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The analysis of human brain functional networks is achieved by computing functional

connectivity indices reflecting phase coupling and interactions between remote brain

regions. In magneto- and electroencephalography, the most frequently used functional

connectivity indices are constructed based on Fourier-based cross-spectral estimation

applied to specific fast and band-limited oscillatory regimes. Recently, infraslow

arrhythmic fluctuations (below the 1 Hz) were recognized as playing a leading

role in spontaneous brain activity. The present work aims to propose to assess

functional connectivity from fractal dynamics, thus extending the assessment of

functional connectivity to the infraslow arrhythmic or scale-free temporal dynamics

of M/EEG-quantified brain activity. Instead of being based on Fourier analysis,

new Imaginary Coherence and weighted Phase Lag indices are constructed from

complex-wavelet representations. Their performances are first assessed on synthetic

data bymeans of Monte-Carlo simulations, and they are then compared favorably against

the classical Fourier-based indices. These new assessments of functional connectivity

indices are also applied to MEG data collected on 36 individuals both at rest and during

the learning of a visual motion discrimination task. They demonstrate a higher statistical

sensitivity, compared to their Fourier counterparts, in capturing significant and relevant

functional interactions in the infraslow regime and modulations from rest to task. Notably,

the consistent overall increase in functional connectivity assessed from fractal dynamics

from rest to task correlated with a change in temporal dynamics as well as with improved

performance in task completion, which suggests that the complex-wavelet weighted

Phase Lag index is the sole index is able to capture brain plasticity in the infraslow

scale-free regime.

Keywords: human brain temporal dynamics, functional connectivity, infraslow, arrhythmic, scale-free, fractal

connectivity, complex-wavelet, MEG data
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1. INTRODUCTION

1.1. Human Brain Univariate Temporal
Dynamics
The dynamics of Human brain activity can be studied non-
invasively using electro- and magnetoencephalography (EEG
and MEG, respectively). Interpreted as resulting from the
synchronous activation of neuronal populations in specific
frequency bands, these fluctuations are often analyzed as fast (10
Hz and above) oscillatory rhythms now associated with cognitive
functions, such as perception, attention, or decision making (cf.
e.g., Freeman, 2000; Jensen and Colgin, 2007), described by band-
limited models, and analyzed by classical Fourier transform-
based spectral analysis.

At the turn of the 21st century, the large-band infraslow
activity of the brain (typically below 1 Hz), which for long
had been considered as either instrumental or head-movement
noise, received growing interest; it has now been documented
as a prominent part of recorded electromagnetic brain signals
and a critical component of brain activity (Gong et al., 2003;
Stam and De Bruin, 2004; Vanhatalo et al., 2004; Miller et al.,
2009; Werner, 2010). This large-band infraslow activity in the
brain differs significantly from band-limited oscillations in the
sense that it is not characterized by specific frequencies or scales
of times but rather corresponds to arrhythmic, or scale-free,
temporal dynamics. While exact scale-free dynamics remains
debatable (Dehghani et al., 2010; Ignaccolo et al., 2010), it has
been proposed by an abundant literature (cf. e.g., Vanhatalo
et al., 2004; Dehghani et al., 2010; He et al., 2010; Van de Ville
et al., 2010; He, 2011, 2014; Zilber et al., 2012; Buzsáki and
Mizuseki, 2014; Gadhoumi et al., 2015; La Rocca et al., 2018b)
that infraslow macroscopic brain activity is better described
by a scaling exponent (historically the power-law exponent of
the Fourier spectrum and more recently and relevantly the
selfsimilarity exponentH) that relates together dynamics across a
large continuum of slow time scales (or low frequencies). While
most oscillatory regimes are only observed in evoked activity,
elicited by stimuli, infraslow scale-free brain temporal dynamics
are persistent, observed both at rest and during task performance
or even in unconscious states (e.g., sleep stages). It was also
shown that infraslow scale-free brain temporal dynamics are
modulated when contrasting rest and task-related brain activity,
task-inducing systematically a decrease in H and faster infraslow
dynamics (Bhattacharya and Petsche, 2001; Linkenkaer-Hansen
et al., 2004; Vanhatalo et al., 2004; Popivanov et al., 2006; Bianco
et al., 2007; Buiatti et al., 2007; He et al., 2010; Zilber et al.,
2013; La Rocca et al., 2018b). Infraslow scale-free brain activity
has thus been hypothesized to be functionally associated with
neural excitability (He, 2014). Altered scale-free brain dynamics
has also been reported in a specific condition, such as Alzheimer’s
disease for which larger selfsimilarity exponents were reported
in multiple brain areas (e.g., lateral temporal lobes, insula, etc.)
involved early in the neurodegenerative process (Maxim et al.,
2005).

Infraslow arrhythmic brain activity can be efficiently described
with large-band scale-free models, such as selfsimilar processes
(fractional Brownian motion and fractional Gaussian noise)

(Mandelbrot and van Ness, 1968). It is also now well-established
and documented that, while Fourier analysis can be used to assess
1/f power-law spectra at low frequencies, accurate and robust
assessments of scale-free dynamics requires replacing Fourier-
based spectral estimation with multiscale wavelet analysis.
Interested readers are referred to Flandrin (1992), Muzy et al.
(1993), Veitch and Abry (1999), Kantelhardt (2008), and Abry
et al. (2019b) for methodological developments and to Ciuciu
et al. (2008, 2012, 2014), and La Rocca et al. (2018b) for
applications to neuroimaging data. Further, it has recently been
shown that the self-similar description of scale-free temporal
dynamics could be enriched by combining the concept of
multifractality with that of selfsimilarity (Wendt et al., 2007; Abry
et al., 2019b), requiring the use of wavelet-leaders, consisting
of non-linear non-local transforms of wavelet coefficients, for
practical analysis. The potential interest of multifractality for the
analysis of fMRI andM/EEG signals has been investigated in e.g.,
Shimizu et al. (2004), Popivanov et al. (2005), Popivanov et al.
(2006), Shimizu et al. (2007), Ciuciu et al. (2008, 2012), Proekt
et al. (2012), and La Rocca et al. (2018b).

1.2. Human Brain Multivariate Temporal
Dynamics: Functional Connectivity
Remote brain regions are known to interact within large scale
functional networks (e.g., the default Mode Network at rest),
which mediate the information flow inside the brain integrating
the activity of functionally segregated modules that are activated
in particular mental states, task execution, or health condition
(Power et al., 2011). These interactions (correlations, delays,
phase synchronization, etc.) between different brain regions
are quantified by indices of similarity computed from signals
collected in each region and are referred to as functional
connectivity. Assessing functional connectivity thus entails
performing a multivariate analysis of the temporal recordings,
thus complementing univariate analysis of each signal separately.
Classically, functional connectivity is assessed mostly from band-
limited signals reflecting the oscillatory activity of the brain, by
measures of cross (bivariate) second-order statistics (correlation
coefficient, cross-correlation function, etc.). However, M/EEG
measurements suffer from the so-called volume conduction
effects: Linearity in Maxwell equations and electromagnetic
quasi-static approximation (for the forward model below 100
Hz) induces a linear mixing of electromagnetic sources on
M/EEG sensors with negligible temporal delays. Close-by EEG
electrodes or SQUID MEG sensors thus redundantly capture
brain activity from a given current cortical dipole, inducing
spurious correlations amongst recordings and thus precluding a
relevant assessment of functional connectivity (Nolte et al., 2004;
Stam et al., 2007; Vinck et al., 2011). Source-space reconstructed
signals are documented to still suffer from residual volume
conduction effects because of the approximate and imperfect
nature of inverse problem resolutions (Siebenhühner et al., 2016;
Palva et al., 2018). The design of indices robust to such spurious
correlations has been based on measuring average phase delays,
such as in the Phase Locking Value (Stam et al., 2007), and
also naturally calls for the use of Fourier-based cross-spectral
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estimation. Indeed, the Fourier transform, being by definition
based on complex numbers, permits us to automatically
incorporate phases and thus delays in the assessment of
functional connectivity: zero delay between correlated signals
corresponds to zero phase and imaginary part but non-zero real
part for the cross-Fourier spectrum (on average). Therefore, the
moduli of the cross-Fourier spectrum and the coherence function
(F-COH) are affected by volume conduction effects, but their
imaginary parts and phases are robust to such spurious effects
and in theory depart from zero only for dependent sources
with actual delays: a crucial property for assessing functional
connectivity. This observation has led to the design, study, and
use of the Imaginary Coherence function (F-ICOH) (Nolte et al.,
2004) and the (weighted-)Phase Lag Index (F-wPLI) (Vinck
et al., 2011) as relevant indices to assess functional connectivity
for the band-limited oscillatory brain activity measured by
M/EEG measurements. Interested readers are referred to e.g.,
Engel et al. (2001), Varela et al. (2001), Nolte et al. (2004),
Stam et al. (2007), Vinck et al. (2011), and Siegel et al. (2012)
for thorough reviews and further details (see also section
2.1 for definitions). Beyond second-order statistics and linear
correlation, higher-order (non-linear) dependencies have also
been investigated using directed partial correlations; moreover,
the Granger causality approach has been used to infer causal
links, see Sakkalis (2011) for a review.

