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ABSTRACT

Recent technology has made it possible to measure
DNA methylation profiles in a cost-effective and com-
prehensive genome-wide manner using array-based
technology for epigenome-wide association stud-
ies. However, identifying differentially methylated re-
gions (DMRs) remains a challenging task because
of the complexities in DNA methylation data. Super-
vised methods typically focus on the regions that
contain consecutive highly significantly differentially
methylated CpGs in the genome, but may lack power
for detecting small but consistent changes when
few CpGs pass stringent significance threshold after
multiple comparison. Unsupervised methods group
CpGs based on genomic annotations first and then
test them against phenotype, but may lack specificity
because the regional boundaries of methylation are
often not well defined. We present coMethDMR, a
flexible, powerful, and accurate tool for identifying
DMRs. Instead of testing all CpGs within a genomic
region, coMethDMR carries out an additional step
that selects co-methylated sub-regions first. Next,
coMethDMR tests association between methylation
levels within the sub-region and phenotype via a
random coefficient mixed effects model that mod-
els both variations between CpG sites within the
region and differential methylation simultaneously.
coMethDMR offers well-controlled Type I error rate,
improved specificity, focused testing of targeted ge-

nomic regions, and is available as an open-source R
package.

INTRODUCTION

Many diseases are caused by a complex interplay of genes
and environmental factors, such as smoking, poor diet and
lack of exercise. Epigenetic studies investigate the mecha-
nisms that modify the expression levels of selected genes
without changes to the underlying DNA sequence. The
study of these epigenetic patterns hold excellent promise
for detecting new regulatory mechanisms that may be sus-
ceptible to modification by environmental factors, which in
turn increase the risk of disease. Among epigenetic modifi-
cations, DNA methylation is the most widely studied. The
addition or removal of a methyl group at the fifth position
of a cytosine is the key feature of DNA methylation. Al-
terations of DNA methylation levels have been shown to
be involved in many diseases (1), such as cancers (2–4) and
neurodegenerative diseases (5–9).

While whole-genome bisulfite sequencing is still too
costly for large epidemiologic studies, recent technology has
made it possible to measure DNA methylation profiles in a
cost-effective and comprehensive genome-wide manner us-
ing array-based technology such as the Infinium Methyla-
tionEPIC BeadChip Kit, which allows researchers to inter-
rogate more than 850 000 methylation sites per sample at
single-nucleotide resolution. The first wave of epigenome
analysis tools have focused on comprehensive DNA methy-
lation analysis of single base sites, that is, identifying dif-
ferentially methylated CpG sites, while more recent effort
have shifted to analyzing differentially methylated regions
(DMRs) (10,11).
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Table 1. Summary of unsupervised methods

Definition of Genomic
Regions

Test Association Between Methylations in
Genomic Regions vs. Continuous
Phenotypea Reference

Previously proposed methods
IMA mean (rforge.net/IMA/) Illumnina annotation (e.g.

CGI, TSS200)
linear model: Ȳi = β0 + β1 Xi + εi where Ȳi
is mean of methylation levels over all CpGs
in the region, for sample i

(26)

IMA median (rforge.net/IMA/) Illumnina annotation (e.g.
CGI, TSS200)

linear model: Ỹi = β0 + β1 Xi + εi where Ỹi
is median of methylation levels over all
CpGs in the region, for sample i

(26)

Aclust
(github.com/tamartsi/Aclust/)

Adjacent Site Clustering
(A-clustering) algorithm

Generalized Estimating Equation model:
Yi j = β0 + β1 Xi + εi j , where Yi j =
methylation value for CpG j in sample i ;
ε ∼ F(0, �) for some mean-zero
distribution F with covariance matrix �.

(20)

Seqlm
(github.com/raivokolde/seqlm)

Minimum Description Length
principle

simple linear mixed model:
Yi j = β0 + β1 Xi + Ui + εi j , where Ui is the
sample random effect

(19)

Proposed in this study
coMethDMR simple
(github.com/lissettegomez/coMethDMR)

CoMethAllRegions function simple linear mixed model:
Yi j = β0 + β1 Xi + Ui + εi j , where Ui is the
sample random effect

coMethDMR randCoef
(github.com/lissettegomez/coMethDMR)

CoMethAllRegions function random coefficient mixed model: Yi j =
(β0 + b0 j ) + (β1 + b1 j ) × Xi + Ui + εi j
where Ui is the sample random effect;
(b0 j , b1 j )t ∼ N(0, G) are random
coefficients for intercepts and slopes; G is an
unstructured covariance matrix.

a Xi = continuous phenotype (e.g. disease stage) for sample i ;

The shift to analysing DMRs is driven by both biolog-
ical and statistical reasons. Biologically, it has been ob-
served that methylation levels are strongly correlated across
the genome, and methylation often occurs as a regional
phenomenon (12). In the study of complex diseases, vari-
ous studies have reported functionally-relevant genomic re-
gions, such as CpG islands (13) or CpG island shores (14),
are associated with diseases. While changes at single sites
should not be overlooked, DMRs have increasingly been
deemed the hallmarks of differential methylation, and repli-
cation of DMRs are often more successful compared with
changes at single sites (15,16). Statistically, because of the
large number of CpG sites interrogated by methylation ar-
rays, testing regions (rather than individual CpGs) can help
improve power by reducing the number of tests conducted.
In addition, while effect size in a single CpG might be small
and difficult to detect, by borrowing information from all
the CpGs within a region, statistical test for regions can
more effectively leverage information within the region to
increase sensitivity and specificity.

