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Abstract: Machine learning (ML) and its multiple applications have comparative advantages for
improving the interpretation of knowledge on different agricultural processes. However, there are
challenges that impede proper usage, as can be seen in phenotypic characterizations of germplasm
banks. The objective of this research was to test and optimize different analysis methods based on
ML for the prioritization and selection of morphological descriptors of Rubus spp. 55 descriptors
were evaluated in 26 genotypes and the weight of each one and its ability to discriminating capacity
was determined. ML methods as random forest (RF), support vector machines, in the linear and
radial forms, and neural networks were optimized and compared. Subsequently, the results were
validated with two discriminating methods and their variants: hierarchical agglomerative clustering
and K-means. The results indicated that RF presented the highest accuracy (0.768) of the methods
evaluated, selecting 11 descriptors based on the purity (Gini index), importance, number of connected
trees, and significance (p value < 0.05). Additionally, K-means method with optimized descriptors
based on RF had greater discriminating power on Rubus spp., accessions according to evaluated
statistics. This study presents one application of ML for the optimization of specific morphological
variables for plant germplasm bank characterization.

Keywords: random forest; K-means; morphological descriptors; digital agriculture; data science

1. Introduction

Machine learning (ML) is a form of artificial intelligence (AI) that gives machines
the ability to learn through the use of algorithms and a training process [1] and is used
in tandem with big data technologies and high-performance computing [2,3], which,
together with information and communication technologies (ICTs) and the Internet of
Things (IoT), deep learning, among others tools, have created new opportunities for data-
intensive science. These tools are being applied in multiple areas, including agriculture,
as an emerging technology [2,4]. These tools helped create what is now known as digital
agriculture, a new agricultural revolution [2,5].

The practical applications of ML in agriculture are broad and are applied in various
fields, such as yield prediction [6], pest detection, classification, monitoring, and manage-
ment [3,7], and species recognition [8], which is why ML is undoubtedly a powerful tool
within digital agriculture, providing information for correct decision-making including
the study and efficient use of tropical genetic resources. The ML approach in agriculture
presents many challenges, because it is highest impacted by environmental factors that
cannot be controlled, demanding rigorous process and extensive data for validation and

Plants 2021, 10, 247. https://doi.org/10.3390/plants10020247 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-0541-5021
https://orcid.org/0000-0003-1051-1093
https://orcid.org/0000-0002-0162-3598
https://doi.org/10.3390/plants10020247
https://doi.org/10.3390/plants10020247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10020247
https://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/10/2/247?type=check_update&version=2


Plants 2021, 10, 247 2 of 18

testing [9]. This implies avoiding the overfitting, select very complex models and data
without standardization, improve the statists used, and data security, among others [2,9,10].
The goal of good practices in ML could improve real applications in agriculture with
biological, ecological, agronomic, economic, cultural, and social contexts.

The subcategories of ML algorithms present different approaches, with variations
in mathematical and statistical principles, computational requirements, advantages and
disadvantages, and current and potential applications [9,10]. The most common algorithms
associated with ML such as random forests, decision trees, supper vector machine, Bayesian
networks, neuronal networks, regression analysis, among others are named supervised
learning [9]. On the other hand, when unlabeled datasets without prior knowledge of the
input and output variable response are named unsupervised learning such as Artificial
Neural Networks, genetic algorithm, Instance-based learning models, deep learning, and
clustering [2,7,9,10].

Classification is one of the most common processes in which ML algorithms are used.
For this purpose, decision trees are the most popular tools, highlighting the random forest
algorithm [2,10]. On the other hand, supper vector machine and neuronal networks are
algorithms that have been used for this objective [2,9]. In addition, in recent years deep
learning has gained popularity in the classification processes of biological phenomena [3,7].