Functional connectivity has so far mainly been measured
via the band-limited oscillatory activity of the brain and has
hardly been applied to characterize the infraslow arrhythmic
brain activity. Preliminary attempts in that direction (Achard
et al., 2008; Ciuciu et al., 2014), though based on wavelet
representation, remained tied to the coherence function, hence
essentially to direct correlation, and are thus severely impaired by
volume conduction effect in functional connectivity assessment
in M/EEG. This lack of functional connectivity tools dedicated
to the infraslow regime is partly due to the role infraslow
arrhythmic temporal dynamics to brain activity remaining
controversial but also because conceptual and practical tools
reconciling the modeling and analysis of both multivariate and
scale-free dynamics were lacking. This situation changed recently
with the theoretical definition and formal study of multivariate
selfsimilarity (Didier and Pipiras, 2011) as well as with the design
and assessment of multivariate wavelet transform based practical
tools (Wendt et al., 2017; Abry and Didier, 2018a,b; Abry
et al., 2019a,b), thus permitting the investigation of functional
connectivity within the infraslow arrhythmic brain activity, at
the core of the present work.

1.3. Goals, Contributions, and Outline
The present work aims to revisit the analysis of functional
connectivity in human brain activity in two ways:

First, functional connectivity assessment will be based on the
on-going (or spontaneous) infraslow arrhythmic (or scale-free)
activity of the human brain rather than on stimulus-induced
band-limited oscillatory faster rhythms. This will be referred
to as functional connectivity assessed from fractal dynamics (see
La Rocca et al., 2018a for a preliminary attempt).

Second, indices quantifying functional connectivity from
fractal dynamics will be constructed from multivariate complex
wavelet transforms rather than from Fourier-based cross-spectral
analysis. The key intuitions underlying the design of these indices
are double: Based on wavelet transforms, these tools will inherit
from their well-documented performance and robustness for the
analysis of scale-free dynamics (Flandrin, 1992; Abry and Veitch,
1998; Veitch and Abry, 1999, 2001; Abry et al., 2000, 2019b);
Complex wavelets allow us to incorporate phase information in
the analysis of multivariate cross-temporal dynamics.

To that end, after a brief recall of Fourier-based spectral
estimation and the classical Fourier-based functional
connectivity indices (F-ICOH and F-wPLI) in section 2.1,
Complex wavelet transforms and the corresponding Complex
Wavelet-based functional connectivity indices (W-ICOH and
W-wPLI) are defined in section 2.2. The performance of
several Complex Wavelet-based functional connectivity indices
proposed here are compared against the others, and against their
corresponding Fourier counterparts, by means of Monte Carlo
numerical simulations, involving a large number of independent
drawings of synthetic signals, sampled from stochastic processes
commonly used to model scale-free temporal dynamics,
multivariate fractional Brownian motions, and multivariate
fractional Gaussian noises (cf. section 2.3). Several scenarios
(different temporal dynamics, connectivity networks, additive
trends) are investigated to assess the interest and relevance
of the proposed Complex Wavelet indices (W-ICOH and
W-wPLI) compared to Fourier-based ones in terms of estimation
performance and robustness to trends.

The proposed Complex Wavelet indices assessing functional
connectivity from fractal dynamics are extensively tested on
MEG data, collected on 36 individuals, both at rest and during
a visual discrimination learning task. The experimental data are
described in section 3 (see also Zilber et al., 2014).

Analyses of functional connectivity assessed from fractal
dynamics within infraslow arrhythmic cross temporal dynamics
regime, ranging from 0.1 to 1.5 Hz for this data set (La Rocca
et al., 2018b), are reported in section 4 and discussed
in section 5. The proposed Complex Wavelet indices are
demonstrated to have a high sensitivity in capturing significant
and meaningful group-level functional connectivity assessed
from fractal dynamics networks both at rest and during task
performance, which present long-range spatial interactions
between fronto-occipital and temporo-parietal brain regions.
Further, a significant increase in functional connectivity assessed
from fractal dynamics is shown to be positively correlated with
behavioral performance in the task and to be reinforced by
the training stage and thus by learning. Finally, our results
suggest an interplay between temporal and spatial dynamics:
Arrhythmic infraslow brain activity evolves from strongly and
globally structured slow temporal dynamics for each region
individually at rest, related across the brain by a clear functional
network, to faster and less globally structured temporal dynamics
per region, yet with significantly stronger spatial couplings across
the brain, during a task.

The proposed Complex Wavelet tools constitute, to the best
of our knowledge, the first operational tools for a relevant
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assessment of functional connectivity from fractal dynamics, i.e.,
functional connectivity in scale-free cross-temporal dynamics for
the large-band infraslow arrhythmic brain activity recorded in
M/EEG.MATLAB codes, designed and implemented by ourselves,
for the synthesis of multivariate scale-free synthetic data and
for the computation of Complex Wavelet-based indices to assess
functional connectivity from fractal dynamics, will be made
publicly available at the time of publication.

2. METHODOLOGY: FUNCTIONAL
CONNECTIVITY ASSESSMENT

2.1. Frequency Domain Functional
Connectivity Assessment
The M-variate data (Xm(t)m=1,...,M , t ∈ R) available for
analysis are assumed to be real-valued finite power realizations
of stochastic processes with well-defined power cross-spectral
density Sm,m′ (f ). The Welch periodogram constitutes one of
the classical non-parametric spectral estimation procedures
(Papoulis, 1977), and it is based on the use of a windowed Fourier
transform. This Fourier-based estimate S(F) of the cross-spectrum
S is indeed defined as a time average of the squared-moduli
of the windowed (or short-time) Fourier transform coefficients
gX(ℓ, k) =

∫

X(t)φℓ,k(t)dt:

S
(F)
m,m′ (f = ℓν0) =

∑

k

gXm (ℓ, k)g
∗
Xm′

(ℓ, k), (1)

where φℓ,k(t) = φ(t − kT0) exp (−2ıℓν0t) denotes the collection
of translated and frequency-shifted templates of a reference
pattern φ(t), and T0 and ν0 are positive constants that can be
arbitrarily chosen provided that they satisfy T0ν0 ≤ 1/(4π).

Straightforward calculations yield

ES
(F)
m,m′ (ℓν0) =

∫

Sm,m′ (ℓν0 − f )|φ̃(f )|2df , (2)

with φ̃ denoting the Fourier transform of φ and E the ensemble

average. This thus shows that S
(F)
m,m′ provides a biased estimate

of Sm,m′ (f ). The time and frequency resolutions of the functions
φℓ,k being uniformly controlled by the choice of the function
φ, S(F) achieves a fixed absolute-frequency resolutionmultivariate
spectral analysis.