A number of statistical methods for identifying DMRs
have been proposed (10,11,17–20), reviewed (21,22) and
compared (23–25). Methods for DMR identification can be
classified into supervised and unsupervised methods. Super-
vised methods (e.g. bumphunter (17), DMRcate (18), and
probeLasso (11)) typically start with computing P-values
for differential methylation at individual CpG sites, and
then scan the genome to identify regions with adjacent low
P-values. The statistical significance of these regions is then
computed by combining individual CpG P-values in the re-
gion using methods such as Stouffer’s Z (10). However, a
challenge with supervised methods is that they may lack

power for detecting small but consistent changes when few
CpGs pass stringent significance threshold after multiple
comparison (25).

An alternative strategy is to use an unsupervised ap-
proach, which defines relevant regions across the genome
first, independently of any phenotype information, and then
tests methylation levels in these predefined regions against
a phenotype (19,20,26). In this study, we propose a new un-
supervised approach for testing differential methylation in
regions against continuous phenotype such as age, tumor
size or marker protein concentrations. Note that in the pro-
posed mixed effects model (Supplementary Text, Section 1),
the phenotype variable is included as an independent vari-
able and the methylation values as the outcome variable.
Therefore, no distributional assumptions (e.g. normal dis-
tribution) are made for the continuous phenotypes.

Table 1 lists several previously proposed unsupervised
methods. A challenge with unsupervised approaches is their
lack of specificity. Unlike gene expression data, the regional
boundary of DNA methylation is often not well defined.
Therefore, currently available approaches that summarize
methylation levels in a region using mean or median methy-
lation levels of the CpGs within the region may have results
that vary depending on the boundaries of the region. In ad-
dition, when testing associations between phenotype and
the summarized methylation levels in a genomic region, the
spatial correlations between CpG sites within the region is
ignored.

Here, we present coMethDMR, a new unsupervised ap-
proach that effectively leverages covariations among CpGs
within genomic regions to identify genomic regions as-
sociated with continuous phenotypes. Instead of testing
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Figure 1. Workflow of the coMethDMR analysis pipeline.

all CpGs within a genomic region, coMethDMR carries
out an additional step that clusters co-methylated sub-
regions without using any outcome information. Next,
coMethDMR tests association between methylation within
the sub-region and continuous phenotype using a random
coefficient mixed effects model (27), which models both
variations between CpG sites within the region and differ-
ential methylation simultaneously.

In the following sections, we provide methodological de-
tails of the coMethDMR analysis pipeline and compare
this new method with several existing tools. The advan-
tages of coMethDMR is demonstrated using both simu-
lated and real methylation datasets. We show that the ad-
ditional CpG selection step (subregion identification) im-
proves power substantially while preserving Type I error
rate. In addition, the new random coefficient model im-
proves specificity and is robust against association signals
from outlier CpGs when detecting changes in differential
methylation in the regions.

MATERIALS AND METHODS

The coMethDMR analysis pipeline

Figure 1 shows the workflow of the coMethDMR analy-
sis pipeline, which is implemented in the coMethDMR R
package (https://github.com/lissettegomez/coMethDMR).
There are two major steps in the coMethDMR pipeline: (i)
within a genomic region, identify the sub-region with con-
tiguous and co-methylated CpGs and (ii) test association
of CpG methylation in the subregion with phenotype, while
modelling for variabilities among the CpGs simultaneously.

In the first step, the genome will be divided into regions
by taking advantage of methylation array annotations. Be-
cause the Illumina chips target methylation sites primar-
ily at genic regions and CpG islands (CGIs, regions in the
genome where there are more CG dinucleotides found than
expected by chance), the regions can be defined based on
their relations to genes or CGIs. For example, genomic
regions can be annotated as TSS1500, TSS200, 5′UTR,
first exon, gene body or 3′UTR. Alternatively, we can also
group CpG probes by their relation to CGIs, that is island,
shores, or shelves. We first extract clusters of CpG probes
located closely within these genomic regions. By default,
the coMethDMR function WriteCloseByAllRegions ob-
tains CpG clusters with at least three CpGs (minCpGs = 3)
and requires the maximum separation between any two
consecutive probes within the clusters to be 200 bp (max-
Gap = 200) (Figure 1). This step helps to ensure the ge-
nomic regions would have similar CpG densities (Supple-
mentary Text, Section 3).