Colombia is one of the more biodiverse countries on the planet because it is rich in
natural resources and has a variety of species and ecosystems [11]. In order to conserve and
preserve high genetic diversity in species of agricultural interest, the System of Germplasm
Banks of the Nation for Food and Agriculture (SBGNAA) was created by the Colombian
Agricultural Research Corporation, AGROSAVIA. Banks include collections of species of
high value for the nation as a result of their potential for agribusiness, pharmaceuticals,
textiles, and food security and sovereignty [12,13]. The SBGNAA genetic pool includes
an ex situ blackberry collection (Rubus spp.) that is made up of different species with
high potential for the domestic and export markets given their nutritional and functional
characteristics [14,15].

The value of conserved plant genetic resources is given by the information used to
promote their use, where morphological and genetic descriptors are the basic parameters
that contribute to the knowledge of variability and parental selection, providing useful
information for the development of new cultivars and the protection of varieties [16]. Mor-
phological characterization is the determination of a set of phenotypic traits measurement
based on key botanical-taxonomic named as descriptors. The descriptors should have a
highly polymorphic expression, stable in the population and expressible under different
environmental conditions [17].

Currently, the Colombian Rubus spp. collection does not have validated descriptors.
Therefore, a series of morphological, chemical, and physiological descriptors is needed
in order to provide easy-to-measure characteristics that relate the shape, structure or
functions of an accession, allowing compliance with distinguishability, uniformity, and
stability requirements [18].

After a proper validation process for descriptors in germplasm banks, the pheno-
typic variability classification stage continues, which has traditionally been based on
multivariate analysis, commonly using principal components, clustering methods such as
cluster analysis, and linear and quadratic discriminants [19]. These tools have been used
to recognize cultivated and wild species of Rubus spp. and commercial crops of Rubus
glaucus Benth [20,21], without a prior optimization and validation process for descriptors
or evaluating which discrimination method had the best performance.

Therefore, given the need to have morphological descriptors for the Rubus spp.
germplasm bank along with the lack of knowledge on the ability of other discrimination
methods to provide specific information on possible descriptors, machine learning tools,
and discrimination method optimization have provided an opportunity for the creation
of more efficient processes in terms of information capacity, computational performance
and optimization of work time in the field and laboratory. The present study aimed to
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evaluate different machine learning techniques for the selection of morphological variables
in 26 Rubus spp. accessions cultivated under tropical conditions and for the optimization
of discrimination methods to increase the differentiation capacity of accessions.

2. Materials and Methods
2.1. Rubus spp. Accession Genotypes and Agronomic Management

A total of 26 blackberry accessions (Rubus spp.) were selected from the germplasm
bank at the La Selva Research Center in Rionegro, Antioquia—Colombia located at an
altitude of 2100 masl with an average temperature of 16 ◦C and 74.83% relative humidity
(Longitude: 075◦24′51.9 and Latitude: 06◦07′52.7), a lower montane humid forest life zone
(bh-MB).

The selected accessions had interspecific morphological variation at the species level,
obtained as a representative sample of all variation of the Rubus spp. germplasm bank
collection. The origin of each accession was as follows: Cultivated natives (CN) with
18 accessions; introduced (I) with 6 accessions; and wild native (WN) with 2 accessions
(Table 1). The plant material was collected in the phenological phases of flowering; the
primary floriferous stems were obtained after renewal pruning to guarantee their quality.
For each accession, five plants were selected, which had three floriferous primary stems
extracted from each one. The sanitary and renewal pruning were standard for all accessions,
as well as the fertilization practices. When there was a water deficit, water was added with
automatic drip irrigation.

Table 1. Blackberry (Rubus spp.) accessions, selected from the blackberry germplasm bank for morphological characteriza-
tion.

