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Abstract

There are concerns that the reported association of ambient fine particulate matter (PM2.5)

with mortality might be a mixture of PM2.5 and weather conditions. We evaluated the effects

of extreme weather conditions and weather types on mortality as well as their interactions

with PM2.5 concentrations in a time series study. Daily non-accidental deaths, individual

demographic information, daily average PM2.5 concentrations and meteorological data

between 2012 and 2014 were obtained from Shanghai, China. Days with extreme weather

conditions were identified. Six synoptic weather types (SWTs) were generated. The general-

ized additive model was set up to link the mortality with PM2.5 and weather conditions.

Parameter estimation was based on Bayesian methods using both the Jeffreys’ prior and an

informative normal prior in a sensitivity analysis. We estimate the percent increase in non-

accidental mortality per 10 μg/m3 increase in PM2.5 concentration and constructed corre-

sponding 95% credible interval (CrI). In total, 336,379 non-accidental deaths occurred dur-

ing the study period. Average daily deaths were 307. The results indicated that per 10 μg/m3

increase in daily average PM2.5 concentration alone corresponded to 0.26–0.35% increase

in daily non-accidental mortality in Shanghai. Statistically significant positive associations

between PM2.5 and mortality were found for favorable SWTs when considering the interac-

tion between PM2.5 and SWTs. The greatest effect was found in hot dry SWT (percent

increase = 1.28, 95% CrI: 0.72, 1.83), followed by warm humid SWT (percent increase =

0.64, 95% CrI: 0.15, 1.13). The effect of PM2.5 on non-accidental mortality differed under

specific extreme weather conditions and SWTs. Environmental policies and actions should

take into account the interrelationship between the two hazardous exposures.
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Introduction

Both extreme weather conditions and particulate matter air pollution are well-established

risk factors of adverse health outcomes. There is a wealth of evidence showing that all-cause

mortality increases during the cold season [1–16]. Exposure to high ambient temperature has

also been associated with increased mortality in many countries [17–25]. In view of the world-

wide climate change, the health effects of both hot and cold weathers are becoming a global

public challenge for the 21st century [26]. Particulate matter air pollution, especially particu-

late matter 2.5 micrometers or less in diameter (PM2.5), or fine particulate matter, is another

main contributor to premature mortality [27, 28]. It has long been recognized that particle

concentrations are correlated with mortality both temporally (short-term fluctuations) and

spatially [29, 30]. PM2.5 has been one of the major causes of premature mortality in Asia,

Europe and America [31–36]. According to the Air quality in Europe—2015 report, about

432,000 premature deaths were attributable to PM2.5 exposure in 2012 in 40 European coun-

tries [37]. A recent study indicated that an aggressive global program of PM2.5 mitigation

in line with the World Health Organization (WHO) interim guidelines could avoid almost

one fourth of the deaths attributable to ambient PM2.5 [38]. Understanding the relationship

between acute exposure to PM2.5 and mortality is therefore critical.

Although it is well documented that daily non-accidental mortality fluctuations are posi-

tively and significantly associated with PM2.5 and meteorological conditions, whether meteo-

rological conditions confound or modify the association of the air pollutant with mortality is

rarely investigated. There are concerns that the reported association of PM2.5 with mortality

might be a mixture of PM2.5 and weather conditions [28, 39–43].

Furthermore, most of the existing epidemiological studies used population-level aggregated

data and lacked individual-level information on potentially important behavioral and socio-

economic factors, leading to potential concerns of confounding [44, 45]. In time series studies,

generalized additive model (GAM) and generalized additive mixed model (GAMM) have been

widely applied because they may control for the nonlinear confounding effects of seasonal

trend and meteorological variables [46–53], in addition to the fact that they are more flexible

than fully parametric alternatives. To control for the weather conditions in estimating the

independent effect of air pollution on mortality, the usual analytic strategies are either includ-

ing meteorological variables in regression models or using time-stratified approach to investi-

gate the season-specific effects of pollutants on mortality [39, 54]. Few studies have however

explored the interaction between particulate matters and meteorological variables, which

leaves the form and possible mechanisms of the interaction largely unknown [55–57]. The

models might also yield biased estimates of the effects of air pollutants on mortality when inap-

propriate meteorological variables were used or when the models failed to properly reflect the

underlying weather-mortality association [39]. Although conventional GAM or GAMM gives

a rich family of models that have been widely applied, in terms of analytical tractability, infer-

ence is dependent on asymptotic sampling distributions of estimators. So far few guidelines

are available as to when such theory will produce accurate inference and the degree to which

inference is dependent on modeling assumptions is unknown [58]. A Bayesian approach is

attractive in this case. Under a probability model, it provides inferences that are conditional on

the data and are exact, without reliance on asymptotic approximation. A Bayesian approach

also provides interpretable answers, such as “the true parameter has a probability of 0.95 of fall-

ing in a 95% credible interval (CrI)” [59, 60].

In our time series study, we applied GAM for fitting and inference within a Bayesian frame-

work to explore the associations of mortality with PM2.5 and weather. We examined the effects

of extreme weather conditions and weather types on mortality as well as their interactions

PM2.5, weather and daily non-accidental mortality
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with PM2.5 concentrations. We also estimate the percent increase for non-accidental mortality

attributable to PM2.5 exposure and weather conditions, adjusted for individual-level and con-

textual covariates, including sex, age, smoking and occupation.

The study was approved by the Ethical Review Committee of the Shanghai Municipal Cen-

ter for Disease Control and Prevention (SCDC), Shanghai China (approval number: 2016–08).