Figure 2A shows correlation between methylation lev-
els among CpGs in an example of a genomic region
corresponding to the CGI located at chr12:123450766–
123451323. This region includes seven CpG probes ordered
by their locations on the chromosome. Note that in spite of
belonging to the same CGI, only the last four probes consti-
tute the co-methylated region. To select the co-methylated
region, we use the rdrop statistic, which is the correlation
between each CpG with the sum of methylation levels in
all other CpGs (Figure 2B). Note that in this example, the
co-methylated region consists of all the contiguous CpGs
with rdrop statistics greater than 0.5. We evaluated the sen-

https://github.com/lissettegomez/coMethDMR
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Figure 2. An example of a contiguous co-methylated sub-region. (A) This pre-defined region (a CGI) included seven CpG probes ordered by their location.
Shown are correlation between methylation levels in each pair of CpGs. Note that only the last four probes constitute the co-methylated region within this
CGI. (B) The CpGs in the co-methylated sub-region can be identified using the rdrop statistic, which is the correlation between each CpG with the sum of
methylation levels in all other CpGs. In this example, all the co-methylated CpGs had rdrop statistics >0.5.

Figure 3. Illustration––proposed random coefficient mixed model for test-
ing methylation levels in a hypothetical genomic region with two CpGs
against disease stage treated as a linear variable.

sitivity and specificity of the rdrop statistic at identifying co-
methylated CpGs in the subsection ‘Optimal parameter in
coMethDMR pipeline’ below.

In the second step, to simultaneously model variations
among the co-methylated CpGs as well as association with
phenotype, we propose a random coefficient mixed model
for testing groups of CpGs against phenotype. Figure 3 pro-
vides a hypothetical example fit of the mixed model for test-
ing two CpGs against disease stage (treated as a linear vari-
able). This model includes (i) normalized methylation val-
ues as the outcome variable, (ii) a systematic component
that models the mean for each group of CpGs (the fixed
effects intercept β0and slope β1for variable stage) and (iii)
a random component (the random coefficients) that model
how each CpG’s slope for stage varies about the group mean
(the random effects b0 j and b1 j , j = 1, 2). Because both
fixed and random effects are included in this model, this
model is a mixed effects model. Additional details of the
random coefficient model are described in Section 1 of Sup-
plementary Text.

We are interested in testing the null hypothesis that there
is no association between phenotype (disease stage) and
methylation values. This can be accomplished by testing the
fixed effect for slope H0 : β1 = 0. In the sections below, we
compare the statistical properties (i.e. power and Type I er-
ror rate) of this new random coefficient model with several
currently available statistical models shown in Table 1.

RESULTS

Optimal parameter in coMethDMR pipeline

The only parameter in the entire coMethDMR pipeline is
the rdrop threshold in the identification of co-methylated
sub-regions within a genomic region (Figure 2B). These
rdrop statistics are the leave-one-out correlations between
each CpG with the sum of methylation levels in all other
CpGs using methylation M-values. The co-methylated re-
gions can be identified by ordering the CpGs by location,
and selecting contiguous CpGs with leave-one-out correla-
tions greater than a pre-specified threshold (rDrop), such as
0.5.

Simulation study 1. We conducted an analysis to assess the
sensitivity and specificity of different rDrop values at iden-
tifying co-methylated CpGs. For each of the 19 977 CGI
regions with at least three CpGs, we computed pairwise cor-
relations of the CpGs within each CGI region. Next, we
selected regions with 3, 5 or 8 CpGs (simulation parame-
ter ncpgs) that have average pairwise correlations between
0.5–0.8 or 0.8–1 (simulation parameter minCorr) for this
simulation study. For each genomic region, we added addi-
tional irrelevant CpGs by sampling CpGs randomly from
the genome. The number of random CpGs added were ei-
ther the same as ncpgs (simulation parameter fold = 1), or
two times of ncpgs (simulation parameter fold = 2). There-
fore, by design of the experiment, the status of each CpG,
i.e. whether they belong to a co-methylated cluster or not,
is known.
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These parameter values yielded 12 simulation scenarios:
ncpgs (3, 5 or 8) × minCorr (0.5–0.8 or 0.8–1) × fold (1
or 2). For each scenario, this process was repeated 10 times
to generate a total of 120 simulation datasets. Step 1 in the
coMethDMR pipeline was used to identify co-methylated
regions for each simulated genomic region. Supplementary
Table S1 and Figures 4–5 show average sensitivity, speci-
ficity, and area under the ROC curve (AUC) for each value
of the rDrop parameter. These performance measures were
computed by comparing true status of the CpGs (whether
they belonged to co-methylated CpG clusters or were sam-
pled randomly from the genome) with predicted status of
the CpGs (whether a CpG was included in a co-methylated
region identified by coMethDMR at each rDrop parame-
ter value). AUC was computed using function auc from R
package pROC.