Specie Unique Identification
Code (CUI) Specie Unique Identification

Code (CUI)

Rubus sp. (I) 72600104 Rubus glaucus (CN) 72600111
Rubus sp. (I) 72600101 Rubus glaucus (CN) 72600087

Rubus glaucus (CN) 72600121 Rubus glaucus (CN) 72600079
Rubus glaucus (CN) 72600015 Rubus sp. (I) 72600086
Rubus glaucus (CN) 72600027 Rubus glaucus (WN) 72600072
Rubus glaucus (CN) 72600028 Rubus sp. (CN) 72600090
Rubus glaucus (CN) 72600034 Rubus glaucus (CN) 72600068
Rubus glaucus (CN) 72600042 Rubus sp. (I) 72600115
Rubus glaucus (CN) 72600044 Rubus glaucus (CN) 72600106
Rubus glaucus (CN) 72600045 Rubus glaucus (CN) 72600116

Rubus sp. (WN) 72600108 Rubus glaucus (CN) 72600080
Rubus glaucus (CN) 72600050 Rubus sp. (I) 72600081
Rubus glaucus (CN) 72600094 Rubus sp. (I) 72600112

Cultivated natives (CN); introduced (I); wild native (WN).

2.2. Morphological Descriptors

The selected morphological descriptors were based on previous studies on morpho-
logical characterizations carried out by Evans and Weber [22], combined with the proposals
of Ligarreto-Moreno, Espinosa, Barrero and Medina [21] for species from the Rubus L
genus. Once selected, they were grouped using typology criteria, botanical terminology,
and measurement scales. These descriptors were verified with taxonomic keys of the
genus Rubus L. [20] and the characters for the distinction of varieties of blackberry [21].
This validation confirms that morphological traits are associated with stable phenotypic
expressions into Rubus genus and low environmental effect.

The descriptors were recorded at the plant and organ levels, including qualitative
variables such as growth habit, organ shape, and other vegetative structures. In addition,
the organs were colored using the Royal Horticultural Society’s color chart for plants [23].
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The quantitative variables focused on morphometric measurements such as length (linear
dimension) and length and width (horizontal dimensions). Discrete variables were also
used for the vegetative structures in the plant organs (Table 2).

Table 2. Morphological variables used in the characterization of blackberry (Rubus spp.) accessions
in this study.

Plant and Organs Morphological Variables

Plant growth habit (V7) Plant size (types of plant growth)

Stem (V8, V9) Primary color of the stem surface
(V10, V11) Secondary color of the stem surface
(V12) Density of stem pubescence (tector hairs)
(V13) Presence of trichomes on the stem (glandular hairs)
(V14) Color of stem trichomes
(V15) Number of trichomes on the stem [Area 0.5 cm2]
(V16, V17, V18) Color of stem pubescence
(V19) Stem waxiness
(V20) Stem shape
(V21, V22) Color of the base of the stinger on the stem
(V23) Shape of the stinger on the stem
(V24) Length of the base of the stinger on the stem [mm]
(V25) Length of the stinger on the stem [mm]
(V26) Number of stingers in the stem internode

Leaf (V27) Length of the internode on the stem [mm]
(V28) Stipule length (from leaf base and petiole) [mm]
(V29) Stipule protrusion length on petiole [mm]
(V30) Shape of stipules on petiole
(V31) Blade shape
(V32) Number of leaflets on the leaf
(V33) Margin of terminal leaflet
(V34) Shape of the base of the terminal leaflet
(V35) Shape of terminal leaflet apex
(V36) Terminal leaflet shape
(V37) Pubescence of terminal leaflet (tector hairs)
(V38, V39) Color of the terminal leaflet bundle
(V40, V41) Color of the underside of the terminal leaflet
(V42) Length of terminal leaflet [mm]
(V43) Terminal leaflet width [mm]
(V44) Petiole length at terminal leaflet [mm]
(V45) Petiole length in terminal leaflet [mm]

Flower (V46) Number of stingers in the terminal leaflet
(V47) Type of inflorescence
(V48) Petal shape
(V49) Petal length [mm]
(V50) Petal width [mm]
(V51) Color distribution on the petals (pigmentation of certain
areas)

2.3. Selection and Optimization of Morphological Descriptors from the Rubus spp. Germplasm
Bank Using Machine Learning Tools

The Rubus spp. germplasm bank currently does not have validated morpho-agronomic
descriptors, meaning much methodological effort is needed for characterization, which is
why three ML tools were used to discriminate and determine the weight of the descriptors
in terms of diversity for optimal clustering of the evaluated accessions. This study used an
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internal optimization process from ML algorithms random forest (RF), linear (SVMl) and
radial (SVMr) support vector machines, and neural networks (NN).