From S
(F)
m,m′ (f ), three functions are classically involved in

functional connectivity assessment, the modulus (F-COH), the
Imaginary (F-ICOH) part of the coherence function (Nolte et al.,
2004), and the weighted Phase Lag Index (F-wPLI) (Vinck et al.,
2011) (with ℑ the imaginary part of a complex number):

F-COHm,m′ (f ) ,
SF
m,m′ (f )

√

SFm,m(f )S
F
m′ ,m′ (f )

, (3)

F-ICOHm,m′ (f ) ,
ℑ{SF

m,m′ (f )}
√

SFm,m(f )S
F
m′ ,m′ (f )

, (4)

F-wPLIm,m′ (f = ℓν0) ,

∑nj

k=1
ℑ
{

gXm (ℓ,k)g∗Xm′
(ℓ,k)

}

∑nj

k=1

∣

∣ℑ
{

gXm (ℓ,k)g∗Xm′
(ℓ,k)

∣

∣}
. (5)

To quantify functional connectivity on MEG signals, the
corresponding indices are practically computed as sums of the
absolute values of these functions over the range of frequencies
defining the targeted band-limited oscillations. Large values
(above predefined thresholds) are used as markers of functional
connectivity at the individual level, which are usually followed by
statistical testing for assessing group-level significance.

2.2. Wavelet Domain Functional
Connectivity Assessment
2.2.1. Complex Wavelet Transform
The classical discrete wavelet transform relies on the use of
a real-valued mother-wavelet (cf. e.g., Mallat, 1998). To assess
phases and delays amongst signals, it is proposed here to use a
complex wavelet transform, defined as follows. Let ψ (r) denote a
real-valued oscillating and sufficiently smooth reference pattern,
referred to as the mother wavelet, and let it be constructed such
that the collection of dilated and translated templates {ψj,k(t) =

2−j/2ψ(2−jt−k)}(j,k)∈Z2 ofψ form an orthonormal basis of L2(R)

(cf. e.g., Mallat, 1998). From ψ (r), an analytic complex mother-
wavelet can be defined asψ = ψ (r)+ıψ (ı), whereψ (ı) consists of
the Hilbert transform ofψ (r). The design of a complex, invertible,
and analytic mother wavelet is not straightforward. In the present
work, we build on the excellent approximate solution proposed in
Kingsbury (2001) and Selesnick et al. (2005), which is referred to
as the dual-tree complex wavelet transform.

For a signal X, the coefficients of the dual-tree complex

wavelet transform are defined as dX(j, k) , d
(r)
X (j, k) +

ıd(ı)X (j, k), with d
(r)
X (j, k) ,

∫

ψ
(r)
j,k
(t)X(t)dt and d

(ı)
X (j, k) ,

∫

ψ
(ı)
j,k
X(t)dt. Computing a dual-tree complex wavelet transform

thus amounts to computing two standard Discrete Wavelet
Transforms, with the two real mother-wavelets ψ (r) and ψ (ı),
respectively, independently.

2.2.2. Wavelet Cross-Spectrum and Functional

Connectivity
It has been well-documented that the study of univariate scale-
free temporal dynamics should be performed using a wavelet-
based spectral estimation rather than a Fourier-based one (cf. e.g.,
Flandrin, 1992; Abry and Veitch, 1998; Veitch and Abry, 1999,
2001). This has recently been extended to multivariate scale-
free temporal dynamics analysis and wavelet cross-spectrum
estimation (cf. e.g., Wendt et al., 2017; Abry and Didier, 2018b;
La Rocca et al., 2018a; Abry et al., 2019b). Given a pair of
signals Xm, Xm′ , the multivariate wavelet (cross-)spectrum can be
defined as

SWm,m′ (j) ,
1

nj

nj
∑

k=1

dXm (j, k)d
∗
Xm′

(j, k) (6)

where nj ≈
N
2j
are the number of coefficients available at scale j,

and ∗ stands for complex conjugate.
It has been shown (Abry et al., 2019b) that

ES
(W)
m,m′ (j = νψ/2

j) =

∫

Sm,m′ (f )|ψ̃(f /2j)|2df , (7)
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with ψ̃ denoting the Fourier transform of ψ . This indicates that

S
(W)
m,m′ (j) estimates Sm,m′ (f = νψ/a

j
0) around frequency f = νψ/a

j
0

and achieves a fixed relative-frequency resolution multivariate
spectral analysis (Abry and Veitch, 1998; Abry et al., 2019b).

Equations (2) and (7) combined together show that Fourier-

based S
(F)
m,m′ and (Complex) Wavelet-based S

(F)
m,m′ constitute two

biased estimates of the power spectral density Sm,m′ , that can be
compared theoretically and practically, as illustrated in Figure 1.
Interested readers are referred to Abry and Veitch (1998) and
Abry et al. (2019b) for further discussions. As an illustration,
the wavelet spectra and cross-spectrum of the two MEG
signals displayed in Figures 1A,B are shown in Figures 1C–F

and compared to Fourier spectra and cross spectrum (cf.
Figures 1G–J), using Equations (2) and (7) and converting scales
a = 2j into frequencies as f = f0 × fs/2

j, where fs is the data
sampling frequency and f0 a constant that depends on the specific
choice of the mother wavelet. Readers interested by further
theoretical and practical discussions on comparing Fourier and
wavelet-based spectral estimations, are referred to e.g., Abry and
Veitch (1998), Veitch and Abry (1999), Veitch and Abry (2001),
Abry et al. (2000), Ciuciu et al. (2012), and Abry et al. (2019b).

2.2.3. Wavelet-Based Functional Connectivity Indices
From the wavelet-based estimate of the power spectrum,
wavelet-based indices can be constructed to assess functional
connectivity, as was the case with Fourier spectrum and
mutatis mutandis:

W-COHm,m′ (j) ,
SW
m,m′ (j)

√

SWm,m(j)S
W
m′ ,m′ (j)

, (8)

W-ICOHm,m′ (j) ,
ℑ
{

SW
m,m′ (j)

}

√

SWm,m(j)S
W
m′ ,m′ (j)

, (9)

W-wPLIm,m′ (j) ,

∑nj

k=1
ℑ
{

dXm (j,k)d∗Xm′
(j,k)

}

∑nj

k=1

∣

∣ℑ
{

dXm (j,k)d∗Xm′
(j,k)

}∣

∣

. (10)

Unlike the standard discrete wavelet transform coherence
function used in, e.g., Whitcher et al. (2000) and Wendt et al.
(2017), W-COHm,m′ (j) is complex-valued.

2.2.4. Functional Connectivity Assessed From Fractal

Dynamics
Functional connectivity for scale-free infraslow temporal
dynamics consists of averaging the absolute values of these
functions over the corresponding range of octaves j1 ≤ j ≤ j2
(equivalently over the range of scales a = 2j or frequencies
f = f0/2

j) where scale-free dynamics are observed:

1

j2 − j1 + 1

j2
∑

j=j1

W-wPLIm,m′ (j) or
1

j2 − j1 + 1

j2
∑

j=j1

W-ICOHm,m′ (j)

Remapping scales into frequencies, calculations inspired from
those leading to Equations (2) and (7) permit to compare
theoretically and practically W-COH, W-ICOH and W-wPLI to
F-COH, F-ICOH, and F-wPLI, as illustrated in Figures 2–4 on
synthetic data.

This is here critical to emphasize that functional connectivity
assessed from fractal dynamics as defined and used in the
present work is associated with (the statistics of) cross-temporal
dynamics. It should not be confused with the so-called fractal
networks, as studied in, e.g., in Bassett et al. (2006) and Varley
et al. (2020), which are related to topological (thus static)
properties of a spatial graph.

