy of parent peptide (210 # ppm # 10) followed

by a post-database $2 peptide per protein filter, with an empirical

FDR threshold of #2.0%. Additional metrics and results on false

discovery rates can be found in Supporting Information S1 and

Tables S11 and S12.

Proteome label-free quantification
The spectral count for a microbial protein cluster (‘‘CLST…’’)

was calculated as the number of unique peptide identifications that

can be attributed to proteins from that cluster and not from any

other cluster. Because proteins with high sequence similarity were

grouped in clusters, the majority of peptide identifications from the
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metagenomic read databases (RMPS) can be uniquely attributed

to only one cluster. The spectral counts for human proteins were

calculated from both unique and non-unique peptide identifica-

tions using DTASelect with default settings as described above.

Spectral counts for both human proteins and microbial protein

clusters from an MS/MS run were normalized by the total

numbers of tandem mass spectra (MS/MS) of this run. A scaling

factor, ai, was calculated for every run as ai = N/ni, where N is

the average number of total MS/MS spectra per run and ni is the

MS/MS spectral number of run i. The spectral counts for all

proteins in a single MS run were then normalized by multiplying

them with the run’s scaling factor. The reference isolate genome

database results were also normalized using the same scaling factor

and approach.

The 24 MS runs were grouped into the following three sample

sets for both databases (MMs and HMRGs): healthy subjects: 6a,

6b, 16b, and 18b; CCD subjects: 9a and 9b; and ICD subjects:

10a, 10b, 15a, 15b, 16a, and 18a.

Statistical analyses
The metagenomic microbial protein clusters (MM databases)

with differential expression between two sample sets were identified

using label-free quantification. We only considered microbial

protein clusters that have more than five spectral counts in four

or more of the runs in the two sets under comparison. P-values were

calculated using the Wilcoxon rank sum test. The p-values were

then used to compute q-values [64]. Proteins were considered as

differentially expressed if their q-values were less than a false

discovery rate threshold of 0.05 and the differences between their

median spectral counts of the two sets are greater than 5. Human

proteins were quantified separately using the same procedure.

The proteomics results were also analyzed using hierarchical

clustering. We only considered proteins with median absolute

deviations greater than 1. Normalized spectral counts were log2

transformed by adding a pseudo-count of one. Hierarchical

clustering on both proteins and samples were performed using the

hclust function in the R stat library and the heatmap was plotted

using the heatmap.2 function in the R gplot library.

Non-metric multidimensional scaling (nMDS) was performed

using normalized spectral abundances of proteins derived from 24

MS runs searched against 51 human-associated bacterial isolates.

nMDS was performed in PCORD v5 using the Bray-Curtis distance

measure [65]. Briefly, a matrix of normalized spectral counts for

each protein from each metaproteomic run were imported into

PCORD v5 and the indicator analysis was performed using the

randomization method. MRPP analysis was performed on the rank

transformed spectral abundances within PCORD v5 to test the null

hypothesis that there is no difference between the bacterial

metaproteomic profiles from each phenotype.

KEGG modules analysis was performed to highlight differences

in metabolism between healthy and CD. The bulk of metapro-

teomic KOs were mapped to the KEGG modules reference

database in addition to the butyrate production module. Only

modules that had more than 30% coverage were considered for

downstream analysis. Then differential expression between mod-

ules was tested using Wilcoxon’s rank-sum test in R and p-values

were corrected for multiple testing using Benjamini-Hochberg’s

false discovery rate (FDR). A module was considered significantly

different if the median difference between the two groups was

more than 5 with FDR set to 10% under a two-sided alternative

hypothesis. Modules and KOs that were significantly down

regulated in ICD were visualized within iPATH [66]. Addition-

ally, the phylogenetic origin of these modules and KOs, was shown

using the lowest common ancestor.