The data matrix was associated with 55 columns (morphological descriptors) per
78 rows (26 accessions with 3 replicates by each one). In addition, one-hot encode data was
realized through a numerical representation of categorical descriptors. The arrays data
were randomly divided into two data sets: (i) training (75%) and (ii) testing (25%) to be
evaluated under different ML methods.

The RF algorithm is widely used as a classifier given its simplicity in terms of the
parameters required for decision making [24]. It was implemented using the libraries
randomForest [25], caret [26], ranger [27], and h2o [28] available to free software R.

The optimization of the RF algorithm and determination of the importance of the
morphological descriptors (numerical and non-numerical) were carried out through a
multi-step analysis. The first step was evaluating the number of trees (set of combinations
from 100 to 1000), the size through the number of nodes (1 to 4000), and the hyperparameter
alpha (0 to 20) with of the error rate, Bayes error and out-of-bag root-mean-square error
(OOB-RMSE), using the caret, ranger and h2o libraries, selecting 500 trees, 4000 nodes
and an alpha of 4 as a balance between the robustness, stabilization of the error rate
and computational performance. Subsequently, the importance of the morphological
descriptors was determined by calculating the confusion matrices [29] and then their global
accuracy [30] using the “caret” package. These parameters identified the weight and
interactions within the decision tree for each variable. As a complement, the importance of
the descriptors was evaluated by calculating the Mean Decreases in the Gini Index metric.
This process was corroborated using the metrics: mean minimal depth, number of nodes,
mse increase, node purity increase, number of trees times a root, root variable, interaction
occurrences, uncond mean minimal depth and significance (p < 0.05), evaluated with the
randomForestExplainer library [31]. Finally, these metrics were graphed. The type of
assembly used in the RF algorithm for the selection of the models was Bagging.

The second evaluated algorithm was SVM, which belongs to the general category of
kernel methods, widely used in classification and regression because of its high precision
and capacity to handle high-dimensional data [32]. The linear and radial forms of the
SVM algorithm (SVMl and SVMr) were evaluated using the e1071 library [33], optimized
with two steps: (i) selection of parameters and (ii) final training [34]. To select the fitness
parameters, the classification error, and the mean square error of the regression were
determined using the e1071 library. In the case of SVMr, gammas of 0.5, 1, 2, 3, 4, and 5 were
tested, and the computational cost was determined with the sum of the hyperparameters
and an indirect measurement of the computational simplicity of the code.

The third algorithm was NN, commonly used in identifying and predicting patterns
between multiple variables [35]. It was implemented with the nnet [36], NeuronalNetTools,
and RSNNS packages [37]. The importance and sensitivity of the descriptors were evalu-
ated using the Garson and Olden algorithms and the Lek profile method; then, the network
was optimized through a step-by-step process [35]: (i) Normalize entries, standardize
responses, and evaluate the influence of outliers. (ii) Network architecture, which includes
the size or number of units in the hidden layer, the number of nodes in each layer, inclusion
of bias layers, and weights or inputs. (iii) Decay by decreasing the specific weight of the
regularization in the neural network and (iv) interactions by evaluating different amounts
of interactions. Additionally, the correlation matrix between variables was calculated [35].

With the optimization of each algorithm (RF, SVMr, SVMl, and NN), the results
obtained in the selection of descriptors and its ability to classify adequately the accessions of
Rubus spp. were evaluated based on training/validation accuracy and training/validation
missclass Error using area under receiver operating characteristic (ROC) curve (AUC) [38]
implemented in the free software R [39] with own code. The accuracy quantified by AUC
it is considered a good metric that has been used in the comparison of ML algorithms [40].
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2.4. Rubus spp. Germplasm Bank k Genotype Clustering Methods

The tools selected for the analysis of discrimination of the accessions in the Rubus
spp. germplasm bank included hierarchical agglomerative clustering, using the Ward D2
method as the clustering union strategy, and k-means [41]. The analyses were developed
in the R software [39] through the creation of an own code with the help of the libraries
vegan [42], pvclust [43], ape [44], and rgl [45]. The consolidated morphological descriptors
in Table 2 were used as discriminant variables.