Optimal AUC occurred at or near rDrop = 0.4 for most
of the simulation scenarios (Supplementary Table S1). Fig-
ure 4 and 5 also showed that at rDrop = 0.4, both sensitivity
and specificity were over 0.9 for all but one simulation sce-
nario. Therefore, we set rDrop at 0.4 for subsequent anal-
ysis. Supplementary Table S2 shows using beta values and
M-values resulted in similar sensitivity, specificity and AUC
values.

coMethDMR controls Type I error when testing association
between methylation levels in the genomic regions with phe-
notype.

We conducted two additional simulation studies to assess
the Type I error (i.e. false positive rate) of the proposed
method. In Simulation Study 2, we assume the genomic re-
gions are pre-determined and we compared results using
different statistical models for testing association of methy-
lation levels with randomly generated phenotypes. In Simu-
lation Study 3, we assume the genomic regions are not pre-
determined, and we determined Type I error for the en-
tire coMethDMR pipeline. That is, we first identified co-
methylated regions, then tested these selected regions for as-
sociation with randomly generated phenotypes.

Simulation study 2. We evaluated the Type I error rate of
several currently available statistical methods, along with
the newly-proposed random coefficient mixed model, by
generating random phenotype data and test their associ-
ation with genomic regions in a real DNA methylation
dataset. More specifically, we compared the five statisti-
cal models listed in Table 1: (i) a linear model with mean
methylation M-values as summary for a genomic region,
(ii) a linear model with median M-values as summary for
a genomic region, (iii) a GEE model, (iv) a simple linear
mixed model and (v) our proposed random coefficient lin-
ear mixed model.

To emulate correlation structure between different CpGs
in real data, we generated simulation datasets using a real
methylation dataset (GSE59685) as input. Lunnon et al.
(2014) conducted an AD study that measured DNA methy-
lation levels in four brain regions postmortem from 122
individuals using the Infinium HumanMethylation450K
BeadChip platform (7). For this Type I error analysis, we
used prefrontal cortex methylation data from 27 control

subjects. For each simulation dataset, we randomly gen-
erated an age value for each sample. In the following sec-
tions, we use the term pseudo age to refer to the computer-
simulated age variable.

First, we select 10 CpG island genomic regions randomly.
For each region, we generated pseudo age randomly from
a Poisson distribution with mean 65, independently of the
methylation data. Therefore, by design of experiment, these
pseudo age values are not associated with any methylation
regions. This procedure was repeated 1000 times, to gener-
ate 10 000 simulation datasets (10 genomic regions × 1000
repetitions). Under the null hypothesis of no association be-
tween methylation and pseudo age, we expected the P-value
distributions for a model to follow the uniform distribution,
where 5% of the P-values would be less than 0.05, corre-
sponding to a Type I error rate of 0.05.

In Figure 6, the estimated Type I error rates for models
in Table 1 were 0.1011 (GEE model), 0.0545 (linear model
with mean summary), 0.0532 (linear model with median
summary), 0.0404 (random coefficient mixed model) and
0.0002 (simple linear mixed model). We can see that the
GEE model showed inflated false positive rate, with highest
Type I error at about 0.1. The inflated Type I error rate by
GEE model was also observed recently in simulation stud-
ies conducted by another group (19). On the other hand,
the simple linear mixed model was overly conservative, with
Type I error around 0.0002. Among the models, the pro-
posed random coefficient mixed model and the linear mod-
els with mean or median summary had Type I error closest
to 0.05.

Simulation study 3. We next determined Type I error
rate for coMethDMR when genomic regions are not pre-
determined. That is, we determined if the coMethDMR
pipeline, which includes both identifying co-methylated
methylation clusters, and testing methylation regions
against phenotype using linear mixed models, would still
have controlled Type I error rates. To this end, we first
identified 4444 co-methylated genomic regions mapped to
CpG islands. Next we selected 10 co-methylated regions
randomly, and then repeated Simulation Study 2 on these
co-methylated regions. That is, for each co-methylated re-
gion, pseudo age values were generated randomly from
Poisson distribution with mean of 65 for each of the sam-
ples. This procedure was repeated 1000 times to generate 10
000 simulation datasets (10 co-methylated regions × 1000
repetitions). Suppl. Figure 1 shows that after selecting co-
methylated CpGs, Type I error remained well-controlled for
both mixed models.

coMethDMR improves power substantially compared to fit-
ting mixed model directly to methylation data

