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Highly efficient carrier multiplication
in PbS nanosheets
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Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells.

A high efficiency can be achieved by carrier multiplication (CM), which yields multiple

electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of

specific interest, since their band gap can be tuned to be optimal to exploit CM in solar cells.

Interestingly, for a given photon energy CM is more efficient in bulk PbS and PbSe, which has

been attributed to the higher density of states. Unfortunately, these bulk materials are not

useful for solar cells due to their low band gap. Here we demonstrate that two-dimensional

PbS nanosheets combine the band gap of a confined system with the high CM efficiency of

bulk. Interestingly, in thin PbS nanosheets virtually the entire excess photon energy above

the CM threshold is used for CM, in contrast to quantum dots, nanorods and bulk lead

chalcogenide materials.
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I
n semiconductors, photoexcitation leads to formation of an
electron in a conduction band state and a hole in a valence
band state. The electron–hole (e–h) pair initially has an excess

energy equal to the difference between the photon energy and the
band gap. The charges can lose their excess energy by cooling to
states at the band edge via electron–phonon scattering. A hot
charge carrier with excess energy larger than the band gap may
also relax by exciting another electron across the band gap. The
latter process is known as carrier multiplication (CM): the
transition from a hot charge carrier state to an energetically
equivalent trion state1. The trion consists of a charge carrier at
lower energy and an additional e–h pair. CM competes with
electron–phonon scattering until the hot charge carrier has
cooled below the CM threshold. The competition between CM
and inelastic electron–phonon scattering determines the final
number of e–h pairs that are produced. The quantum yield of CM
is defined as the number of e–h pairs produced per absorbed
photon. An e–h pair in a trion can recombine by transferring the
excitation energy to the third charge. This process is the inverse of
CM and is known as Auger recombination2. In strongly confined
semiconductor nanocrystals, Coulomb interactions are enhanced
with respect to bulk, leading to an increased coupling between a
single hot carrier and a trion. This makes carrier–trion
interconversion processes much more efficient in confined
structures than in bulk semiconductors3.

Much attention has been paid to how nanocrystal shape affects
CM4,5. The extent to which a hot charge carrier undergoes
the CM process is determined by the following factors: first, the
Coulomb coupling strength between the hot charge and the
equally energetic trion, which also depends on the dielectric
constant of the environment6,7; second, the density of final trion
states that are coupled to the initial hot charge carrier state;
and third, the dephasing between the hot charge carrier state
and the trion states5,8,9. The influence of all these factors on the
CM process, as well as on the competing decay of hot charge
carriers by electron–phonon cooling, varies with nanocrystal
dimensionality and size. The demonstration of CM in quantum
dots and nanorods of lead chalcogenides is of interest, since their
band gap can be tuned to 0.7–0.9 eV, which is optimal to exploit
CM in solar cells10.

In this Article, we show that for thin PbS nanosheets of 4 nm
thickness, the photon energy in excess of the CM threshold is
virtually completely used to produce additional e–h pairs, in
contrast to quantum dots (zero-dimensional, 0D)11–14, nanorods
(one-dimensional, 1D)15–17 and bulk (three-dimensional, 3D)18.
The threshold energy of CM in PbS nanosheets with thickness in
the range 4–7 nm is near 3 eV.

Results
Synthesis and structural characterization. PbS nanosheets,
passivated by an oleic acid ligand layer, were synthesized
according to a recently developed method19. Thin-film samples
were prepared by drop-casting the nanosheets from toluene onto
a quartz substrate. Details on the synthesis can be found in the
Methods section. The nanosheet thickness as obtained from
atomic force microscopy (AFM; 3±1, 5±1 and 6±1 nm) is
close to that obtained from X-ray diffraction through the Scherrer
equation (4.0±0.1, 5.9±0.1, 7.0±0.1 nm, respectively).
Supplementary Fig. 1 shows representative transmission
electron microscopy and AFM images of nanosheets. In this
Letter we refer to the thickness as obtained from the X-ray
diffraction measurements.

The absorption threshold of the nanosheets is blue-shifted with
respect to bulk (Eg,bulk¼ 0.41 eV20), as can be seen in the
absorption spectra in Fig. 1. The blue shift is because of quantum

confinement of e–h pairs in the direction perpendicular to the
plane of the nanosheet. The transitions at 620 nm (2.0 eV)
and 390 nm (3.2 eV) correspond to the bulk-like E1 and
E2 transitions21, in close analogy to PbSe quantum wells22.