2.3. Functional Connectivity From Fractal
Dynamics Performance Assessment
2.3.1. Monte Carlo Numerical Simulations
To assess the performance of the proposed indices aiming to
quantify functional connectivity from fractal dynamics, Monte
Carlo numerical simulations were conducted. They make use
of synthetic bivariate fractional Brownian motion, a specific
instance of the multivariate selfsimilarmodel recently introduced
in Didier and Pipiras (2011) and studied in Abry and Didier
(2018a,b). Bivariate fractional Brownian motion consists of
a pair of fractional Brownian motions BH1 and BH2 , with
possibly different selfsimilarity parameters H1 and H2, with
pointwise correlation ρ. In addition, one component is delayed
by 1. Correlation coefficient ρ is set to range within ρ ∈

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9} and delays range in
1 = {0, 1, 2, 4, 8, 16, 32, and 64} samples. Sample size is n = 214,
chosen to match the size of the infraslow regime of the MEG data
(cf. sections 3 and 4).

To model MEG data as those analyzed in section 4 and as
commonly indicated in the literature (He et al., 2010), one needs
to use both fractional Gaussian noise (fGn), the increments of
fractional Brownian motion (fBm), with parameter H ranging
from say 0.6 to 1 and fractional Brownian motion itself with
parameters ranging from 0 to 1. Therefore, the numerical
simulations conducted here were based on bivariate processes,
each component being either fGn or fBm, with 0 < H < 1.
For the Fourier-based spectral estimation, the classical averaged
windowed periodogram estimate of the power spectral density
was computed, with Hanning windows of a width corresponding
to the frequency bands of the complex wavelet filters, to
enable relevant comparisons of the tools. For the Complex-
Wavelet based estimation, q-shift complex wavelets were used,
as described in Selesnick et al. (2005) and references therein (see,
e.g., Lina and Mayrand, 1995 for an alternative choice).

Indices assessing functional connectivity from fractal
dynamics (both Fourier and wavelet-based) were computed as
average over a range of frequencies and scales that match those
of the infraslow scale-free range observed on the MEG data
described and analyzed hereafter. Performances are reported as
means (and confidence intervals) computed from N = 1, 000
independent realizations of bivariate fractional Gaussian noise.

2.3.2. Spurious Connectivity
To start with, we analyzed scenarios where the two components
of bivariate fractional Gaussian noise were correlated but not
delayed:1 ≡ 0. Figure 2 reports the averaged (over realizations)
values of W-COH, W-ICOH, and W-wPLI as functions of
octaves j and correlation coefficients ρ. Figure 2A shows that
W-COH correctly assesses correlations between components
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FIGURE 1 | Fourier vs. wavelet spectral estimation on actual source-reconstructed MEG time series. Top: Two source-reconstructed MEG time series X1 (A) and

X2 (B). Middle: Wavelet spectra (C,F), cross spectrum (D), and coherence function (E) as functions of the (log of the) scales (top row, red lines). Bottom: Comparison

to Fourier spectra (G,J), cross-spectrum (H), and coherence function (I) (solid black lines) after remapping scales into frequencies (bottom row). The scale-free (or

arrhythmic) regime is marked by linear behaviors of the power spectra across coarse scales, 8 ≤ j ≤ 12 corresponding to low frequencies, 0.1 ≤ f ≤ 1.5 Hz, in these

log log plots.

FIGURE 2 | Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation but no delay. W-COH (A), W-ICOH (B), and

W-wPLI (C) as function of octaves j and correlation coefficient ρ. As it should, W-COH correctly assesses correlations with no delays and thus departs from 0 at all

scales. W-COH would hence lead to incorrectly assessing functional connectivity. In contrast, W-ICOH and W-wPLI show averages values of 0 at all scales and

across all correlation levels, thus leading to assess no connectivity, which is as expected for non-delayed components.

as predicted by theory when they are not delayed. W-COH
thus leads to an incorrect assessment of functional connectivity
since it is sensitive to 0-delay correlation and thus to the
volume conduction effect. This spurious connectivity consists
of a well-documented fact for the classical (Fourier-based)
coherence function index F-COH, which is, as theoretically

expected, not corrected by the use of W-COH. Figures 2B,C
also shows that W-ICOH and W-wPLI average to 0 at all
scales, and across all correlation levels, thus correctly leading
to the assessment of no functional connectivity, as expected
for non-delayed components. Again, this is consistent with
observations made when using the Fourier-based F-ICOH and
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FIGURE 3 | Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation and delay 1 = 8. Top row: W-ICOH results. Bottom

row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ; W-ICOH (B) and W-wPLI (F) as functions of

octaves j, for a given ρ; W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j; Ratio of the RMSE of F-ICOH to W-ICOH (D) and ratio of RMSE of F-wPLI

to W-wPLI (H), averaged across scales 3 ≤ j ≤ 7, and color-coded in red as functions of delay 1 and correlation coefficient ρ. A ratio larger than the value of 1 (made

explicit to ease comparisons by horizontal blue plans) indicates poorer performance for Fourier-based estimates compared to wavelet-based ones. Synthetic data

consists of bivariate fGn with H1 = 0.7 and H2 = 0.8.

FIGURE 4 | Complex Wavelet-based connectivity on synthetic bivariate fractional Brownian motion with correlation and delay 1 = 8. Top row: W-ICOH results.

Bottom row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ; W-ICOH (B) and W-wPLI (F) as

functions of octaves j, for a given ρ; W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j; Ratio of the RMSE of F-ICOH to the RMSE of W-ICOH (D) and

ratio of the RMSE of F-wPLI to the RMSE of W-wPLI (H), averaged across scales 3 ≤ j ≤ 7, and color-coded in red as functions of delay 1 and correlation coefficient

ρ. A ratio greater than the value of 1 (made explicit to ease comparisons by horizontal blue plans) indicates poorer performance for Fourier-based estimates compared

to wavelet-based ones. Synthetic data consists of bivariate fBm with H1 = 0.7 and H2 = 0.8.
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F-wPLI. This rules out the use of W-COH (and F-COH) to assess
functional connectivity.

2.3.3. Functional Connectivity Assessed From Fractal

Dynamics
We then analyzed signals with delays amongst components.
Figures 3, 4 report, for different sets of synthetic data and
for given delays 1, the averaged values (over realizations)
of W-ICOH and W-wPLI as functions of octaves j and
correlation coefficients ρ [left column, see panels (A) and (E)],
complemented with slices for fixed ρ as functions of j [second
column, see panels (B) and (F)], slices for fixed j as functions
of ρ [third column, see panels (C) and (G)], and functional
connectivity indices averaged across scales 3 ≤ j ≤ 7 [right
column, see panels (D) and (H)]. Figures 3, 4 show that:

(i) Both W-ICOH and W-wPLI do depart from 0 across j and
ρ when1 6= 0 (left column).

(ii) As functions of j, W-ICOH and W-wPLI display different
patterns that depend on 1. However, these patterns both show
independentlymaximum absolute deviations from 0 at scales that
vary with 1 (second column). This was quantified for W-ICOH
and used as a delay estimation procedure (Didier et al., 2019).

(iii) When a scale 2j in relation to 1 is chosen, both (the
absolute values of) W-ICOH and W-wPLI are proportional to
(the absolute value of) ρ (third column). This shows not only
that W-ICOH and W-wPLI depart from 0 when delays amongst
components exist but also that the amplitude of the departure is
proportional to the correlation ρ between components, a crucial
property to assess quantitatively functional connectivity, clearly
and originally quantified in these numerical simulations.

(iv) The conclusions stemming from comparing the
performance of Fourier-based F-ICOH and F-wPLI to
Complex Wavelet-based W-ICOH and W-wPLI depend on
the parameters used for simulating bivariate synthetic time
series. When the latter consist of bivariate fGn with H1 = 0.7
and H2 = 0.8 (Figure 3), F-ICOH vs. W-ICOH and F-wPLI
vs. W-wPLI, show comparable performance either in bias
(second and third columns) or in terms of root mean square
error (RMSE) (right column). When synthetic data consists of
bivariate fBm with H1 = 0.7 and H2 = 0.8 (Figure 4), F-ICOH
and F-wPLI show significantly degraded performance compared
to W-ICOH andW-wPLI, both in bias and variance (second and
third columns) and in terms of RMSE (right column). Notably,
RMSE of F-ICOH and F-wPLI can be 10 times greater than
RMSE of W-ICOH and W-wPLI for small values of ρ. Complex
Wavelet-based indices thus outperform Fourier-based ones for
data with large scaling exponents, i.e., large powers at very low
frequencies or, in other words, very slow dynamics. Similar
conclusions can be drawn from other values of delays 1 6= 0
tested here but not shown (available upon request).