In order to optimize the discrimination of genotypes based on morphological descrip-
tors, a multistage analysis was carried out: (i) Standardization of variables carried out by
means of the Z score using the clusterSim library [46], guaranteeing equal or similar mea-
surement scales especially in measurements of dissimilarity sensitive to magnitude such as
the Euclidean distance [47,48]. (ii) For both discrimination methods, the optimal number
of clusters was estimated with the gap statistic [49] using the libraries factorextra [50] and
stat [51]. (iii) Since there are no validated morphological descriptors for the germplasm
bank, the effect of the number of variables in the discrimination methods was determined
using two data sets: (a) all variables (Table 2) and (b) those selected using the RF algorithm
(V23, V44, V24, V49, V25, V27, V50, V29, V28, and V42).

The variations in the hierarchical agglomerative clustering and k-means methods
were evaluated using the statistics normalized variation index (NVI), Adjusted Rand index
(ARI), separation index (IS), Calinski-Harabasz index (CH), entropy (EN), and Pearson
Gamma (PG) [52]. The parameters were determined with the fpc v2.2-5 [53] and aricode
v0.1.2 libraries [54], implemented in the free R software [39].

All combinations of morphological descriptors used on discriminating methods in-
cluded the results of ML algorithms were evaluated for their ability to discriminate each
accession used as replicas in order to avoid the artifacts such as the environmental con-
dition in differential expression of morphological markers. In addition, the results were
taxonomically corroborated to detect anomalies in the algorithms evaluated.

3. Results

3.1. Selection and Optimization of Machine Learning Algorithms for the Prioritization and
Selection of Morphological Descriptors in Rubus spp.

Table 3 shows the results of the ability of each of the machine learning methods to
prioritize the importance of morphological variables and their discriminating ability in the
studied blackberry accessions after an internal optimization process. It was determined
that the RF algorithm had the best performance based on the test statistics. In decreasing
order of ability to discriminate adequately based on the appropriate selection of descriptors,
the algorithms were RF (descriptive and numerical variables), RF (numerical variables),
neuronal networks (NN), support vector machine (SVM) radial (SVMr) and linear (SVMl)
with area under curve (AUC) accuracy classification values of 0.76, 0.64, 0.31, 0.21, and
0.09, respectively.

Table 3. Ability of machine learning methods to select the importance and discriminant blackberry (Rubus spp.) accessions
based on morphology descriptors.

Algorithm Type Train Accuracy 1 Train Missclass Error 1 Validation
Accuracy 1 Validation Missclass Error 1