Materials and methods

Study setting

The study area is Shanghai, one of the most populous cities in the world, located in the Yangtze

River Delta in East China and the middle portion of the Chinese coast. It is served as the most

influential economic, financial, international trade, and cultural center in East China. It is also

one of the global financial centers and transport hubs, with the world’s busiest container port

by both volume of the shipment and cargo tonnage. There are 16 administrative districts in

Shanghai, all with own urban cores, and the average population for the study period from 2012

to 2014 was 24 million [61].

Data collection

Daily average PM2.5 concentrations between January 1st, 2013 and December 31st, 2014 were

obtained from the Shanghai Meteorological Bureau. Only the measurements from one air

quality monitor were available during the study period and used for whole Shanghai area.

Because PM2.5 was not routinely monitored in Shanghai until late 2012, we obtained 2012 data

from the published hourly PM2.5 concentrations by the air quality monitoring station of the U.

S. Consulate General in Shanghai, China, which is located in the Xuhui district of Shanghai.

Recent studies have indicated that PM2.5 data from the U.S. embassy and consulates’ air quality

monitoring stations were highly consistent [62, 63] with the data from Chinese national moni-

toring stations in the urban districts. The daily average PM2.5 concentrations in 2012 were cal-

culated from the hourly concentrations. The daily mortality data during the corresponding

time period for all the 16 administrative districts in Shanghai were obtained from the Causes

of Death Registry of Shanghai Municipal Center for Disease Control and Prevention (SCDC).

The causes of death were coded according to the International Disease Classification Codes,

version 10 (ICD-10). Deaths for all non-accidental causes (ICD-10 codes: A00-R99) were

examined. Individual information of age, sex, occupation, education, residential area and

smoking rates of every 5-year age groups were also obtained from SCDC. Citywide daily mete-

orological data including temperature, relative humidity, barometric pressure, wind speed,

precipitation and sunshine time were retrieved from the Shanghai Meteorological Bureau as

well and no district-specific data available in current study.

Statistical models

Days with extreme weather conditions were identified according to the Guidelines on Analysis

of Extremes in a Changing Climate in Support of Information Decision for Adaptation of the

World Meteorological Organization (Climate Data and Monitoring, WCDMP-No. 72) [64].

The indices (i.e. day-count of extremes) concept involves calculation of the number of days in

a year exceeding specific thresholds. Examples of such “day-count” indices are the number of

days with minimum temperature below the 10th percentile in a given period. We adopted the

similar rule to define the eight extreme weather conditions, i.e. hot, cold, hyperbaria, hypo-

baria, humid, dry, windy and windless, as the daily minimum/maximum temperature, mini-

mum/maximum barometric pressure, average humidity or wind speed lower or higher than

PM2.5, weather and daily non-accidental mortality
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the corresponding yearly 10th percentile or 90th percentile in the 3-year study period,

respectively.

Because extreme weather conditions are not mutually exclusive, to better investigate the

interaction between PM2.5 and weather conditions, we categorized the observed days into syn-

optic weather types (SWTs) as proposed by Kalkstein et al. [65]. This approach categorizes

weather patterns using clustering technique and offers categories that represent groupings of

meteorological variables as they actually occur at a locale [39]. The statistical methods used

have been detailed in previous studies [66–68]. In brief, a set of routinely monitored meteoro-

logical parameters (three barometric pressure parameters, three temperature parameters, two

humidity parameters, one precipitation parameter, five wind speed parameters and one sun-

shine parameter) were used for clustering. To reduce the inter-correlation between meteoro-

logical parameters, the principal component analysis (PCA) was performed before clustering

and generated six uncorrelated principal components (PCs), which explained 93% variance of

the original 15 meteorological parameters. The K-means clustering method was used after-

wards to categorize the 1096 observed days into the six SWTs based on the six PCs. The num-

ber of clusters was decided by the elbow method.

The GAM was set up to link the mortality with PM2.5 and weather conditions and can be

expressed as:

logðEðYtÞÞ ¼ b0 þ b1 � PM2:5;t þ β2 �W t þ β3 � PM2:5;t �W t þ b4 � Sexþ β5 � Ageþ β6 � Job

þ β7 � DOW t þ b8 � Smoking þ SðtÞ ð1Þ

where E(Yt) refers to the expected count of deaths on day t; PM2.5,t refers to the PM2.5 concen-

tration on day t; Wt = (W1,� � �,Wj)
0 denotes a j×1 vector (j = 5 or 7) of j dummy variables of the

six SWTs or the eight extreme weather conditions on day t; PM2.5,t ×Wt denotes the interac-

tion term between PM2.5 and Wt; Sex is a dummy variable of sex; Age denotes a 3×1 vector of

three dummy variables of four age categories (0–14, 15–39, 40–64 and 65+ years); Job denotes

a 10×1 vector of ten dummy variables of 11 occupation categories; DOWt denotes a 6×1 vector

of six dummy variables of day of week (DOW) for day t; Smoking denotes smoking rate; S(�) is

the smoothing function realized by cubic B-splines. Based on generalized cross-validation and

our simulation study, which indicated that 14 knots were enough to present the temporal

trend and capture the underlying true parameter of PM2.5, we used in total 15 knots (5 knots

per year) for the splines, which were corresponding to the largest likelihood. Effects from

unobserved confounders and seasonal trend of meteorological variables were presented by the

smoothing function. In the model, the subgroups with the most deaths were set as reference

groups (except for sex and DOW). To make a comparison, the models without interaction

term were also examined in the study.

Daily mortality Y follows a Poisson distribution, i.e. Y ~ Poisson (μ(X)), where the log-

mean parameter is the linear function shown in (1). For a given input vector Xt we have

mðXtÞ ¼ eb0þXT
t βþSðtÞ. Depending on this parameterization, the probability of an outcome Yt

given Xt is:

p YtjXt; β; S; tð Þ ¼ e� eb0þX
T
t βþSðtÞ e½b0þXT

t βþSðtÞ�Yt

Yt!
ð2Þ
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and thus the likelihood for a training data X and Y is:

L YjX; β; Sð Þ ¼
QN

t¼1

e� eb0þX
T
t βþSðtÞ

e½b0þXT
t βþSðtÞ�Yt

Yt!