Decay kinetics of photoexcited states. The dynamics of photo-
generated electrons and holes was measured with two different
time-resolved laser pump-probe optical absorption facilities (cfr.
Methods). After photoexcitation, electrons and holes become
thermalized near the band gap with an energy spread of about
25 meV (EkBT at room temperature). These electrons and holes
cause a bleach of the optical absorption near the band gap. The
resulting increased transmittance of probe photons with energy
near the band gap corresponds to a positive transient bleach
signal, defined as DT/T¼ (Ton�Toff)/Toff. The inset of Fig. 1
shows the transient bleach signal for PbS nanosheets with a
thickness of 4.0 nm as a function of probe wavelength. The shape
and width of the bleach feature is because of the thermal energy
distribution of charges and the energies of the optical excitations
that are bleached, as well as the dispersion in nanosheet thickness.
In what follows we refer to the band gap of the nanosheets as the
photon energy at which the transient bleach is maximum, which
is 0.83, 0.64 and 0.56 eV for nanosheets with thicknesses of 4.0,
5.9 and 7.0 nm, respectively. The band gap of 0.83 eV for the
thinnest nanosheets is optimal to exploit CM in solar cells10.

Figure 2 shows the transient bleach signal (left axis) obtained
by exciting PbS nanosheets with 800 nm pump pulses and
probing at a photon energy near the band gap. In the first
picosecond after photoexcitation, the bleach rises because of
cooling of initially hot charge carriers to the band edge. The
subsequent signal decay is because of recombination and possibly
trapping of charges. The right axis displays the average density of
e–h pairs in the PbS nanosheets. It was calculated by dividing the
absorbed photon fluence by the total thickness of PbS material in
the thin-film sample, which is estimated from the absorbance and
the PbS bulk absorption coefficient23. The mono-exponential
decay at the lowest pump fluence is typical for first-order decay of
e–h pairs via geminate recombination or quenching at defects.
The faster decay at higher fluences is due to Auger recombination
of electrons and holes. The decay kinetics was globally fitted with
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Figure 1 | Steady-state optical absorption and transient bleach of 4- and

5.9 nm thick PbS nanosheets. Steady-state absorption spectra of PbS

nanosheets with a thickness of 4.0 and 5.9 nm. Inset: steady-state

absorption spectrum (left axis) and maximum transient absorption

signal DTmax/T for various probe wavelengths at constant pump fluence

(black squares, right axis) for the 4 nm thick nanosheets.
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the analytical solution to the differential equation for first-
and second-order decay, (dn)/(dt)¼ � k1n� k2n2, with n the
(e–h) pair density, k1¼ 1.1 ns� 1 the first-order decay rate
and k2¼ 2.5� 10� 22 cm3ps� 1 the second-order Auger
recombination rate.

The high quality of the global fit (hardly discernible from the
experimental data) shows that Auger recombination follows
second-order decay kinetics, which is typical for tightly bound e–
h pairs that move together in the form of neutral excitons24,25. In
the PbS dimensional extremes of 3D bulk and 0D quantum dots,
electrons and holes do not pair up, and therefore decay via third-
order Auger recombination24.

Determination of quantum yield. The maximum in the transient
bleach, occurring at 3 ps after photoexcitation (corresponding to
the cooling time of hot excitons), increases linearly with the
absorbed pump laser fluence, or equivalently the exciton density,
if higher-order Auger recombination is insignificant on this
timescale. In the latter case, the exciton density can be determined
from the maximum transient bleach, similar to previous transient
terahertz conductivity measurements on bulk PbS and PbSe18,
and time-resolved microwave conductivity measurements on
PbSe QD films26.

Figure 3 shows the maximum transient bleach signal DTmax/T
for various pump laser fluences and photon energies for the
5.9 nm thick PbS nanosheets. Similar data for the other nanosheet
samples are shown in Supplementary Fig. 2 (4 nm thickness) and
Supplementary Fig. 3 (7 nm thickness). The linear increase in
DTmax/T with pump fluence reflects that the maximum in the
transient bleach is directly proportional to the density of excitons
and that higher-order exciton decay is negligible during the first
3 ps after the pump pulse. The relative uncertainty in DTmax/T is
determined by the noise in transients as those in Fig. 2, and
amounts to 1%. The maximum transient bleach signal DTmax/T
depends linearly on the number of e–h pairs per absorbed photon
(that is, the quantum yield), F, the pump photon fluence, I0, and
the fraction absorbed pump photons, FA, according to