Simulation study 4. Because genomic regions are typically
defined a priori based on annotations, without regard to the
methylation data sets to be analyzed, we expect only a sub-
set of CpGs in a pre-defined genomic region would be as-
sociated with the phenotype. We hypothesized that power
can be improved by selecting consecutive CpGs in the co-
methylated region first. To assess the power of the mod-
els, we performed a simulation study similar to Simulation
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Figure 4. Optimal sensitivities and specificities for coMethDMR were achieved when the parameter rDrop is close to 0.4, when the number of random
CpGs in the regions is (A) the same as ncpgs (fold = 1) or (B) two times the value of ncpgs (fold = 2).
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Figure 5. Optimal area under ROC curve (AUC) for coMethDMR was also achieved when the parameter rDrop is close to 0.4, when the number of random
CpGs in the regions is (A) the same as ncpgs (fold = 1) or (B) two times the value of ncpgs (fold = 2).
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Figure 6. Type I error rates in the absence of differential methylation for different statistical models. Shown above the bars are proportions of CpG island
genomic regions with P-values less than 0.05, for association with randomly generated ‘age’ from Poisson distribution with mean 65, average over 10 000
simulation datasets. Under the null hypothesis of no association, we expected P-values to follow a uniform distribution, so methods that control Type I
error at nominal level would be close to the red line.

Study 2 and 3 described above, except by testing methyla-
tion levels in the genomic regions against randomly gener-
ated pseudo age that are ranked in the same order as the
mean of methylation values in the co-methylated subregion.
Therefore, by design of the experiment, the values of pseudo
ages of the samples are associated with co-methylated CpGs
in each genomic region.

The results in Figure 7 show that for both random co-
efficient and simple linear mixed models, power improved
substantially after selecting the co-methylated regions
(coMeth randCoef and coMeth simple models). Between
the two mixed models, without selecting co-methylated
CpGs, the random coefficient mixed model had more
power. After selecting co-methylated CpGs, both models
performed similarly, especially when the number of co-
methylated CpGs was at least moderate (i.e. nCpGs ≥ 5).

We also compared the power of the mixed models with
other methods that had Type I error rate close to the nom-
inal level, which are the linear models with mean or me-
dian summary as outcome variable. Figure 7 shows that
among all models, the linear models and the mixed mod-

els fitted to co-methylated CpGs (coMeth randCoef and
coMeth simple) achieved similar power in all scenarios ex-
cept when the number of CpGs in the region is small and
the correlations between CpGs is moderate (nCpGs = 3,
minCorr = 0.5). When nCpGs = 3 and minCorr = 0.5,
the linear models had better power around 95%, while the
mixed models coMeth randCoef and coMeth simple had
power ranging from 60% to 77%. On the other hand, with-
out selecting co-methylated CpGs, the mixed models lacked
power in all simulation scenarios, except for random coef-
ficient mixed model when the number of CpGs in the true
positive genomic region is large (nCpGs = 8).

Random coefficient mixed model improves specificity when
identifying differentially methylated regions

As mentioned above, a key challenge in unsupervised ap-
proaches for identifying DMRs is their lack of specificity. In
particular, it is desirable to identify significant genomic re-
gions that include only CpG probes significantly associated
with the continuous phenotype and exclude those CpGs not
related to phenotype. To further evaluate the specificity of
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Figure 7. Power is improved when fitting simple linear mixed model and random coefficient mixed model to co-methylated CpGs in genomic regions
(coMeth randCoef, coMeth simple), compared to fitting the mixed models to all CpGs in genomic regions. When nCpGs = 3, linear model with mean
summary had best power. When nCpGs = 5 or 8, coMeth randCoef and coMeth simple had similar power as the linear models. Reference line is at 80%
power.

different statistical models on real methylation data, we next
applied the five models described above as well as several
supervised approaches (bumphunter (17), DMRcate (18),
Probe Lasso (11) and comb-p (10)) to all 110 prefrontal
cortex samples in the Lunnon et al.’s dataset (7) mentioned
above to identify CGIs associated with Braak scores. Braak
staging scores are a standardized measure of neurofibril-
lary tangle burden determined at autopsy (28). These scores
range from 0 to 6, indicating different pathological sever-
ity of the disease. We treat these scores as a linear variable,
adjusting for covariate effects from age, sex, batch and esti-
mated proportions of neurons.

Supplementary Figure S2 shows mean trajectories
of corrected methylation M-values (after adjusting for
covariate effects) for individual CpGs in top 10 most
significant genomic regions, identified by IMA mean
(linear model with mean summary implemented in IMA
software), IMA median (linear model with median
summary implemented in IMA software), Aclust GEE
(GEE model implemented in Aclust software), se-

qlm (simple linear mixed model implemented in se-
qlm software), coMethDMR simple (simple linear
mixed model implemented in coMethDMR software),
coMethDMR randCoef (random coefficient mixed model
implemented in coMethDMR software) and comb-p
software. Among the supervised methods, only comb-p
returned significant regions. In the figures, each dot corre-
sponds to an average corrected methylation M value for
samples from a particular Braak stage. Each line represents
linear regression fitted on a particular CpG. Note that
within these most significant regions, there were large het-
erogeneities in slopes for individual CpGs for all methods,
except coMethDMR randCoef. Figure 8 shows standard
deviations of slope estimates for individual CpGs within
the top 10 regions. Each dot represents standard deviation
of individual CpG slope estimates within a significant
region selected by a particular method. We observed that
significant regions selected by random coefficient model
(coMethDMR randCoef) showed much less variances in
individual CpG slopes estimates (which are obtained by
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Figure 8. Significant regions selected by random coefficient model showed less variances in individual CpG slope estimates (i.e. more homogeneous as-
sociations between individual CpG methylations and disease stage). We considered the top 10 most significant regions with at least three CpGs by each
method, except for comb-p which only returned 8 significant regions. Each dot represents standard deviation of individual CpG slope estimates within a
significant region selected by a particular method. Note that standard deviations for coMethDMR randCoef method are substantially lower than those
from other methods.

applying a linear model to single CpGs), corresponding to
more homogeneous associations between individual CpG
methylations and disease stages.