( )

ð3Þ

According to the Bayes’ theorem, the posterior distribution of the parameters proportion-

ates to the production of the prior distribution and the likelihood. Although the posterior dis-

tribution can be derived by a distribution approximation method [69], we used the data-

driven numerical Markov chain Monte Carlo (MCMC) method to approximate the posterior

distribution. To benefit from Bayesian framework with as limited influence from the prior dis-

tribution as possible, the Jeffreys’ prior distribution was used for our parameters. Based on the

observed Fisher information matrix, Jeffreys’ prior is useful because it does not change much

over the region in which the likelihood is significant and does not have large values outside

that range–the local uniformity property. Thus, it provides an automated way of finding a

non-informative prior for any parametric model. Detailed introduction and discussion about

Jeffreys’ prior for GAM have been described elsewhere [70–72].

The key step of Bayesian inference is to reallocate credibility across parameter values, i.e.

approximating the posterior distribution of the parameter from the predefined prior distribu-

tion to values that are consistent with the data. We used the adaptive rejection sampling algo-

rithm, a type of MCMC method, to sample parameters sequentially from their univariate full

conditional distributions [73, 74]. The method may generate samples from an arbitrary poste-

rior density p(βi|y) of a complex model and to use these samples to approximate expectations

of parameters of interest [75]. When log-concavity condition is not met, an additional Metrop-

olis-Hastings step will be applied, and the modified algorithm becomes the adaptive rejection.

The Metropolis-Hastings sampling (ARMS) algorithm, however, could have a high computa-

tional cost. Implementation of the ARMS algorithm in our study is based on the code provided

by Gilks.[76] We set the number of burn-in iterations to 1000 before the Markov chains were

saved and the number of iterations after burn-in to 5000 to reduce computation time. Our pre-

liminary experiments showed that the differences of posterior parameter βis between the 5000

iterations and 100000 iterations were undetectable, but the computation time of 5000 itera-

tions was reduced from more than 10 hours to less than 30 minutes on the computer with

64-bit Windows 7 Enterprise operation system (Service Pack 1), Intel 1 Core ™ i7-3687U @

2.10 GHz CPU and 16.0 GB installed random access memory. The thinness of the Markov

chains was set to 10.

Convergence of Markov chains was assessed using Gelman-Rubin method [77, 78]. If the

Gelman-Rubin statistic is smaller than 1.01 or so, we define that the chains have converged

adequately. Representative of the chains was evaluated visually using the trace plots. If the

chains that have been sampled with independent pseudo-random numbers meandered

smoothly and overlapped with each other, it means that they are representative [59]. The

dependency and efficiency of the MCMC was evaluated using autocorrelation and effective

sample sizes (ESS), respectively. Low correlations can indicate good mixing and an ESS of

approximately 1000 is adequate for estimating the posterior density [79].

We reported the posterior mean and posterior CrI Ai of βi in the present paper. The defini-

tion of posterior mean is given by:

EðbijX;Y; SÞ ¼
R

bipðbijX;Y; SÞdbi ð4Þ

where p(βi|X,Y,S) is posterior probability of βi given the observed data X and Y. The definition

PM2.5, weather and daily non-accidental mortality
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of posterior CrI Ai is given by:

Pðbi 2 AijX;Y; SÞ ¼
R

Ai
pðbijX;Y; SÞdbi ð5Þ

We constructed a 95% CrI with equal tails corresponding to the 2.5th and 97.5th percentiles

of the posterior distribution. The interval is preferred because it is invariant under transforma-

tions [60].

Bayesian inference for GAM was performed in SAS 9.4 M4 (SAS Institute Inc, Cary, North

Carolina, USA). Smoothing splines were generated by Stata 14.2 (StataCorp LLC, College Sta-

tion, Texas, USA). Statistical graphing were achieved using SAS and R 3.33 base package (R

Foundation for Statistical Computing, Vienna, Austria) and ggplot2 package[80].

Results

Demographic characteristics of the subjects

In total, 336,379 non-accidental deaths occurred during the study period between January 1st,

2012 and December 31st, 2014 in Shanghai. Average daily deaths were 307. The demographic

characteristics of the subjects are shown in Table 1. The average age of the subjects was 77 years,

including 53% males. More than one third (36.86%) of the subjects were from manufactory

occupations. The age standardized smoking rate in males was 29.71%, and in females 0.92%.

PM2.5 level and meteorological conditions

There were no missing values in the meteorological variables and PM2.5 concentrations were

missing only in five days in 2012. Generally, the daily average PM2.5 concentrations and daily

death counts shared the similar temporal trend, i.e. high values presented in cold season and

low values in warm season (Fig 1). There were however also opposite trends, i.e. low PM2.5

concentrations accompanied with more deaths within a time window of 30 days (indicated by

red bands in Fig 1) and high PM2.5 concentrations accompanied with less deaths within a time

window of 30 days (indicated by green bands in Fig 1), suggesting that the effects of PM2.5 on

mortality might be modified by weather conditions.

The mean of daily deaths in Shanghai was 307 and the median was 294 during the study

period (Table 2). Ambient PM2.5 exposure in Shanghai was relatively high with a daily mean of

55.0 μg/m3 and median of 45.5 μg/m3, higher than the upper limit (35 μg/m3) of the level 1

Chinese Ambient Quality Standards [81]. The climate in Shanghai is mild, and generally warm

and humid with four distinct seasons. The average annual temperature in Shanghai is 17.2˚C,

with about 1190 mm of precipitation annually. The detailed daily meteorological conditions

are shown in Table 2.