Random Forest with
numerical variables 0.612 0.387 0.643 0.356

Random Forest with all
variables 0.734 0.265 0.768 0.231

Support Vector
Machine linear Na Na 0.0903 0.906

Support Vector
Machine radial Na Na 0.218 0.781

Neuronal Networks Na Na 0.312 0.687
1 Determined parameter using area under receiver operating characteristic (ROC) curve (AUC).
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The RF algorithm, after optimization based on the number of trees, and size and re-
duction of the hyperparameters, was able to determine that the quantitative and qualitative
descriptors of greatest importance for use in the discrimination of blackberry genotypes
were those with the highest value for the mean decrease in the Gini index (Figures 1a and
2a), minimum depth within the decision forest (Figures 1b and 2b), maximum number of
connected nodes (Figures 1c and 2c), increase in purity (Figures 1d and 2d) and number
of most frequent interactions in the decision trees (Figures 1e and 2e). According to these
criteria, the variables in decreasing order of importance for quantitative and quantitative-
descriptive descriptors were V44, V24, V42, V49, V25, V29, V50, V27, V28, V26 and V23,
V44, V9, V24, V53, V22, V25, V49, V28, V50, and V26 (Figure 2a–e).
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The optimized SVMl, varying parameter C, as a balance between the massification
of the algorithm margin and the error with a selection factor of 0.04, determined that the
descriptors in increasing order of importance were V51, V29, V19, V7, V27, V32, V46, V31,
and V23 (Figure 3a,b). The SVMr found that the selection factor 50 in the Kernel function
and a gamma of 0.5 minimized the error at the lowest possible computational cost, which
prioritized the descriptors in decreasing order as V19, V37, V46, V48, V23, V30, V42, V44,
V51, V7, V32 and V31 (Figure 3b).
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NN found that the best relationship as a function of the decrease in the specific
weight of the regularization of the network with respect to the number of hidden layers
quantified using the Bootstrap indicator determined that the highest value of occurrences
was seen with a weight of decay of 0.1 and a number of layers of 5.0 (Figure 4b). The
relationship between the variables and the network determined using Olsen’s connection
weights algorithm showed that the descriptors with importance greater than 2.5 in absolute
value were V30, V34, V32, V31, V49, V12, V50, V26, V33, V36, V48 and V19 (Figure 4a).
Additionally, as a result of the correlation analysis, two groups were found: (i) directly
proportional relationships and (ii) inversely proportional relationships (Figure 4c). The
descriptors associated with the flower, such as V49 and V50 (inversely proportional),
helped differentiate the accessions at the inter- and intraspecific levels. The leaf descriptors,
such as V31 and V32 (directly proportional), were able to discriminate using a single
descriptor. Grouping also occurred in five clusters associated with the importance value
of the variables: High importance: V34 to V44, medium importance: V26 to V33, and low
importance V12 to V25. The importance of variables V27, V37, V43, and V44 was notable
in all groups (Figure 4d).
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3.2. Genotype Discriminating Methods from the Rubus spp. Germplasm Bank

It was found that the massification of the Gap statistic was obtained when the number
of clusters for the standardized hierarchical agglomerative clustering, non-standardized
hierarchical agglomerative clustering, standardized k-means, and non-standardized k-
means methods were 10, 6, 10, and 7, respectively (Figure 5), indicating a uniform, non-
random distribution of the accessions within each group. Additionally, the effect of
standardization on the two methods tested was notable (Table 4). Superior performance
was found in the K-means and hierarchical agglomerative clustering grouping when the
reduction of variables was carried out using the RF method, indicating that the selection
process was highly informative (Figure 6 and Table 4).



Plants 2021, 10, 247 11 of 18

Plants 2020, 9, x FOR PEER REVIEW 11 of 18 

 

 
Figure 5. Cluster number selection based on GAP statistics. (a) Hierarchical agglomerative clustering 
(standardized); (b) Hierarchical agglomerative clustering (not standardized); (c) K-means 
(standardized); (d) K-means (not standardized). 

  

Figure 5. Cluster number selection based on GAP statistics. (a) Hierarchical agglomerative clustering (standardized); (b)
Hierarchical agglomerative clustering (not standardized); (c) K-means (standardized); (d) K-means (not standardized).

Table 4. Statistics test associated with evaluation of clustering methods to discriminate blackberry (Rubus spp.) accessions
based on morphology descriptors.

Clustering Method type NVI ARI IS CH EN PG

HAC (not standardized) 0.83189 0.06594 11.11800 147.1061 1.45703 0.45055

K-means (not standardized) 0.64981 0.19419 7.72195 103.6778 1.92456 0.31012

HAC (standardized) 0.64030 0.18111 8.03727 65.75058 1.96550 0.30829

K-means (standardized) 0.32366 0.45414 7.55724 24.58237 2.18674 0.12498

HAC (standardized and
with reduced variables
based on random Forest
process)

0.65026 0.17933 1.36298 69.08629 1.94982 0.40440

K-means (standardized and
with reduced variables
based on random Forest
process)