To understand how the random coefficient mixed model
improves specificity, note that this model specifically mod-
els co-variation of the slopes. In Figure 3 and Supplemen-
tary Text (subsection ‘Random coefficient mixed model’
under Section 1 ‘Unsupervised Approaches for Identifying
DMRs’), the CpG specific slopes are modelled by random
effects b1 j , where we assume b1 j ∼ N(0, σ 2

1 ). The variations
in the CpG specific slopes will be captured by estimated
variance component σ̂ 2

1 for the random effects b1 j , which
contributes to variance of β̂1, the slope main effect for the
continuous phenotype (e.g. disease stage). Thus, genomic
regions with more consistent differential changes in methy-
lation levels among the CpGs will have a lower value for σ̂ 2

1 ,
corresponding to a lower value for variance of β̂1, and yield-
ing a more significant P-value for the slope main effect. On
the other hand, regions with outlier CpGs would have large

variances for β̂1, resulting non-significant P-values for the
slope main effect.

To further illustrate the effect of modeling heterogene-
ity in CpG slopes, consider the 5 CpGs located within
the CGI at chr13:115046754–115048034 (Figure 9). To
simplify this example, we tested methylation M-values
in this region against disease stage, without controlling
for any covariate variables. The results showed that the
P-values for this region are 2.42 × 10−5 (IMA mean),
0.0154 (IMA median), 1.87 × 10−4 (GEE in Aclust),
and 0.0046 (simple linear mixed model in seqlm and
coMethDMR simple). However, note that the significance
of this region is driven by only 1 CpG, cg12513911 (light
blue). On the other hand, the P-value for random coefficient
model in coMethDMR randCoef is 0.315, which indicates
that the random coefficient mixed model correctly classified
this CGI as a non-significant region.

This example shows that without specifically modeling
variances in the slopes, the significant regions identified
might have large heterogeneity in individual CpG slopes.
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Figure 9. Trajectories of five individual CpGs. Each dot indicates the average methylation M-value for all samples available at a given disease stage. These
averages are then mean centered to put all CpGs on the same graph. The P-values for this region by different methods are 2.42 × 10−5 (IMA mean), 0.0154
(IMA median), 1.87 × 10−4 (GEE in Aclust), and 0.0046 (simple linear mixed model in seqlm and coMethDMR simple), 0.315 (random coefficient model
in coMethDMR randCoef).

As a result, the region may include a substantial number
of non-significant CpGs. In particular, region-wise P-values
using conventional unsupervised methods can be driven
by a single outlier CpG that has strong association signal,
which does not constitute a DMR by definition. In contrast,
the proposed random coefficient mixed model would priori-
tize genomic regions where the mean methylation trajectory
for multiple CpGs is highly correlated with continuous phe-
notype, and the heterogeneity in trajectories for individual
CpGs within the region is low.

coMethDMR identifies biologically-meaningful DMRs

To evaluate the biological plausibility of DMRs identified
by different methods, we next examined the analysis results
for testing methylation levels with AD stages in the Lunnon
et al.’s dataset. After adjusting for age, sex, batch, and es-
timated proportions of neurons, coMethDMR simple and
coMethDMR randCoef identified 10 and 4 significant re-
gions at 5% false discovery rate (FDR), respectively. We
compared these results with significant DMRs identified
by other methods, including the IMA mean, IMA median,

Aclust GEE and seqlm methods. We also tested several su-
pervised methods, including DMRcate, bumphunter, pro-
belasso, and comb-p. Figures 10–11 show the overlap of
significant regions identified by these methods and the
coMethDMR simple and coMethDMR randCoef meth-
ods, respectively. The seqlm method (unsupervised) and
DMRcate, bumphunter, and probeLasso methods (super-
vised) were excluded from these figures because they did not
identify any DMRs at 5% FDR.

The results showed that all except one DMR identified
by IMA median were also identified by IMA mean. Three
(out of 13) DMRs identified by coMethDMR simple and
two (out of 5) DMRs identified by coMethDMR randCoef
were also identified by IMA mean. Among these, two
DMRs (chr21:47855893–47856020 and chr7:27146237–
27146445) were identified by all three methods (Figures 10–
11, Table 2). Results from coMethDMR also had substan-
tial overlap with Aclust GEE results. However, this could
be due to the fact that Aclust GEE method identified a
large number of DMRs. Given that the Type I error rates
for Aclust GEE was inflated (Figure 6), many of the sig-
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Figure 10. Comparison of significant regions at 5% False Discovery Rate
(FDR) selected by coMethDMR simple with other unsupervised ap-
proaches (IMA median, IMA mean and Aclust GEE).