DTmax

T
¼ FsTBI0FA ð1Þ

The value of transient bleach cross-section sTB¼ 1.7±
0.1� 10� 15 cm2 was determined from the value of DTmax/T

obtained by photoexcitation with a known number of absorbed
photons per unit area, I0FA, at low photon energy of 0.95 eV for
which CM is energetically impossible and hence F¼ 1. Note that
the transient bleach cross-section sTB is not to be identified with
the steady-state absorption cross-section (in the case of negligible
spectator shift the latter is a factor g/2 larger, with g being the
degeneracy of the band edge exciton)27. From equation 1 it
follows that the derivative of DTmax/T versus I0FA scales with the
quantum yield F. The three lowest pump photon energies
coincide on a unique line characterized by unit quantum yield.
The slope increases for the highest three pump photon energies,
implying an increasing quantum yield, reaching a quantum yield
of up to 2.2 after exciting with 4.66 eV pump photons. Numerical
values of the quantum yield are given in the legend of Fig. 3.

Discussion of CM efficiency. Figure 4a shows a plot of the
quantum yield F versus pump photon energy hn for three PbS
nanosheet samples; that is, for each nanosheet a fluence set of
data as in Fig. 3 is converted to a single data point in Fig. 4. The
relative uncertainty in the quantum yields in Fig. 4 is at most 8%
and is because of the uncertainty in the fraction of pump light
absorbed, FA(2%), the noise in the photobleaching transients
DTmax/T (1%) and the incident pump fluence, I0(5%)—see
Methods section. In addition, displayed in the figure are recent
literature data on PbS quantum dots12,13 and bulk PbS18. For the
quantum dots, care was taken to select only data from
experiments that were properly flowed or stirred, to avoid
artificially high quantum yields or low thresholds for CM28.
Interestingly, the CM threshold has the same value of hvth¼ 3 eV
for the three nanosheet samples, despite the different thickness
and band gap. This threshold is similar to that reported for PbS
quantum dots, which after conversion to photon energy are found
to be near 3 eV12,13. This threshold is significantly higher than in
bulk PbS (hvthE2.3 eV)18. Further studies are needed to elucidate
why the threshold for bulk differs from that of nanocrystals, for
which the threshold does not depend on dimensionality or size.
Above the threshold, the quantum yield for PbS nanosheets
increases with photon energy as 0.95±0.15 eV� 1. This CM
efficiency (that is, dF/d(hn)) is comparable to bulk PbS and is
significantly higher than that for PbS quantum dots
(0.3 eV� 1)12,17,18. We believe that the dimensional trends of
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CM threshold and CM efficiency have their origin in the band
structure and the influence of quantum confinement on the
discretization of wave vectors. Above the CM threshold, the
efficiency of CM we find for two-dimensional (2D) nanosheets is
similar to bulk, and much higher than for quantum dots and rods.
This might be related to the fact that the discretization of wave
vector states in confined systems severely limits the available trion
states that can couple to the hot exciton. It appears that 2D
nanosheets provide an optimum combination of an enhanced
band gap due to quantum confinement perpendicular to the plane
of the sheet with a high density of states due to spatial extent of
electronic states in the plane of the sheet.

For solar cell applications, the number of e–h pairs produced
per unit photon energy normalized to the band gap Eg is usually
considered as the appropriate measure of CM efficiency.
According to this, the normalized CM efficiency is
Zcm�Eg(dF)/(d(hn))29. Figure 4b shows the quantum yield
versus the photon energy normalized to the band gap, together
with the values of Zcm obtained from the slopes of linear fits
to the data above the CM threshold. The normalized CM
efficiencies range from Zcm¼ 0.9±0.15 for the thinnest nano-
sheets (d¼ 4 nm) to Zcm¼ 0.55±0.10 for the thicker nanosheets.

For the thinnest nanosheets, Zcm is close to 1, which implies that
virtually all photon energy in excess of the CM threshold is
converted into additional e–h pairs. The value for the thinnest
nanosheets is significantly higher than the results for Zcm in lead
chalcogenide quantum dots, nanorods and bulk, which are in the
range 0.3–0.512,17,18.

The normalized CM efficiency in 2D PbS nanosheets is higher
than previously published results for 0D quantum dots, 1D
nanorods and 3D bulk. In 4 nm thick PbS nanosheets, almost all
photon energy in excess of the CM threshold is converted into
excitation of additional e–h pairs. The CM threshold near 3 eV in
PbS nanosheets is similar to that for quantum dots. It should be
noted, however, that the fraction of solar photons with energy
above this threshold energy is small. This makes these nanosheets
of limited practical use for exploitation of CM in solar cells.
Further studies are needed to combine the near maximum CM
efficiency in 2D nanosheets with a lower threshold energy.