Extreme weather conditions

The days with extreme weather conditions were summarized in Table 3. In total, there were

570 days that had at least one extreme weather condition during the study period. There were

181 and 35 days that had two or more extreme weather conditions, respectively. In general,

cold and hyperbaria days were the most frequent (60 of 1096 days) and followed by hot and

hypobaria days (40 of 1096 days).

Feature of the synoptic weather types

The clustering analysis based on the six PCs from the PCA categorized the 1096 days into six

synoptic weather types (SWTs). The meteorological characteristics of the six SWTs are show

in Table 4.

PM2.5, weather and daily non-accidental mortality
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According to the meteorological characteristics shown in Table 4, we summarized the fea-

tures of the six SWTs as:

• Hot dry (HT): the hottest and dry weather type, with sunny and clear sky, relative windy;

• Warm humid (WH): warm, moist, the cloudiest and unstable weather often bring rain

showers;

• Cold dry (CD): cold and driest weather type, often cloudy with less precipitation;

• Moderate dry (MD): mild, sunny and clear sky with the least precipitation;

• Moderate humid (MH): a relative rare weather type, mild and the sunniest, unstable often

bring intense fall;

• Cold humid (CH): moist and the coldest weather type, stable, most cloudy but with little

precipitation.

Table 1. Demographic characteristics of the subjects who died during the study period.

Sex, n (%)

Male 178,786 (53.15%)

Female 153,593 (46.85%)

Age (year), mean±SD 77.0±12.6

Age distribution, n (%)

0–14 years 1,252 (0.37%)

15–39 years 3,080 (0.92%)

40–64 years 54,404 (16.17%)

65+ years 277,643 (82.54%)

Education, n (%)

Illiterate 84,943(25.25%)

Preliminary school 100,194 (29.79%)

High school 118,235 (35.15%)

Undergraduate and above 27,063 (8.05%)

NA 5,944 (1.77%)

Occupation, n (%)

Governmental 2,760 (0.82%)

Professional 28,992 (8.62%)

Administrative 34,431 (11.13%)

Business 32,823 (9.76%)

Agriculture and stockbreeding 77,832 (23.14%)

Manufactory 123,998 (36.86%)

Military 201 (0.06%)

Others 3,185 (0.95%)

Preschooler 1,060 (0.32%)

Students 337 (0.10%)

Retired or jobless 27,760 (8.25%)

Smoking rate a, %

Male 29.71%

Female 0.92%

a Indirectly standardized rate.

https://doi.org/10.1371/journal.pone.0187933.t001
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The total numbers of days of the six SWTs during the study period by the twelve calendar

months are shown in Fig 2. In general, cold humid, warm humid and hot dry days account for

more than half (55%) of the days in Shanghai.

MCMC convergence, representativeness, dependency and efficiency

The 97.5% Gelman-Rubin bounds of all the parameters are smaller than 1.01, which indicate

the adequate convergence of the Markov chains. The trajectories of parameters reveal that

the chains take a few hundred steps to converge to the same region of the parameters and

are overlapping fairly and smoothly, suggesting good representativeness. The posterior auto-

correlation coefficients of all the parameters after lag 5 are smaller than 0.1, which indicate

good mixing and high independency among the Markov chain samples. Most parameters

have efficiency higher than 0.6 and adequate ESS (>1000) after 5000 iterations for estimat-

ing the posterior density. Example diagnostic results (except for trace plots) of the GAM for

PM2.5 and the extreme weather conditions without interaction terms are shown in S1–S3

Tables.

Fig 1. Time trends of daily PM2.5 concentrations and deaths.

https://doi.org/10.1371/journal.pone.0187933.g001
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Fitness of the smoothing splines for the GAM

Fig 3A shows the predicted daily deaths by GAM, after controlling for PM2.5, sex and SWTs.

The smoothing cubic B-splines fit the time trend very well and more than 95% of the stand-

ardized residuals are located in the range of ±2 (Fig 3B). Among equal-tail 95% CrIs of param-

eters of the smoothing splines, only three or four out of 17 include 0 (example results of GAM

for PM2.5 and the extreme weather conditions without interaction terms are shown in S4

Table).

Table 2. Descriptive statistics of daily deaths, ambient PM2.5 concentrations and meteorological factors in Shanghai, China (2012–2014).

Mean ± SD n Percentiles

Min P25 P50 P75 Max

Daily deaths

Overall 307±51 1096 196 269 294 339 526

January 390±40 93 316 360 388 415 526

February 358±29 85 292 339 362 371 470

March 334±35 93 256 309 334 358 429

April 298±29 90 227 279 297 319 373

May 275±24 93 196 260 277 293 330

June 259±24 90 215 240 256 276 332

July 278±26 93 231 261 274 294 352

August 275±24 93 207 261 273 285 336

September 274±24 90 201 259 274 289 332

October 277±24 93 225 262 271 292 341

November 301±23 90 249 282 302 318 363

December 366±40 93 284 345 361 387 515

PM2.5 (μg/m3)