2.3.4. Functional Connectivity Assessed From Fractal

Dynamics in the Presence of Additive Trends
We finally analyzed more complicated scenarios with correlation
and delays amongst components as well as additive smooth
slow trends superimposed as noise to the actual scale-free
components. Figure 5 reports, for a given delay 1 = 8, the

averaged (over realizations) values of W-ICOH and W-wPLI as
functions of octaves j and correlation coefficient ρ [left column,
panels (A) and (E)], complemented with slices for fixed ρ as
functions of j [second column, panels (B) and (F)] and slices
for fixed j as functions of ρ [third column, panels (C) and (G)].
Focusing the analysis of Figure 5 on ρ = 0 or on the small values
of ρ shows the following:

(i) F-ICOH and F-wPLI depart from 0 across scales when
there is no correlation while the Complex Wavelet-based W-
COH andW-wPLI do not (second column);

(ii) F-ICOH and F-wPLI significantly overestimate
correlations at small ρ while W-COH and W-wPLI do not
(third column);

(iii) The RMSE of F-ICOH and F-wPLI becomes up to ten
times larger than RMSE of W-ICOH and W-wPLI for small
values of ρ (fourth column).

2.3.5. Functional Connectivity From Fractal Dynamics

Assessment Performance
In addition, Figure 6 compares the ratio of the RMSE of W-
ICOH to the RMSE of W-wPLI over several synthetic data sets
and shows that both indices perform comparably. However,
W-ICOH shows a slightly smaller RMSE for small values of ρ
and conversely, a slightly larger RMSE for large values of ρ and
for the largest delays 1 tested here. This (slight) superiority of
W-wPLI is much more visible when additive smooth trends
are present (right plot). In sum, these numerical simulations
yield the following conclusions for the assessment of functional
connectivity from fractal dynamics.

(i) They indicate that W-COH cannot be used to assess
functional connectivity as it is fooled by zero-delay (volume
conduction effect) correlations, thus confirming an already
documented observation for F-COH in the literature (Nolte
et al., 2004; Stam et al., 2007). To the converse, W-ICOH and
W-wPLI (and F-ICOH and F-wPLI) are much less affected by
these spurious correlations.

(ii) The Complex Wavelet W-ICOH and W-wPLI can
be used to assess functional connectivity for scale-free
temporal dynamics.

(iii) The Complex Wavelet W-ICOH and W-wPLI perform
significantly better than the Fourier-based F-COH and F-wPLI
first when the signals show very large scaling exponents β in
their f−β power spectral density behavior, as is the case with
fBm-like time series and second when additive noise in the
form of smooth and slow trends are superimposed to data with
scale-free dynamics, which is a situation commonly observed in
recordings collected from neuroimaging techniques.

(iv) W-ICOH and W-wPLI perform comparably with
(slightly) better performance of W-wPLI when ρ or 1 increases,
or when smooth trends are superimposed to scale-free dynamics,
as often the case on MEG data. This will be further discussed in
section 4.

3. EXPERIMENTAL MEG DATA

The proposed complex wavelet-based assessment of functional
connectivity in infraslow arrhythmic brain activity was tested on
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FIGURE 5 | Complex Wavelet-based connectivity on synthetic bivariate fractional Gaussian noise with correlation and delay, and additive trends. Top row: W-ICOH

results. Bottom row: W-wPLI results. From left to right: W-ICOH (A) and W-wPLI (E) as functions of octaves j and correlation coefficient ρ, W-ICOH (B) and

W-wPLI (F) as functions of octaves j, for a given ρ, and W-ICOH (C) and W-wPLI (G) as functions of ρ for given octaves j. The ratio of the RMSE of F-ICOH to the

RMSE of W-ICOH (D) and the ratio of the RMSE of F-wPLI to the RMSE of W-wPLI (H), averaged across scales 3 ≤ j ≤ 7 and color-coded in red as functions of delay

1 and correlation coefficient ρ. A ratio greater than the value of 1 (made explicit to ease comparisons by horizontal blue plans) indicates poorer performance for

Fourier-based estimates compared to wavelet-based ones. Synthetic data consists of bivariate fGn with H = 0.8 and fBm with H = 0.2.

FIGURE 6 | Ratio of the RMSE of W-ICOH to the RMSE of W-wPLI, averaged across scales 3 ≤ j ≤ 7, as functions of delay 1 and correlation coefficient ρ, for the

synthetic data in Figures 3–5. Horizontal blue plans indicate the constant level of 1 to ease reading.

MEG measurements, consisting of non-invasive recordings of
simultaneous time-series reflecting the whole brain activity, both
at rest and during the completion of a task. All details about the
experimental paradigm and the task can be found in Zilber et al.
(2014).

In short, the task was designed from a short-term learning
paradigm and consisted of visual coherence discrimination. Two
sets of colored (green and red) dots were mixed and shown on a
screen, each dot with random and independent movement. After
a variable duration interval (0.3–0.6 s) of incoherent motion, a
fraction of randomly chosen dots belonging to either of the two
sets (also randomly chosen at each trial) followed a coherent

motion during 1 s. Participants were asked to tell which of the
red or green clouds had a coherent motion by pressing a button
of the same color. Task difficulty was increased by decreasing the
rate of dots in coherent motion.

The experiment was organized as interleaved MEG blocks
alternating rest and task measurements: It started with a 5-
min rest recording (RESTi), followed by a 12-min pre-training
block (TASKi); this was followed by four successive 5-min
long individualized training blocks. Another 5-min resting-
state block (RESTf ) was recorded prior to a final 12-min
post-training block (RESTf ), consisting of the same visual
coherence discrimination task as in TASKi. During TASKi
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and TASKf , the motion coherence discrimination accuracy of
each participant was assessed. Pre-training and post-training
behavioral thresholds were computed for each participant as
the visual coherence level associated with 75% of correct
responses (hit rate). During REST blocks, participants were
instructed to keep their eyes open, and they were not following
any other explicit instruction, thus permitting the analysis of
spontaneous fluctuations of brain activity fromMEG recordings.

For the experiment, 36 healthy participants (mean age:
22.1 ± 2.2) were recruited. All participants were right-handed,
had normal hearing, and had normal or corrected-to-normal
vision. Before the experiment, all participants provided written
informed consent in accordance with the Declaration of Helsinki
(2008) and the local Ethics Committee on Human Research at
NeuroSpin (Gif-sur-Yvette, France).

Brain activity was recorded via MEG modality in a
magnetically shielded room using a 306 MEG system (Neuromag
Elekta LTD, Helsinki). MEG signals originally sampled at 2
kHz were downsampled at 448 Hz and preprocessed to remove
external and internal interferences in accordance with accepted
guidelines for MEG research (Gross et al., 2013). Signal Space
Separation (SSS) was applied with MaxFilter to remove
exogenous artifacts and noisy sensors (Taulu and Simola, 2006).
Ocular and cardiac artifacts (eye blinks and heartbeats) were
removed using Independent Component Analysis (ICA) on
raw signals. ICA were fitted to raw MEG signals, and sources
matching the ECG and EOG were automatically found and
removed before signals reconstruction, following the procedure
described in Jas et al. (2017). Source localization from MEG
signals was used to reconstruct source cortical activity using the
mne_analyze tools within MNE (Gramfort et al., 2013). Details
regarding the source localization technique are reported in Zilber
et al. (2014). Finally, following analyses reported in Zilber
et al. (2014) and La Rocca et al. (2020), 28 cortical regions-of-
interest (ROIs), recruited in task performance (including frontal,
somato-sensory, temporal, parietal, and occipital areas) were
retained for the analysis of functional connectivity in infraslow
temporal dynamics.