0.32122 0.46730 1.05589 20.30752 2.19465 0.14359

Normalized Variation Index (NVI); Adjusted Rand Index (ARI); Separation index (IS); Calinski-Harabasz Index (CH); Entropy (EN);
Pearson Gamma (PG). HC: Hierarchical agglomerative clustering.
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Figure 6. Selection of the genotype clustering method of the blackberry (Rubus spp.) germplasm
bank. (a) Hierarchical agglomerative clustering (not standardized); (b) K-means (not standardized);
(c) Hierarchical agglomerative clustering (standardized); (d) K-means (standardized) (e) Hierarchical
agglomerative clustering (standardized and with reduced variables based on Random Forest process);
(f) K-means (standardized and with reduced variables based on Random Forest process). HC:
Hierarchical agglomerative clustering.

The evaluation of the behavior and discrimination capacity of the hierarchical agglom-
erative clustering and k-means methods with their different evaluated variations based
on the Normalized Variation Index (NVI); Adjusted Rand Index (ARI); Separation index
(IS); Calinski-Harabasz Index (CH); Entropy (EN); Pearson Gamma (PG) indices showed
that the method that presented the best performance was K-means with standardized and
reduced variables as a function of the RF optimization process, followed by the K-means
method with all standardized variables, standardized agglomerative hierarchical grouping
with optimization of variables using RF, agglomerative hierarchical grouping with all stan-
dardized variables, K-means and non-standardized agglomerative hierarchical grouping
(Table 4).
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Figure 7 shows the relationship between the descriptors prioritized by the RF al-
gorithm and the results of the discrimination using the K-means method, without con-
tradictory variations in the discriminating morphological characteristics for each group
or accession.
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4. Discussion

4.1. Selection and Discrimination of Descriptors Applied to the Rubus spp. Germplasm Bank
Using Machine Learning Tools

Of the analyzed machine learning tools, RF presented the best performance when
compared to SVMl, SVMr, and NN for the ability to prioritize highly discriminating
descriptors of accessions from the Rubus genus. This algorithm has been widely used in
classification processes given its good behavior, simplicity in terms of requirements and
parameters, computational optimization capacity, high precision, and robustness to noise,
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among other reasons [55]. The classification values (AUC) found in this study agree with
similar processes where the RF algorithm was used to determine classes associated with
different phenotypes and landscape uses with information from remote sensors, among
other uses [56].

Machine learning is one of the most used tools today in various fields, including
agriculture [2,57], which has established itself as one of the most effective methods for
detecting and predicting patterns [58]. Generalized use poses a challenge in the user
community for adequate applications; an optimization and analysis process is needed for
each algorithm, such as the one developed in this study.

The biological interpretation of the optimization and selection of morphological de-
scriptors in the Rubus spp germplasm bank based on RF algorithm were variables and in-
formative into Rubus genus, maximizing the contrast in the phenotypic discrimination [59].
These results suggest that some numerical morphometric characteristics largely define the
interspecific morphological variability of the evaluated Rubus accessions, especially those
related to the size of the plant organs.

The numerical descriptors with the highest level of discrimination, such as V26 (num-
ber of stingers in the stem internode) and V24 (length of the base of the stinger in the stem),
are characteristics related to V23 (shape of the stinger in the stem), which makes variations
in this vegetative structure a very valuable indicator that easily discriminates accessions or
materials. Descriptors related to the size and arrangement of the leaf on the stem were also
very important. Since species are represented by accessions and intraspecific variability,
our results generally confirmed that the descriptors associated with the leaf and stem
(Figure 7) tend to be the most informative [60]. Studies on Rubus subgenus Rubus highlight
these descriptors in the determination of qualitative and quantitative variation among
accessions [60]. These results suggest that many of the numerical descriptors prioritized by
the RF method show the possibility of generating scale ratios, which is useful for comparing
intervals, differences, and derivatives in absolute or dimensionless values [60]. Therefore,
prioritizing these descriptors would allow the generation of composite indicators and more
informative comparisons between collections and plant germplasm banks from different
regions [61].