Overall 55.0±38.6 1091 3.0 29.4 45.5 68.7 447.5

January 78.6±47.3 93 17.5 41.4 58.2 106.2 201.0

February 54.6±33.5 85 8.4 29.4 45.6 72.4 183.0

March 62.5±35.4 93 18.2 37.4 56.6 78.2 191.3

April 56.9±21.4 88 16.1 43.3 55.2 66.6 144.4

May 59.2±29.7 90 18.2 37.7 50.2 70.2 151.0

June 46.2±27.9 90 9.3 23.1 38.0 59.0 127.5

July 38.5±24.1 93 3.0 20.8 39.0 50.2 119.2

August 29.2±18.1 93 4.2 14.0 25.3 39.0 78.2

September 35.7±23.3 90 12.6 19.6 29.7 43.9 125.5

October 43.0±29.6 93 8.4 23.5 36.6 50.2 204.3

November 66.6±40.0 90 21.0 36.6 55.0 86.8 214.0

December 88.2±62.1 93 13.3 54.2 74.4 102.2 447.5

Meteorological factors

Temperature (˚C) 17.2±9.0 1096 -1.2 8.8 18.2 24.3 35.0

Barometric Pressure (kPa) 101.6±0.9 1096 99.5 100.8 101.6 102.3 103.8

Relative Humidity (%) 70.3±12.6 1096 30 62 72 80 98

Wind speed (m/s) 2.80±0.97 1096 0.6 2.1 2.7 3.4 8.6

Precipitation (mm) 3.26±10.35 1096 0 0 0 1.1 195.3

Sunshine (hour) 4.70±3.95 1096 0 0 4.8 8.2 12.9

SD, standard deviation); Px, xth percentiles; Min, minimum; Max, maximum

https://doi.org/10.1371/journal.pone.0187933.t002
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Effects of PM2.5 and extreme weather conditions on non-accidental

mortality

The effects of PM2.5 and the extreme weather conditions on non-accidental mortality are

shown in Table 5. Without considering interactions between PM2.5 and extreme weather con-

ditions, per 10 μg/m3 increase in PM2.5 concentration was associated with 0.31 (95% CrI: 0.22,

0.40) percent increase in mortality. Hot, hypobaria and windy days had statistically significant

positive associations with mortality, whereas no effect was noted for cold, hyperbaria, humid,

dry and windless days. The greatest effect of the extreme weather conditions was found for hot

days, where the daily mortality might increase 6.41 (95% CrI: 4.93, 7.96) percent.

When considering interactions between PM2.5 and extreme weather conditions, the effect

of PM2.5 diminished slightly (percent increase = 0.27, 95% CrI: 0.13, 0.41). However, the effects

of extreme weather conditions had significant changed with the strongest but a reverse associa-

tion found in dry days (percent increase = –4.80, 95% CrI: = –7.76, –2.07). Statistically signifi-

cant interactions were found between PM2.5 and hot, hypobaria and dry days. All of the three

interactions are positive interactions. Even in dry days, per 10 μg/m3 increase in PM2.5 concen-

tration might result in about 0.86 (= 0.27 + 0.59) percent increase in mortality, although the

overall effect in dry days is lowest.

Effects of PM2.5 and synoptic weather types on non-accidental mortality

The effects of PM2.5 and the SWTs on non-accidental mortality are shown in Table 6. Without

considering the interactions between PM2.5 and SWTs, per 10 μg/m3 increase in PM2.5 concen-

tration was associated with 0.35 (96% CrI: 0.26, 0.44) percent increase in mortality. Compared

to cold humid SWT, hot dry SWT had the greatest effect on mortality (percent increase in

mortality = 7.09, 95% CrI: 5.18, 9.14), followed by moderate humid SWT (percent increase =

5.36, 95% CrI: 3.61, 7.08), and warm humid SWT (percent increase = 2.18, 95% CrI: 0.41,

Table 3. Number of the days with two or more extreme meteorological conditions.

Hot

n = 109

Cold

n = 109

Hyperbaria

n = 107

Hypobaria

n = 105

Humid

n = 101

Dry

n = 103

Windy

n = 100

Windless

n = 94

Cold

Hyperbaria 60

Hypobaria 40

Humid 13

Dry 16 18 12 9

Windy 14 8 7 22 11 6

Windless 4 20 11 8 17

https://doi.org/10.1371/journal.pone.0187933.t003

Table 4. Meteorological characteristics and PM2.5 concentrations of the six synoptic weather types.

Number of days Pressure

(kPa)

Temperature

(˚C)

Humid

(%)

Precipitation

(mm)

Wind speed

(m/s)

Sunshine

(hour)

PM2.5

(μg/m3)

Hot dry 167 100.6±0.4 28.4±4.0 62.0±10.2 1.25±4.55 3.41±0.91 8.79±2.76 41.2±29.3

Warm humid 214 100.8±0.4 23.8±3.8 79.9±6.9 4.11±8.28 2.24±0.63 2.25±32.77 49.5±30.1

Cold dry 158 102.4±0.4 8.0±5.1 60.8±13.2 0.98±3.43 2.82±0.94 5.45±3.39 82.8±50.6

Moderate dry 225 101.7±0.3 18.5±3.8 66.4±10.8 0.32±1.35 2.68±0.68 6.67±3.30 49.0±30.4

Moderate humid 107 101.1±0.6 19.1±6.1 82.3±8.3 17.28±25.26 3.83±1.17 8.99±1.76 40.4±25.1

Cold humid 225 102.5±0.4 6.7±3.2 72.0±9.6 1.81±4.39 2.48±0.82 3.32±3.36 63.5±42.9

https://doi.org/10.1371/journal.pone.0187933.t004
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4.11). By contrast, cold dry SWT had the smallest effect (percent increase = –1.98, 95% CrI: –

3.15, –0.85).

When considering the interactions between PM2.5 and SWTs, the effects of SWTs on

mortality shown significant changed, with the highest effect found in moderate humid SWT

(percent increase = 4.37, 95% CrI: 1.49, 7.32) and followed by moderate dry SWT (percent

increase = 2.78, 95% CrI: 0.53, 5.13). Statistically significant interactions were found between

PM2.5 and hot dry and warm humid SWTs. Considering the interaction with weather type, the

smallest effect of PM2.5 on mortality was found in moderate dry SWT (percent increase = 0.10,

Fig 2. Distribution of the six synoptic weather types during a year.

https://doi.org/10.1371/journal.pone.0187933.g002

Fig 3. (a) Predicted deaths with 95% equal-tail Bayesian credible intervals, controlling for PM2.5 concentrations, sex and synoptic weather types;

(b) Standardized residuals.

https://doi.org/10.1371/journal.pone.0187933.g003
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Table 5. Effects of PM2.5, extreme weather conditions and demographic characteristics on non-accidental mortality.