4. FUNCTIONAL CONNECTIVITY
ASSESSED FROM FRACTAL DYNAMICS IN
INFRASLOW ARRHYTHMIC
MEG-RECORDED BRAIN ACTIVITY

4.1. Infraslow Scale/Frequency Range and
Functional Connectivity From Fractal
Dynamics Assessment Methodology
4.1.1. Infraslow Scale/Frequency Range
Following the systematic inspections of the wavelet spectra and
cross-spectra reported in La Rocca et al. (2018b) for the same
MEG data, the scale-free range of scales is set uniformly for the
28 times series and across the 36 participants for the analysis
of arrhythmic functional connectivity to 8 ≤ j ≤ 12, thus
corresponding to frequencies in 0.1 ≤ f ≤ 1.5 Hz or equivalently
to time scales ranging roughly from 1 to 10 s. This scale-free

regime is illustrated in Figure 1 for arbitrarily chosen MEG
signals shown in Figures 1A,B.

4.1.2. Experimental Conditions
Infraslow functional connectivity was assessed for several
experimental conditions: resting-state (RESTi), pre-training
(TASKi), and post-training (TASKf ) tasks, thus enabling us to
assess changes in functional interactions from rest to task and
modulations related to learning.

4.1.3. Functional Connectivity From Fractal Dynamics

Indices
Three proposed complex wavelet based indices were then
computed to assess infraslow functional connectivity by
averaging across octaves corresponding to the scale-free regime,
8 ≤ j ≤ 12, and the functions W-COH(j), W-ICOH(j), and
W-wPLI(j), resulting in three sets of 28× 28× 36 indices.

4.1.3.1. Tests
These indices were filtered at the group-level (N = 36), using
a recently introduced network density threshold method, the
Efficiency Cost Optimization (De Vico Fallani et al., 2017), thus
yielding group-level 28 × 28 fractal dynamics-based functional
connectivity matrices across the brain for each experimental
condition independently. See also La Rocca et al. (2020) for
further details on the use of such technique.

To investigate significant differences in infraslow functional
connectivity between two different experimental conditions (e.g.,
TASKi − RESTi) independently for each chosen index, a group-
level paired t-test was performed, with a demanding preset
significance level: p < 0.01. The false discovery rate (FDR)
procedure was used to correct p-values for multiple comparisons
across the 28× 27/2 possible connections.

4.1.3.2. Comparisons Against Fourier-Based Indices
To compare Fourier-based F-ICOH and F-wPLI to Complex
Wavelet-based W-ICOH to W-wPLI, Fourier-based spectral
estimation was conducted using Welch Periodogram procedures
(as described in section 2.1), using a windowed Fourier transform
with a Hanning-type window of duration 80s.

4.2. Fractal Dynamics-Based Functional
Connectivity Networks
Figure 7 reports the 28 × 28 thresholded connectivity networks
yielded by the Complex Wavelet based indices defined in
section 2, W-wPLI (left), W-ICOH (middle), and W-COH
(right), for two different experimental conditions RESTi (top
row) and pre-training TASKi (center row). Further, Figure 7
(bottom row) reports the FDR-corrected statistically significant
differences between indices measured during TASKi and RESTi.
Figure 7 leads to the following observations:
(i) The connectivity networks yielded by W-COH

predominantly display short-range and inter-hemispheric
interactions throughout the cortex and most notably amongst
frontal regions on one hand and temporo-occipital regions on
other hand, both for RESTi and TASKi.
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FIGURE 7 | Functional connectivity assessment from fractal dynamics: Group-level functional connectivity in infraslow MEG-source reconstructed brain dynamics.

Filtered 28× 28 connectivity networks measured from Complex Wavelet based W-wPLI (left), W-ICOH (middle), and W-COH (right), for RESTi (top row) and

pre-training TASKi (center row). The red color intensity codes for the values of the connectivity indices (ranging from 0 to 1 by construction). Functional connectivity

differences between conditions TASKi and RESTi when assessed as significant by a group level FDR corrected t-test are displayed in the bottom row. Color codes for

the TASKi − RESTi differences in the values of indices from blue (negative) to red (positive), thus indicating that only increases in functional connectivity are observed

from RESTi to TASKi .

(ii) The connectivity networks yielded by W-ICOH and
W-wPLI display similar structures, dominated by long-range
spatial interactions, that differ significantly from those of the
networks produced by W-COH, dominated by shorter-range
spatial interactions. These differences in network structures can
be quantified using the Average Degree, i.e., the average number
of connections per node, as a network structure metrics. For
RESTi, the Average Degrees for the graphs obtained by W-COH,
W-ICOH, and W-wPLI are of 0.95(±0.37), 0.21(±0.24), and
0.44(±0.52), respectively. Medians distributions of the number
of links per node differ significantly between W-COH and
W-ICOH (p < 10−11) or between W-COH and W-wPLI
(p < 10−6). The same holds for TASKi, with average degrees
of 1.0(±0.49), 0.25(±0.24), and 0.52(±0.50), respectively, and
significances of p < 10−8 and p < 10−3, respectively.

(iii) While yielding comparable networks, W-wPLI and
W-ICOH differ insofar as the former yields larger connectivity
indices than the latter. In addition, connectivity networks
using W-wPLI or W-ICOH differ in structure; however, they
differ much less than when comparing W-wPLI vs. W-COH or
W-ICOH vs. W-COH. Indeed, for RESTi the Average Degrees
of W-wPLI and W-ICOH are 0.44(±0.52) and 0.21(±0.24),
respectively, yielding a quantifiable difference (p = 0.04), and
for TASKi the Average Degrees of W-wPLI and W-ICOH are
0.52(±0.50) and 0.25(±0.24), respectively, yielding a clearer
difference (p = 0.01).

(iv) When comparing TASKi vs. RESTi, W-wPLI and
W-ICOH both indicate an increase in functional connectivity
during task performance. This increase in functional connectivity

assessed from fractal dynamics highlights interactions between
regions recruited in the achievement of the task, notably
fronto-temporal couplings [between the right ventro-lateral
prefrontal cortex (vlPFC) and inferior temporal cortex (ITC)],
interactions linking temporal regions [anterior superior
temporal sulcus (aSTS) and auditory cortex] with the intra-
parietal sulcus (IPS), motor-occipital couplings between the
left frontal BA6 (including premotor and supplementary motor
regions), and primary visual areas (V1/V2). Interaction between
the key region hMT+, sensitive to visual motion, and the
associative area, pSTS, is also significant in the left hemisphere.

Focusing on the W-wPLI index only, Figure 8 shows
the additional comparisons of the post-training task TASKf

to the initial rest RESTi, which, compared to the contrast
TASKi − RESTi (cf. Figure 7 bottom left plot), indicates first
that functional interactions in infraslow temporal dynamics
are globally strengthened by the training and second that
new intra- and inter-hemispheric couplings emerged with
training involving much more the parieto-occipito-temporal
network (IPS, primary visual cortex, and anterior STS). We also
noticed new interactions between the left fronto-polar region
and the left IPS, the right frontal eye fields (FEF) and the pSTS,
and the BA6 complex and hMT+ region.

4.3. Functional Connectivity Assessed
From Fractal Dynamics and Selfsimilarity
In La Rocca et al. (2018b), selfsimilarity was systematically
quantified by wavelet-based measurements of the selfsimilarity
exponent H and a global decrease from rest to task was observed
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FIGURE 8 | Fractal dynamics-based functional connectivity assessment (W-wPLI) differences between RESTi and TASKi and between RESTi and TASKf . The

increase in functional connectivity assessed from fractal dynamics from rest to task is strengthened with training, i.e., from TASKi to TASKf , and emerged between

several intra- or inter-hemispheric pairs of regions (Frontal polar/IPS, ITC/MT, FEF/pSTS) involved in task performance.

over the whole brain (see Figure 4E in La Rocca et al., 2018b).
This result, obtained from 24 participants, is here strengthened
by using 36 subjects. Figure 9 reports a decrease in H not only
between RESTi and TASKi but also between RESTi and TASKf .
Further, Figure 9 shows a strengthening of the decrease in H
from TASKi to TASKf in the parieto-occipital regions involved in
task performance, notably the bilateral hMT+ regions, the visual
cortices including V1/V1 and V4 for the visual color detection.
Interestingly, after training, these regions are also more strongly
coupled with others during task performance (TASKf vs. RESTi).