Likewise, when descriptive variables were incorporated both interspecific and in-
traspecific characteristics helped discriminate the phenotype of the Rubus genus materials.
With this combination, the descriptors V9 (primary color of the stem surface), V23 (shape
of the stinger in the stem), and V53 (primary color of the petals) contributed greatly to the
definition of the morphological descriptors for this genus, highlighting the importance of
the stinger shape characteristic in the stem, which has proven to be a highly discriminating
characteristic at the species level and between species [21].

The 11 phenotypic variables allowed the discrimination of accessions, considered as
the minimum morphological characters that would facilitate the study of Rubus germplasm.
This optimization will allow characterizing the phenotypic traits of the accessions and
covering a large number in a short time, reducing the time for the characterization of the
entire germplasm bank [17].

4.2. Selection of the Genotype Clustering Method of the Rubus spp. Germplasm Bank

In the hierarchical agglomerative clustering and K-means, the standardization process
combined with the determination of the optimal number of clusters presented a better
discriminant power for Rubus spp. accessions. If the initial population and its distribution
have large distances between individuals, produced by the use of non-standardized values,
the number of clusters produced by the Gap statistic tends to be low and, therefore, the
discrimination power is lower [49]. This affects the K-means and hierarchical agglomerative
clustering methods since the Gap calculation includes the logarithm of the Sum of Square
Errors in modal distribution in all terms as a quotient [62].
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The NVI, ARI, CH, and PG statistics indicated that the greatest effectiveness was seen
with the standardized K-means variants with reduced variables, standardized K- means
with all variables, and standardized hierarchical agglomerative clustering with all the
variables, because said statistics related the number of classes, their internal normalized
variations and the order of the scores between the different classes formed. Therefore, they
were strongly influenced by the number of clusters, the distances between individuals, and
the nature of the grouping methods [63].

The K-means method performed better than hierarchical agglomerative clustering.
This result was due to the reassignment nature of the K-means method, which allows each
permutation to have an individual assigned to a group, independent of the group it was
assigned to in the immediately previous permutation, contrary to the hierarchical methods,
where individuals are assigned to a cluster depending on the initial parameters and remain
in that group until the end of the analysis, creating subgroups in lower hierarchies [64].

This study indicated that the K-means method and the reduction of variables using
the RF algorithm are an excellent alternative for the descriptors optimization and discrim-
ination of accessions from the Rubus spp. germplasm bank, with high potential for use
in fast, efficient characterizations in other germplasm banks. Even with the promising
results presented here, these methods require internal validation, proper selection of the
combination of variables, and specific clustering models for replication in different plant
matrices [65].

The knowledge of the morphological variability of germplasm improves the un-
derstanding of the relationship between structural morphology and their corresponding
functional botany [66]. It is considered that in the case of financial or human resource
limitations, less relevant characters can be eliminated with objective elements, such as the
process performed in this work. In addition, morphological descriptors must be easily
determined and have a constant phenotypic expression in all environments—that is, high
heritability and low environmental influence. Optimization of descriptors improves the
availability of information quickly and accurately inducing efficient management of conser-
vation and maximizing the use of financial resources [13]. Based on previous assumptions,
our work constitutes an important contribution in the evaluation of the morphological
variation of the Rubus germplasm with statistical, botanical, and taxonomic validity.

5. Conclusions

The correct optimization process of the RF algorithm allowed stable morphological
descriptors with high taxonomic concordance to be selected, thus eliminating redundant
and obsolete descriptors that present a high cost–benefit ratio. The adequate combination
of discriminant morphological descriptors in combination with the optimal parameters of
the K-means clustering method showed a promising approach to discriminate different
materials from a population with high phenotypic variability, such as the Rubus spp.
germplasm bank. This is particularly valuable since it is the first report on the use of
machine learning tools and optimization of discriminant methods for the prioritization
of quantitative and qualitative morphological descriptors and the ability to differentiate
genotypes from plant germplasm banks for the Rubus spp. genus in tropical environments.
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