Variables Percent increase in mortality (95% CrI)

Model without interaction Model with interaction

PM2.5 (per 10 μg/m3) 0.31 (0.22, 0.40) 0.27 (0.13, 0.41)

Hot 6.41 (4.93, 7.96) 3.59 (1.22, 6.13)

Cold 0.87 (-0.41, 2.07) 0.02 (-2.36, 2.68)

Hyperbaria 0.46 (-0.85, 1.80) 0.73 (-1.77, 3.19)

Hypobaria 1.52 (0.19, 2.87) -1.55 (-4.05, 1.05)

Humid 0.73 (-0.48, 1.98) 1.41 (-0.36, 3.19)

Dry -0.75 (-1.91, 0.50) -4.80 (-7.76, -2.07)

Windy 2.58 (1.29, 3.96) 3.75 (1.74, 5.85)

Windless -0.60 (-1.91, 0.64) 0.54 (-2.11, 2.96)

Interactions

PM2.5×Hot 0.50 (0.08, 0.95)

PM2.5×Cold 0.12 (-0.17, 0.40)

PM2.5×Hyperbaria -0.02 (-0.33, 0.29)

PM2.5× Hypobaria 0.62 (0.16, 1.14)

PM2.5×Humid -0.12 (-0.36, 0.10)

PM2.5×Dry 0.59 (0.21, 1.00)

PM2.5×Windy -0.22 (-0.66, 0.19)

PM2.5×Windless -0.15 (-0.41, 0.12)

Female 47.68 (44.55, 51.00) 47.60 (44.49, 50.85)

Age

0–14 years -98.81 (-98.87, -98.75) -98.81 (-98.88, -98.74)

15–39 years -99.32 (-99.34, -99.30) -99.32 (-99.34, -99.29)

40–64 years -94.43 (-94.51, -94.33) -94.42 (-94.52, -94.34)

65+ years (Ref)

Occupation

Governmental -97.78 (-97.87, -97.69) -97.78 (-97.86, -97.70)

Professional -76.63 (-76.94, -76.32) -76.62 (-76.90, -76.32)

Administrative -69.83 (-70.21, -69.49) -69.82 (-70.18, -69.47)

Business -73.53 (-73.84, -73.23) -73.55 (-73.87, -73.23)

Agriculture -37.26 (-37.84, -36.71) -37.25 (-37.77, -36.69)

Manufactory (Ref)

Military -99.84 (-99.86, -99.81) -99.84 (-99.86, -99.81)

Others -97.43 (-97.53, -97.34) -97.43 (-97.52, -97.32)

Preschool -99.15 (-99.19, -99.10) -99.15 (-99.20, -99.09)

Students -99.73 (-99.75, -99.70) -99.73 (-99.76, -99.69)

Jobless -77.62 (-77.93, -77.34) -77.63 (-77.90, -77.35)

Day of week

Sunday (Ref)

Monday 1.67 (0.45, 3.00) 1.73 (0.27, 3.04)

Tuesday 0.68 (-0.56, 1.95) 0.70 (-0.52, 2.04)

Wednesday 0.93 (-0.33, 2.24) 0.89 (-0.35, 2.11)

Thursday -0.01 (-1.24, 1.32) 0.07 (-1.19, 1.35)

Friday 0.05 (-1.14, 1.41) 0.03 (-1.17, 1.24)

Saturday 0.09 (-1.08, 1.47) 0.04 (-1.24, 1.26)

Smoking rate 2.01 (1.95, 2.08) 2.01 (1.95, 2.08)

https://doi.org/10.1371/journal.pone.0187933.t005
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but not statistically significant, 95% CrI: -0.37, 0.29) and the greatest effect was found in hot

dry SWT (percent increase = 1.28, 95% CrI: 0.72, 1.83), followed by warm humid SWT (per-

cent increase = 0.64, 95% CrI: 0.15, 1.13).

Table 6. Effects of PM2.5, synoptic weather types and demographic characteristics on non-accidental mortality.

Variable Percent increase in mortality (95% CrI)

Model without interaction Model with interaction

PM2.5 0.35 (0.26, 0.44) 0.26 (0.10, 0.43)

Synoptic weather types

Hot dry 7.09 (5.18, 9.14) 1.51 (-1.42, 4.52)

Warm humid 2.18 (0.41, 4.11) -0.32 (-2.78, 2.37)

Cold dry -1.98 (-3.15, -0.85) -1.84 (-3.83, 0.23)

Moderate dry 1.94 (0.48, 3.37) 2.78 (0.53, 5.13)

Moderate humid 5.36 (3.61, 7.08) 4.37 (1.49, 7.32)

Cold humid (Ref)

Interactions

PM2.5×Hot dry 1.02 (0.62, 1.40)

PM2.5× Warm humid 0.38 (0.05, 0.70)

PM2.5×Cold dry 0.00 (-0.23, 0.23)

PM2.5×Moderate dry -0.16 (-0.47, 0.14)

PM2.5×Moderate humid 0.16 (-0.27, 0.63)

PM2.5×Cold humid (Ref)

Female 47.74 (44.6, 51.20) 47.57 (43.84, 50.83)

Age

0–14 years -98.81 (-98.88, -98.74) -98.81 (-98.88, -98.74)

15–39 years -99.32 (-99.34, -99.29) -99.32 (-99.34, -99.30)

40–64 years -94.43 (-94.51, -94.34) -94.42 (-94.52, -94.34)

65+ years (Ref)

Occupation

Governmental -97.78 (-97.87, -97.69) -97.78 (-97.87, -97.70)