To investigate a potential training-induced relation between
the decrease in selfsimilarity and the increase in W-wPLI,
1H = HTASFf − HRESTi and 1W-wPLI = W-wPLITASFf −

W-wPLIRESTi were averaged across the whole brain for each
subject. Corresponding averages are shown in Figure 10 which
interestingly suggests a significant (p = 0.05) anticorrelation
of r = −0.33. When averages are restricted to the part
of the brain where statistically significant changes in W-
wPLI between RESTi and TASKf can be assessed (after false
discovery rate-based corrections for multiple hypothesis testing),

the relation between 1H and 1 W-wPLI is strengthened,
r = −0.35 and p = 0.04.

4.4. Functional Connectivity Assessed
From Fractal Dynamics and Task
Performance
Finally, functional connectivity in the infraslow range of
temporal dynamics can be related to task performance, and
this is notable after training. Figure 11 reports, for each
participant, post-training performance in achieving the task
quantified by a percentage of correct responses (detection
of the color associated with the coherent visual motion),
referred to as hit rate, as a function of the variation in the
W-wPLI indices measured in TASKi and TASKf . It shows
that participants with the larger increase in functional
connectivity assessed from fractal dynamics induced by
training, i.e., the larger increase of W-wPLITASKf

− W-
wPLITASKi , are also those achieving the better performance in
post-training task.
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FIGURE 9 | selfsimilarity (H) differences between RESTi and TASKi and between RESTi and TASKf . The decrease in selfsimilarity from rest to task is strengthened

with training, i.e., from TASKi to TASKf , and more heavily in the parieto-occipital (hMT+, visual cortices, V1/V2/V4) regions involved in task performance. Note that a

value of H was computed per cortical label here. See La Rocca et al. (2018b) for methodological details.

4.5. Functional Connectivity From Fractal
Dynamics: Fourier-Based vs.
Complex-Wavelet Assessment
Averaging (the absolute values) of F-wPLI across a range of

frequencies that match the range of scales associated with

the infraslow scale-free scaling range permits us to compare

Fourier-assessed functional connectivity from fractal dynamics.

Figure 12 reports the density networks obtained from F-wPLI

for RESTi and TASKi, showing significant differences with those

obtained using W-wPLI. The network topography associated
with the F-wPLI index are denser compared to W-wPLI. Indeed,

using the Average Degree, used as a graph structure metric, it
was found that for RESTi, the Average Degrees of W-wPLI and
F-wPLI are 0.44(±0.52) and 1.62(±1.11), respectively, yielding
a very significant difference, assessed by a p-value below 6 ×

10−6, and for TASKi, the Average Degrees of W-wPLI and F-
wPLI are 0.52(±0.50) and 1.65(±1.21), respectively, yielding
also a significant difference assessed by a p-value of 5 × 10−5.
Further, the number of significant interactions with F-wPLI is
more balanced between the two hemispheres during RESTi in
contrast to W-wPLI, which captures more couplings in the right
one. Also, the resting-stateW-wPLI-based network configuration
is more dominated by fronto-occipital couplings, whereas the
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FIGURE 10 | Decrease of selfsimilarity vs. increase in functional connectivity

assessed from fractal dynamics from rest to task. 1H = HTASKf -HRESTi as a

function of 1 W-wPLI = W-wPLITASKf−W-wPLIRESTi , averaged across the

whole brain for each of the 36 participants (each marked as a dot), shows that

the decrease of selfsimilarity correlates negatively (r = −0.33, p = 0.05) with

the increase of functional connectivity assessed from fractal dynamics.

FIGURE 11 | Functional connectivity assessment from fractal dynamics vs.

Task Performance. Individual performance in the post-training task shows

significant (p = 0.01) positive correlation (r = 0.45) with the difference in

functional connectivity assessed from fractal dynamics from pre- to

post-training, i.e., W-wPLITASKf − W-wPLITASKi . Each participant is

represented as a dot, and outliers are marked with a ×.

F-wPLI-based shows a greater number of inter-hemispheric
interactions. During the pre-training task TASKi, the W-wPLI
and F-wPLI network topographies both show similar connections
but also strong differences: the former is more dominated
by fronto-parieto-occipital couplings with a hub role played
by the visual cortices, while the latter does not strongly
differ from the F-wPLI network found during RESTi. Finally

and more importantly, no statistically significant difference
in F-wPLITASKi-F-wPLIRESTi can be evidenced (see Figure 12-
bottom), while a significant increase in W-wPLI was found from
RESTi to TASKi between fronto-parieto-occipital regions that are
involved in task performance (see Figure 9-top). The coupling
between V4 and MT in the right hemisphere reflects the color-
motion binding, while the significant interactions involving the
anterior STS, IPS, and vlPFC are likely due to their role in
multisensory processing. TheW-wPLI index thus provides much
more meaningful information when contrasting rest to task
brain activity.

5. DISCUSSION

5.1. Functional Connectivity From Fractal
Dynamics Assessment
At the methodological level, the results presented in section 4
clearly showed that W-COH fails to characterized correctly
functional connectivity, which is in clear agreement with the
numerical simulations reported in section 2.3 on synthetic data
fGn/fBm andwith results reported in the literature (cf. Stam et al.,
2007; Vinck et al., 2011).

More interestingly, compared to W-ICOH, W-wPLI was
observed to more accurately quantify functional connectivity
assessment from fractal dynamics, both at rest and during a task
in MEG data, as well as to better highlight relevant changes in
functional connectivity assessed from fractal dynamics between
rest and task. This is in agreement with previously reported
results, showing that for band-limited oscillatory activities, F-
wPLI was a better index to assess functional connectivity than
F-ICOH. This was attributed to the denominator of F-wPLI being
different from that of F-ICOH and less sensitive to (residual)
volume conduction effects (Stam et al., 2007; Vinck et al., 2011).
These arguments straightforwardly extend to W-wPLI and W-
ICOH, and they thus likely explain the enhanced ability of W-
wPLI to assess functional connectivity from fractal dynamics
compared to W-ICOH. Interestingly, the numerical simulations
conducted in section 2.3 on synthetic fGn/fBm data showed only
a moderate superiority of W-wPLI over W-ICOH to quantify
functional connectivity from fractal dynamics, except for slightly
improved estimation (RMSE) performance. This suggests that
fGn/fBm, even with delays, correlations, and possible additive
trends, are not rich enough models to account for all the
difficulties encountered in modeling real MEG data. This is
calling for richer modeling, potentially involving multifractality.
This will be further explored.