Figure 11. Comparison of significant regions at 5% FDR selected
by coMethDMR randCoef with other unsupervised approaches
(IMA median, IMA mean and Aclust GEE).

Figure 12. Comparison of significant regions at 5% FDR (or Sidak P-value
for comb-p) selected by coMethDMR randCoef, coMethDMR simple
and the supervised approach comb-p.

nificant DMRs could be false positives. Compared to the
overlap between comb-p and coMethDMR randCoef, re-
sults from coMethDMR simple agreed more with the su-
pervised method comb-p (Figure 12), probably because nei-
ther method accounts for heterogeneities in CpG slopes.

Table 2 shows the significant regions identified by
coMethDMR simple and coMethDMR randCoef. For the

DMRs identified by coMethDMR randCoef, the most sig-
nificant region is in the gene body of SEPT5, a brain-
expressed cytoskeletal organizing gene that was nominally
associated with AD in family-based GWAS studies (29).
It has been identified in neurofibrillary tangles, neuropil
threads, and dystrophic neuritis in senile plaques of brains
affected by AD (30) and was shown by proteomic analysis to
have altered levels in brains of AD patients (31). The second
gene, PCNT, has also been linked to altered methylation in
AD brains (6). The third region is in KIF1A, a member of
the kinesin family that transports cargo along axonal micro-
tubules. One of KIF1A’s major roles is to transport BACE1
in neuronal axons (32). The fourth region is in the 3′ UTR
of the HOXA3 gene, which is part of a gene cluster on chro-
mosome 7. Recently, aberrant methylation of this region has
been shown to be associated with AD neuropathology in
multiple AD EWAS datasets (33). The fifth region maps to
the KCNJ10 gene, which encodes Kir4.1, an inwardly recti-
fying potassium channel expressed in glial cells in the cen-
tral nervous system (34). Kir4.1 has been linked to multi-
ple neurological disorders such as Alzheimer disease (35),
amyotrophic lateral sclerosis (36) and Huntington disease
(37). In particular, the loss of Kir4.1 expression has been ob-
served in post-mortem tissues from AD patients with mod-
erate to severe amyloid deposition (35) and the expression
of KCKJ10 was shown to be regulated by DNA methylation
(38,39).

The coMethDMR simple model identified several more
genes that were previously implicated in AD etiology. For
example, the MBP gene encodes myelin sheath of oligo-
dendrocytes and Schwann cells in the nervous system.
Brains from patients with AD had significant loss of in-
tact MBP. Myelin disruption is an important feature of
Alzheimer’s disease (AD) that contributes to impairment of
neuronal circuitry and cognition (40,41). Another impor-
tant gene, ATP2A3, encodes one of the SERCA Ca(2+)-
ATPases, which are involved in maintenance of low intra-
neural Ca2+ concentration. The malfunction of this pump
was recently found in brains of AD subjects (42,43). On the
protein-protein interaction network, the RHBDF2 gene is
connected to ADAM17, which is an alpha-secretase can-
didate processing amyloid precursor protein (APP) (44).
The HMHA1 gene is close to the 3′ untranslated region
of ABCA7, a known AD susceptibility gene (45), which
was also found to be abnormally methylated in ALS (46).
SLC24A4 may be involved in neural development (47)
and was found to increase risk of AD (48). For the re-
maining genes, TTC22 is involved in chaperone activity
and SPN appears to be involved in immunological and
inflammatory process that may relate to AD pathophys-
iology. Notably, methylation of CpGs located within the
HOXA3, RHBDF2, TTC22, SPN, HMHA1 and SLC44A2
genes were also identified to be significantly associated
with AD pathology previously in other large EWAS co-
horts (6,49–51). Taken together, these results suggested that
coMethDMR can identify disease-relevant genes and repli-
cate previous single-site and regional methylation analyses,
as well as nominate novel genes that are likely involved in
AD pathogenesis.
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Table 2. Differentially methylated regions associated with AD stages identified by coMethDMR