Professional -76.62 (-76.91, -76.32) -76.64 (-76.93, -76.34)

Administrative -69.81 (-70.13, -69.46) -69.82 (-70.20, -69.42)

Business -73.55 (-73.84, -73.23) -73.55 (-73.90, -73.24)

Agriculture -37.24 (-37.81, -36.64) -37.25 (-37.79, -36.69)

Manufactory (Ref)

Military -99.84 (-99.86, -99.81) -99.84 (-99.86, -99.81)

Others -97.43 (-97.52, -97.33) -97.43 (-97.52, -97.35)

Preschool -99.15 (-99.20, -99.09) -99.15 (-99.20, -99.09)

Students -99.73 (-99.76, -99.70) -99.73 (-99.76, -99.70)

Jobless -77.62 (-77.91, -77.33) -77.63 (-77.93, -77.35)

Day of week

Sunday (Ref)

Monday 1.88 (0.63, 3.24) 1.91 (0.63, 3.27)

Tuesday 0.92 (-0.34, 2.24) 0.88 (-0.33, 2.12)

Wednesday 0.95 (-0.39, 2.20) 0.98 (-0.30, 2.17)

Thursday 0.24 (-0.97, 1.56) 0.31 (-0.92, 1.57)

Friday -0.10 (-1.35, 1.13) -0.10 (-1.30, 1.22)

Saturday 0.07 (-1.19, 1.43) 0.06 (-1.14, 1.32)

Smoking rate 2.02 (1.95, 2.09) 2.01 (1.94, 2.09)

https://doi.org/10.1371/journal.pone.0187933.t006
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Effects of demographic characteristics and smoking on non-accidental

mortality

Although the effects of demographic characteristics and smoking on non-accidental mortality

were out of the main interest of this study, they are similar in both the extreme weather condi-

tion models and the SWT models. After controlling for age, smoking rate and occupations, the

mortality risk was about 48% higher in women than in men. Compared with other occupa-

tions, people worked in governmental agencies, studied in schools and serviced in military had

the lowest risk of non-accidental mortality.

Sensitivity analysis

We performed a sensitivity analysis using the estimates from Chen’s study [82] as the informa-

tive normal prior mean in the Bayesian reference but did not find detectable change in the

results.

Discussion

Modification of the association between PM2.5 and non-accidental

mortality by weather conditions

A substantial number of time-series studies have demonstrated an association between mortal-

ity and exposure to PM2.5 air pollution while controlling for confounding factors that also vary

over time, such as weather and season [83]. The usual analytic approach to control for weather

is to include weather variables, typically temperature and humidity, in regression models that

evaluate the effect of air pollution on mortality. However, an inappropriate set of weather vari-

ables and the correlations among weather variables as well as between weather variables and

air pollution [84, 85] could bias the estimate of the effect of air pollution on mortality. One

alternate approach for controlling the potential confounding by weather is to use the synoptic

categorization of weather. Our study evaluated the applicability of SWTs to assess the short

term association between PM2.5 and mortality in Shanghai, China. We found statistically sig-

nificant association between PM2.5 concentration and non-accidental mortality in Shanghai,

China, i.e. per 10 μg/m3 increase in daily average PM2.5 concentration alone corresponds to

0.26–0.35% increase in daily non-accidental mortality. The increased risk is slightly higher

than the 0.22% increase in a recently published paper by Chen et al., who conducted a nation-

wide analysis using the PM2.5 concentration data between 2013 and 2015 in 272 Chinese cities

[82]. The risk increase found in the present study is similar to Lippmann et al. based on a

recent multicity study in 150 U.S cities[86], but appreciable smaller than results found in other

multicity studies in Europe and North America, where the increased risks for non-accidental

mortality due to all causes ranged from 0.55% to 1.18% [87–91].

In our study, PM2.5 levels were higher in cold days than in warm days and the same varia-

tion was also found for mortality, i.e. more non-accidental deaths in winter than in summer

(Table 2). However, higher mortality was found in extreme hot days compared to extreme

cold days when adjusting for other demographic variables. We found the association between

PM2.5 and mortality to be modified by weather conditions. The strongest interactions were

found between PM2.5 and hot, dry and hypobaria days. Because of the inverse relationship

between temperature and barometric pressure and frequent co-occurrence of hot and hypo-

baria days (Table 3), it suggests that PM2.5 poses higher risk in hot days than in other days in

Shanghai. As expected, extreme hot weather had a positive association with daily mortality

and a synergistic action with PM2.5. No statistically significant association and interaction

were however found for extreme cold weather. One reason might be the subtropical climate of
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Shanghai with an average temperature over than 0˚C even in the coldest months. Although

hypobaria condition alone had a positive association with daily mortality, which is consistent

with the findings in another Chinese city [92], its effect was reversed when considering its

interaction with PM2.5. No statistically significant association was found for extreme humid or

extreme dry weather alone. When taking into account interactions, hypobaria and extreme

dry weather had statistically significant synergistic reactions with PM2.5. The positive interac-

tions between hypobaria and extreme dry weather and PM2.5 might be due to the low atmo-

spheric pressure and humidity that may induce hypoxia and excessive dehydration of nasal

passages and the upper respiratory tract, leading to increased risk of severe cerebrovascular

and cardiovascular diseases [93, 94] as well as microbial and viral infections[95].

Besides, we are more interested in the PM2.5-mortality relationships when we consider the

effects from weather variables as a whole. To what we did not expect, statistically significant

positive associations between PM2.5 and mortality were found for favorable SWTs, i.e. moder-

ate day and moderate humid weather types, when including the interaction terms in the mod-

els. The higher excessive mortality attributable to PM2.5 in stable and comfortable weather

conditions might suggest that the effect of air pollution is more pronounced in milder weath-

ers than in extreme weathers. The reason might be the lower baseline risk in comfortable

weather conditions, which results the larger relative risk associated with certain exposure in

comfortable weather conditions compared to unfavorable ones. But we should also note that

human behavior might change in different SWTs, for example, people tend to reduce outdoor

activities in poor or extreme weathers, leading to reduced exposure to outdoor air pollution

[96]. On the contrary, people tend to spend more time outside on pleasant days, potentially

leading to increased likelihood of exposure to PM2.5 and to a larger dose of PM2.5.