The benefits of using wavelet-based (multiscale) tools
to analyze scale-free temporal dynamics and estimate the
corresponding scaling exponent compared to classical Fourier-
based spectral estimation have been abundantly documented
elsewhere (cf. e.g., Abry and Veitch, 1998; Veitch and Abry,
1999, 2001; Ciuciu et al., 2008, 2012; Abry et al., 2019b).
First, they provide better (unbiased and controlled variance)
estimates of H; second, by tuning the so-called number of
vanishing moments of the mother wavelet (Mallat, 1998),
wavelet-based spectral estimation is robust to additive smooth
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FIGURE 12 | Fourier-based wPLI estimator in the scale-free regime. No significant difference between F-wPLITASKi and F-wPLIRESTi in arrhythmic regime can be found.

slow trends in data which are, to the converse, strongly
altering Fourier-based spectral estimation. These benefits are
straightforwardly inherited by the wavelet-based indices for
assessing functional connectivity from fractal dynamics. This was

evidenced by the numerical simulations reported in section 2.3
showing the robustness of trends and improved performance
for large scaling exponents of Complex Wavelet-based indices
over Fourier-based ones.
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5.2. Functional Connectivity Assessed
From Fractal Dynamics in Time Relates to
Long-Range Spatial Interactions
On MEG data, functional connectivity in the infraslow
arrhythmic regime assessed by W-COH, i.e., based on direct
correlation, was observed to yield mostly spatial short-range
connectivity networks across the brain, notably with spurious
short-range functional intra- and inter-hemispheric interactions,
visible between frontal regions both at rest and during a task.
This is likely a consequence of residual common source effects,
strongly biasing the real part of thecoherence function, and
thus yielding spurious connectivity measures, in agreement with
results reported in Stam et al. (2007). In contrast, functional
connectivity assessed by W-ICOH and W-wPLI indices, i.e.,
based on phase coupling, did not show such short-range links,
but rather functional connectivity patterns dominated by long-
range spatial interactions. This yields the first major result of the
present work: Functional connectivity pertaining to the large-
band infraslow arrhythmic temporal dynamics (from 1 to 10
s, or equivalently from 0.1 to 1 Hz), reveals long-range spatial
interactions, notably evidencing couplings between frontal,
parietal, and occipital brain regions. Functional connectivity
assessed from fractal dynamics thus permits to quantify phase
couplings and interactions associated with large lags. This departs
from functional connectivity networks produced by the analysis
of band-limited oscillatory temporal dynamics, that pertains to
the fast (high frequency) brain activity and thus focuses on short
time delays.

5.3. Functional Connectivity Assessed
From Fractal Dynamics Increases During
Task Performance and With Training
Compared to F-wPLI, W-wPLI showed an enhanced statistical
sensitivity as it revealed a positively engaged parieto-temporo-
occipital network in infraslow temporal dynamics when
contrasting rest to pre-training activities. This network
comprises previously identified key brain regions (e.g., hMT+,
ITC, vlPFC, and pSTS) during task performance. Interestingly,
such regions also consistently identified as beubg recruited
by a task when using standard temporal or spectral data
analysis (Zilber et al., 2014; La Rocca et al., 2020). However,
W-wPLI was the only index further showing that functional
connectivity assessed from fractal dynamics actually increased
during task performance in these regions. A second key result
consists of the observation of the strengthening of this functional
connectivity from fractal dynamics based functional network
with training, i.e., when contrasting rest to post-training activity.
It shows the rising of new key couplings between frontal and
parieto-temporal cortices, which suggests that some cortical
representations of the visual detection and decision-making
process may emerge even at slow time scales (1–10 s) and may be
used as a substrate for facilitating faster dynamics in oscillatory
regimes. Such increased functional connectivity assessed from
fractal dynamics is a hallmark of brain plasticity induced by the
training stage.

The third finding of this study is the positive correlation
between the increase in functional connectivity assessed from
fractal dynamics and task performance when contrasting
pre- to post-training brain activity. This suggests that the
consolidated network eases task completion for each individual,
experiencing averaged increase in functional couplings within the
infraslow regime.

5.4. Functional Connectivity From Fractal
Dynamics and Selfsimilarity Quantifying an
Interplay Between Temporal and Spatial
Dynamics
Finally, the increase in functional connectivity assessed from
fractal dynamics was shown to be correlated with a decrease in
the selfsimilarity from rest to task. These results on functional
connectivity assessment from fractal dynamics, combined with
the univariate (regionwise) analysis of scale-free temporal
dynamics of the same data (La Rocca et al., 2018b), lead to the
following global picture for the large-band arrhythmic infraslow
temporal dynamics of brain activity.

At rest, each region displays a globally very structured and
slow activity in time (large selfsimilarity exponent H and thus
strong temporal autocorrelation) with no transient structures (no
burstiness and no multifractality, La Rocca et al., 2018b). The
regions are connected across the brain by a clear spatial structure,
that of functional connectivity assessed from fractal dynamics,
constructed on measures of infraslow arrhythmic interactions.

During task performance, temporal dynamics in each region
independently become less globally structured and faster
(decrease in H hence globally less correlated) with transient
dynamical structures for regions involved in the task (burstiness
and multifractality, La Rocca et al., 2018b). These changes in
regionwise temporal dynamics are accompanied by stronger
functional connectivity assessed from fractal dynamics, i.e., by
stronger spatial structures connecting regions.

This permits us to conjecture an interplay between temporal
and spatial dynamics for the large-band infraslow arrhythmic
brain activity: A decrease in global temporal structures induces
faster and transient temporal dynamics and is associated with
an increase in spatial structures and interactions between
remote brain regions. Interestingly, thesemodulations are further
strengthened with training, i.e., when contrasting the post-
training to the resting-state activity in comparison with the pre-
training vs. rest contrast. Overall, such modulations of brain
spatio-temporal dynamics can be conjectured as a hallmark of
brain plasticity.

6. CONCLUSIONS

In this work, we have introduced the notion of functional
connectivity assessment from fractal dynamics for MEG data,
defined as functional connectivity associated with the large-
band infraslow (typically below the Hz) arrhythmic (scale-free)
cross-temporal dynamics, in contradistinction with the classical
functional connectivities associated with the band-limited rapid
oscillatory rhythms (α−, β−, γ− bands).
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It has been argued and demonstrated that complex wavelet
(multiscale) based analyses permit to construct indices to assess
functional connectivity from fractal dynamics that inherit from
the theoretical and practical benefits of wavelet representations
for scale-free (cross-temporal) dynamics analysis, notably in
terms of robustness to trends and large selfsimilarity parameters
H. It was confirmed that wPLI outperforms ICOH, as
commonly observed, and that COH is not suited for functional
connectivity assessment.
While Fourier-based tools are natural to use to assess functional
connectivity in band-limited rapid oscillatory rhythms, it was
shown, using simulated synthetic data and mostly on MEG data,
that the assessment of functional connectivity for large-band slow
scale-free cross-temporal dynamics is better achieved by complex
wavelet based indices. Therefore, Fourier and complex wavelet-
based spectral estimation must be regarded as complementary,
rather than as mutually exclusive, tools.

Complex wavelet-based analyses of functional connectivity
assessment from fractal dynamics conducted on MEG data
recorded on 36 participants at rest and during a visual
discrimination task with individualized training, yielded
several key conclusions. First, large-band infraslow arrhythmic
cross-temporal dynamics can be associated with long-range
(fronto-temporo-occipital) spatial interactions. Second,
functional connectivity from fractal dynamics increases during
task performance (in a set of brain regions consistent with those
evidenced by other analyses performed on the same data with
different tools) and is strengthened with training. Interestingly,
a larger overall fractal dynamics-based functional connectivity
increase correlates with better task performance (larger hit rate).
Third, the increase in spatial structure (quantified by the increase
in functional connectivity assessed from fractal dynamics) is
accompanied by changes in temporal structures, combining
a decrease in the global temporal correlations (quantified
by a decrease in the selfsimilarity index) and the increased
occurrence of local transient structures (quantified by an
increase in multifractality). These spatiotemporal modulations
are reinforced with intensive and individualized training
for the task.

Routines (in MATLAB) to synthesize (correlated and delayed)
bivariate fractional Gaussian noise, to perform Fourier and

complex-wavelet based analysis and to compute indices
quantifying functional connectivity from fractal dynamics, on
synthetic or MEG data, have been developed by ourselves and
will be made publicly available at the time of publication.

Such tools could further be used to examine the relevance
of functional connectivity assessed from fractal dynamics in
the context of network physiology, and networks of networks,
relating brain activity to other physiological functions (heart
rate, respiration, sleep, ocular, and motor systems, etc.) (cf. e.g.,
Bartsch and Ivanov, 2014; Bartsch et al., 2015; Liu et al., 2015;
Catrambone et al., 2020).
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