Methods
Synthesis of PbS nanosheets. The PbS nanosheets were synthesized according to
a previously published method19. The procedures used in the synthesis were
slightly varied in order to produce the three samples with different thicknesses. The
4 nm thick sheets were prepared by dissolving 860 mg of lead acetate in a mixture of
10 ml diphenyl ether, 0.1 ml trioctylphosphine and 2 ml oleic acid. The blend was
heated under N2 atmosphere to 85 �C and degassed. Then, the mixture was heated
to 130 �C and 1 ml 1,1,2-trichloroethane was added rapidly at 100 �C, and before
reaching 130 �C 1.4 mg thioacetamide was added in 0.23 ml dimethylformamide to
start the reaction. The 5.9 nm thick sheets were prepared by dissolving 860 mg of
lead acetate in a mixture of 10 ml diphenyl ether and 3.5 ml oleic acid. The blend
was heated under N2 atmosphere to 85 �C and degassed. Then, the mixture was
heated to 160 �C and 1 ml 1,1,2-trichloroethane was added rapidly at 100 �C, and
before reaching 160 �C 1.4 mg thioacetamide was added in 0.23 ml
dimethylformamide to start the reaction. The 7 nm thick sheets were prepared by
dissolving 860 mg of lead acetate in a mixture of 10 ml diphenyl ether and 3.5 ml
oleic acid. The blend was heated under N2 atmosphere to 85 �C and degassed.
Then, the mixture was heated to 130 �C and 1 ml 1,1,2-trichloroethane was added
rapidly at 100 �C, and before reaching 130 �C first 1 ml of trioctylphosphine and
directly afterwards a mixture of 1.2 mg thioacetamide in 0.2 ml dimethylformamide
were added to start the reaction. For all three syntheses, after 5 min the synthesis
mixture was slowly cooled down to room temperature and centrifuged. The residue
was washed twice with toluene and the final nanosheet product was finally
suspended in toluene.

Nanosheet characterization. The nanosheets were characterized by transmission
electron microscopy (JEOL Jem-1011), X-ray diffraction (Philips X’Pert System
with a Bragg-Brentano geometry and a Cu K-alpha X-ray with a wavelength of
0.154 nm) and AFM (Veeco Dimension 3100). For the optical measurements, the
nanosheets were drop-casted from toluene on a quartz substrate. The quartz was
functionalized via silanization in order to provide better adherence of the nano-
crystals, as has been described previously26. All optical measurements were
performed without exposing the samples to air, by using air-tight sample holders
that were loaded inside a nitrogen-filled glovebox. The absorption spectra of the
samples were measured with a Perkin Elmer Lambda 900 photospectrometer,
equipped with an integrating sphere. The sample was placed inside the integrating
sphere, so that light scattered from the sample also enters the photodetector.
Background absorption of the quartz substrate was subtracted. The relative
uncertainty in the fraction of absorbed light is 2%, which was statistically
determined via repeated measurements.

Transient absorption setup. The dynamics of photogenerated electrons and holes
was measured with two different time-resolved laser pump-probe optical absorp-
tion facilities. The thicker nanosheets (d¼ 5.9 nm and 7.0 nm) were excited and
probed by o100-fs pulses from a 1.5-kHz Ti:Sapphire ultrafast amplifier laser
system (Libra, Coherent), either directly, after frequency-doubling or -tripling, or
after optical parametric amplification (OPerA and TOPAS, Coherent). The pump
laser fluence was varied using neutral density filters. The pump fluence I0 was
determined as the maximum power passing through a 3-mm pinhole at the
position of the sample. Repeated measurements of I0 yielded a spread of 5%.
The pump-induced transient bleach signal near the band gap was measured on
balanced InGaAs photodiodes (Hamamatsu). The thin nanosheets (d¼ 4.0 nm)
were excited with B200-fs laser pulses (Light Conversion Pharos-SP combined
with Orpheus OPA) and probed using multichannel detection of near-infrared
(1,080–1,630 nm) probe pulses (Ultrafast Systems Helios), which were generated by
focusing 1,030 nm light in a sapphire crystal. The overlap between the pump beam
(diameter 6–7 mm) and probe beam (diameter 1 mm) was optimized by
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maximizing the amplitude of the transient photobleach signal DT/T. The uncer-
tainty in DTmax/T is determined by the noise in transients as those in Fig. 2,
and amounts to 1%.
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