Although Samet [97] and Pope et al. [98] found little evidence that weather conditions

modified the effect of air pollution, Rainham [42], Vanos [99–102] and Vaneckova [103] et al.

reported that change of synoptic type could alter the strength of pollutant associations with

mortality and statistically significant association of pollutant with mortality was only noted

during summer (warm, hot and dry) weather and stronger association was noted for fair syn-

optic types. In general, our findings are consistent with those from Canada and Australia.

Bayesian generalized additive model analysis

We used a full Bayesian method for GAM analysis in our study to fully account for the uncer-

tainty of the underlying parameters. The method deems that data are observed from the real-

ized sample and underlying parameters are unknown and can be described probabilistically.

In addition, when study investigators had a strong a priori belief that the dose-response rela-

tionship between PM2.5 and mortality is non-decreasing (not necessarily linear) and wanted

an estimate consistent with this assumption, Bayesian GAM is a better alternative to a frequen-

tist method. Furthermore, when studying the potential effect modification by weather, the

days were distributed into SWTs with loss of precision for estimates in these categories. Conse-

quently, there is a potential risk to over-interpret variation in the parameters [97]. The Bayes-

ian method used in the study is effective to avoid this problem by drawing sufficient large

MCMC samples to make the reference arbitrarily accurate [59].

Although at the cost of computational time, the Bayesian GAM offers significant accuracy

improvements compared to conventional methods [104]. We should keep in mind that priors

should be rationally and honestly derived. They can be weak or strong. When the prior is

weak, the prior distribution will be wide and the likelihood will be more influential in creating

the posterior distribution. Conversely, when the prior is strong, the prior distribution will be

narrow and the likelihood will be less influential in creating the posterior. It should be clear
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the one key feature of the prior is the ability to quantify our uncertainty. The posterior can be

thought of as a compromise between the prior and the likelihood.

Strengths and limitations

There are some strengths in our study. First, we used individual-level demographic character-

istics and socioeconomic factors in our study and adjusted for these potentially important con-

founders, especially smoking, in our analysis. Compared with most of the previous time-series

studies of PM2.5 and mortality, which were based on population-level aggregated data, our

study minimized the ecological fallacy. Second, as pointed by Bernstein–von Mises theorem

[105], in large data samples, the posterior distribution is independent of the prior distribution

and, therefore, Bayesian and likelihood-based inferences could yield essentially the same

results. Third, we used SWTs rather than individual meteorological variables to control for the

weather conditions, which optimally create categories with days similar to one another in

weather variables and different from days in other categories. The major advantage of the syn-

optic approach is that it examines the biological effect as the organism’s response to ambient

atmospheric conditions rather than to individual variables such as temperature and atmo-

spheric pressure [42]. Last but not least, we examined weather-air pollution interactions with

mortality. Improved knowledge of the modified effects of PM2.5 on mortality by weather con-

ditions is vital for the medical society, policy makers and community leaders to implement

proper intervention strategies [23, 101].

There are also some limitations in our study. First, like most of the epidemiological studies

on air pollution and mortality, only city-wide average PM2.5 concentrations were available in

our study, instead of personal exposure to PM2.5. However, Janssen et al. reported high correla-

tion between personal PM exposure and outdoor PM concentrations longitudinally [106].

Zeger et al explored the issue in more details and showed that the association could only be

underestimated when using city level PM concentration as a proxy for personal exposure level

[107]. Second, because main purpose of our study is to examine the application of Bayesian

method in GAM in investigating the interactions between PM2.5 and weather conditions, no lag

effects were evaluated for PM2.5 and weather conditions in the present study. The issues of sin-

gle day lags and distributed lags are left for future study. Third, as an exploratory study, no

cause-specific association was evaluated. According to the WHO HRAPIE impact assessment

for long-term exposure to PM2.5 and non-accidental deaths due to all causes and the American

Cancer Society Cohort Study, the relative risk for mortality was about 1.06 per 10 μg/m3 incre-

ment of the annual average PM2.5 concentration [108–110]. The assumption of 6% increment

in cardio-respiratory mortality per 10 μg/m3 increment in PM2.5 concentration has been used

in many health impact assessments. It is much higher than the risk for non-accidental mortality

due to all causes that we found in the present study and the results published in the latest multi-

city study in China [82]. Further studies on cause-specific mortality are warranted. Because the

methodology for the cause-specific analysis would be the same, we have planned to perform the

same risk assessment for respiratory, cerebrovascular and cardiovascular mortalities in the

future. Last, the association was only based on one-pollutant model and the effects from unmea-

sured co-exposure to other air pollutants might have been masked in smoothing functions. In

the future, the similar method will be employed for two- or multiple-pollutant models.

Conclusions

We found that the effect of PM2.5 on non-accidental mortality differed under specific extreme

weather conditions and SWTs. Models both with and without interactions between PM2.5 and

weather display statistically significant increase in mortality due to PM2.5. Our results
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correspond well to the evaluations of air pollution, weather types and mortality in previous

studies [42, 99–103]. Given the statistically significant interactions between PM2.5 and weather

and climate and pollution challenges, adequate policies and public health actions are needed,

taking into account the interrelationship between the two hazardous exposures. Environmen-

tal policy makers should consider the application of the synoptic approach in decision making

and prevention activities to ameliorate the adverse effects from air pollution.
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