Region Gene Estimate StdErr P value FDR

method =coMethDMR randCoef
chr22:19709548–19709755 SEPT5;GP1BB 0.041 0.008 6.21E–07 0.003
chr21:47855893–47856020 PCNT 0.042 0.009 1.37E–06 0.003
chr2:241721922–241722113 KIF1A 0.024 0.005 9.15E–06 0.013
chr7:27146237–27146445 HOXA3 0.054 0.012 1.54E–05 0.017
chr1:160040544–160040667 KCNJ10 –0.027 0.006 2.07E–05 0.018
method = coMethDMR simple
chr22:19709548–19709755 SEPT5;GP1BB 0.041 0.008 3.16E–07 0.001
chr21:47855893–47856020 PCNT 0.042 0.008 8.68E–07 0.002
chr7:27153580–27153636 HOXA3 0.064 0.014 3.41E–06 0.005
chr7:27146237–27146445 HOXA3 0.054 0.012 5.01E–06 0.005
chr17:74475240–74475402 RHBDF2 0.060 0.014 2.40E–05 0.021
chr7:27155002–27155358 HOXA3 0.047 0.012 4.12E–05 0.024
chr7:27185136–27185512 HOXA6 0.036 0.009 4.76E–05 0.024
chr17:3848156–3848506 ATP2A3 0.045 0.011 4.81E–05 0.024
chr18:74799495–74799572 MBP 0.063 0.016 4.84E–05 0.024
chr16:29675846–29676071 SPN –0.051 0.013 6.41E–05 0.028
chr1:55246867–55247140 TTC22 0.050 0.013 9.64E–05 0.038
chr19:1070986–1071208 HMHA1 0.050 0.013 1.15E–04 0.042
chr19:10736006–10736355 SLC44A2 0.050 0.013 1.45E–04 0.049

DISCUSSION

Although a number of methods have been proposed, iden-
tifying differentially methylated regions remains a chal-
lenging task because of the complexities in DNA methy-
lation data. One such challenge with supervised DMR-
identification methods is their lack of power when the dif-
ference in beta values between two groups was small but
consistent (i.e. difference in mean beta values is <0.05) (25).
This is likely because supervised methods scan the genome
to identify regions with adjacent low P-values, so a num-
ber of positions that pass a multiple-comparison-corrected
significance threshold are required. On the other hand, un-
supervised methods, which define genomic regions first and
then test them against phenotype, tend to lack specificity
and often prioritize irrelevant genomic regions.

In this paper, we have presented coMethDMR, an un-
supervised method for identifying differentially methylated
regions for methylation data measured by Illumina arrays.
Several additional features of coMethDMR make it espe-
cially attractive in a practical setting:

First, coMethDMR improves specificity and prioritizes
genomic regions with co-methylated CpGs that are consis-
tently associated with a continuous phenotype. In addition
to the identification of DMRs, this improved accuracy in
scoring and ranking genomic regions would also provide
more accuracy in downstream analysis such as network or
pathway analysis, where genes are represented by genomic
regions mapped to them, as well as integration with other
types of -Omics data, such as gene expression measured by
RNAseq.

Second, coMethDMR improves power by identifying
and testing co-methylated regions in the genome, instead
of testing all genomic regions in the genome. By limiting
analysis to only the most relevant regions in the genome,
P-values are not diluted by multiple-comparison correction
for regions that are unlikely to be candidate for DMRs.
Note the co-methylated regions are selected without using
any outcome information, so that Type I error rates for the
coMethDMR pipeline are preserved.

Third, coMethDMR is flexible in the genomic regions
one would like to focus on. The input for coMethDMR
can be one, two or many genomic regions. This flexibil-
ity allows focused testing of targeted genomic regions, for
example, testing significant DMRs from previous studies
in a new dataset. By testing fewer number of genomic re-
gions, the burden for multiple comparisons is reduced. In
addition to annotations provided by Illumina, other def-
initions of genomic regions can also be used to group
CpG probes, such as the cell-type specific chromatin state
segmentations identified by patterns of histone modifica-
tions in ENCODE project (52), chromatin accessible re-
gions detected in ATAC-seq data, or transcription factor
binding sites detected in ChIP-seq data. This new feature of
coMethDMR facilitates integration of DNA methylation
data with carefully-curated metadata generated by large
consortia such as ENCODE (52) and Roadmap Epige-
nomics (53), improving power by focusing on the gene-
regulatory regions which are most likely to be differentially
methylated.

In summary, coMethDMR offers a flexible, powerful,
and accurate solution for DMR analysis of array-based
DNA methylation data. The entire analytical pipeline is im-
plemented as an open-source R package, freely available to
the research community. We have shown coMethDMR pro-
vides well-controlled false positive rate, as well as improved
power over directly testing a genomic region with a continu-
ous phenotype. In the analysis of an Alzheimer’s dataset, the
agreement between results obtained by coMethDMR and
previous reports further validates this proposed method.
coMethDMR empowers epigenetic researchers to discover
meaningful biological insights from vast amounts of large
and complex DNA methylation datasets.

DATA AVAILABILITY

The R package coMethDMR can be accessed at https:
//github.com/lissettegomez/coMethDMR. A user guide for
coMethDMR which provides details of commands and out-
put is included in Section 4 of Supplementary Text. The
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analysis scripts used in this study can be accessed at github
at https://github.com/lissettegomez/coMethDMRPaper.

The Lunnon et al. Alzheimer’s Disease dataset are avail-
able in the GEO data repository (accession numbers:
GSE59685, GSE43414)
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