Ethics
LBNL has an approved Federal-wide assurance on file with

HHS that covers this activity: OHRP Federal-wide Assurance

Number FWA 00006253. Certification of Human Subjects

Committee review: This activity has been reviewed and approved

by the HSC in accordance with requirements sent forth in the

DHHS regulations at 45 CFR 46.103(f), which requires that each

application or proposal for HHS-supported human subject

research be reviewed and approved by the Institutional Review

Board. Date of Approval: April 30, 2010; Approval Number:

272H01-30APR11.

The consent procedure was approved by the ethical research

committee at Örebro University Hospital, where the samples were

collected. The study was approved by Örebro Lans Landsting on

December 17, 2003 (D-nr 167/03).

Consent to participation in the study ‘‘Ulcerative colitis
and Crohn’s disease in twins’’ and to treatment of
personal information

I have been informed in writing about this actual study and

have had time in peace and quiet to read through the information

and to ask questions by telephone. I have also been provided with

a copy of the written information and my written consent.

Through my signature I provide my consent to:

– participate in the study.

– that my personal information can be used as in the written

information.

– that my samples are treated as in the written information.

– that Jonas Halfvarson, gastroenterologist at USÖ, can request

copies of my medical journal.

I am aware that participation is voluntary, and that at the same

time I may at any time and without excuse cancel my participation

without influencing my future care.

(Direct translation from Swedish).

Supporting Information

Supporting Information S1 Additional figures, tables, a
note regarding technical and twin reproducibility in the
metaproteomes and peptide-level false discovery rates.
(PDF)

Table S5 Normalized total spectra counts across all
subjects and 24 MS runs for the matched metagenome
(MM) database searches.
(XLS)

Table S6 Normalized total spectra counts across all
subjects and 24 MS runs for the human microbial isolate
reference genome database (HMRG) searches.
(XLS)

Table S7 Human microbial isolate reference genome
database (HMRG) database components. 51 bacterial

isolates were downloaded from the JGI IMG human microbiome

project (IMG-HMP) into a single FASTA-formatted protein

sequence database.

(XLSX)

Table S8 Distribution of all normalized ‘unique’ spec-
tra counts (worksheet 1) for a metaproteome genus-level
comparison of all 24 MS runs against the HMRG
database. Three comparisons (worksheet 2–4) between different

phenotypes (healthy, ICD, and CCD) were performed with Wilson
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rank sum: Q value (adjusted P value) less than 0.05, difference

between medians of the two conditions greater than 5, and more

than 4 runs with greater than 5 spectral counts. Only the ‘healthy’

versus ‘ICD’ comparison have several genera that are significantly

changed.

(XLSX)

Table S9 Core and unique microbial protein clusters
identified in the metaproteomes. Common core microbial

protein clusters (worksheet 1) identified in the metaproteomes of all

subjects included in the study (healthy, ICD and CCD). Microbial

protein clusters that were identified as unique to one phenotype,

healthy (worksheet 2), ICD (worksheet 3), and CCD (worksheet 4).

(XLSX)

Table S10 Metaproteomic statistical comparison of
spectra assigned to COGs identified across all samples.
Three comparisons (worksheet 2–4) between different phenotypes

(Healthy, ICD, and CCD) were performed with Wilson rank sum.

A COG labeled with significant UP or DOWN has to satisfy these

criteria: Q value (adjusted P value) less than 0.05, difference

between medians of the two conditions greater than 5, more than

4 runs with greater than 5 spectral counts.

(XLSX)

Table S11 False discovery rates estimated at the
peptide level ($2 peptide level) for the HMRG database
searches for three MS experiments: 6b, run 1 (work-
sheet 1), 9a, run 2 (worksheet 2), and 18a, run 2
(worksheet 3).

(XLS)

Table S12 False discovery rates of read-based peptides
from MM metaproteomic database searches for three
MS experiments: 6b, run 1 (worksheet 1), 9a, run 2
(worksheet 2), and 18a, run 2 (worksheet 3) at a 1-
peptide level with and without high mass accuracy. FDRs

estimated post-database mapping of all read-based peptides to

assembled contigs at a 2-peptide level are provide in the final

worksheet.

(XLS)
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