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ABSTRACT: Siderophores are well-recognized low-molecular-
weight compounds produced by numerous microorganisms to
acquire iron from the surrounding environments. These secondary
metabolites can form complexes with other metals besides iron,
forming soluble metallophores; because of that, they are widely
investigated in either the medicinal or environmental field. One of
the bottlenecks of siderophore research is related to the
identification of new siderophores from microbial sources. Herein
we have compiled a comprehensive range of standard and updated
methodologies that have been developed over the past few years to
provide a comprehensive toolbox in this area to current
researchers.

1. INTRODUCTION
Siderophores are low-molecular-weight iron-chelating agents
produced by living organisms such as bacteria, yeasts, fungi,
and plants.1 While growing under low-iron conditions,
microorganisms secrete these high-affinity iron-chelating
molecules to scavenge and solubilize iron from the extracellular
environment, safeguarding the supply of this important metal
that is essential for their growth, replication, and metabolism.2

In the environment, most of the iron is found in the form of
insoluble ferric oxide/hydroxide complexes due to the fast
oxidation of Fe2+ to Fe3+, and siderophores have a high affinity
for iron’s ferric form (Fe3+). The siderophore−iron complex is
recognized by high-affinity receptor proteins on the outer
membrane of the bacteria and internalized by active transport.
Iron is then released from siderophores, typically via the
reduction of Fe3+ to Fe2+ by microbe-mediated redox
processes.3

Over 500 siderophores have been identified and classified
into three primary groups based on the type of ligands that
iron binds: catecholates, hydroxamates, and α-hydroxy
carboxylates (Figure 1).4,5 Nevertheless, these known side-
rophores represent only a fraction of the siderophores
produced endogenously by bacteria, yeasts, fungi, and plants.
Examples of siderophores include mixed-type siderophores,
such as pyoverdine (Figure 6), staphyloferrin A, fimsbactin C,
pyochelin, and yersiniabactin, which contain more than one
functional group;6−8 catecholates such as enterobactin,
bacillibactin, and salmochelin S4 (Figure 2); hydroxamates
such as desferrioxamine B, rhodotorulic acid, coprogen,

ferrichrome, and N,N′,N″-triacetylfusarinine C (Figure 4);
and α-hydroxy carboxylates such as rhizoferrin and staph-
ylopherrin A (Figure 7).
Siderophores show great potential for medical use due to

their ability to bind to metals and are commonly employed in
clinical settings for managing iron overload illnesses stemming
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Figure 1. Classification of siderophores according to the chemical
nature of their binding site.
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from frequent blood transfusions.1,9 Additionally, the manip-
ulation of the microbial iron transport pathways to deliver
antimicrobials to the cell using siderophores has been explored
as a potential strategy to overcome antimicrobial resistance.10

This approach, often referred to as the “Trojan horse”
approach, involves utilizing siderophores as a means of
transporting antimicrobials into the cell.11,12 Hence, the
conjugation of iron-chelating microbial siderophores to
antimicrobial agents can be used to enhance uptake and
antimicrobial potency.13 Siderophores can bind other metal
ions besides iron, and usually the most effective are those that
have three bidentate ligands per molecule, forming a
hexadentate complex.14 Hexadentate siderophores exhibit a
high affinity for Fe3+ and its mimetic Ga3+, which can compete
with Fe3+ in many binding interactions due to its similar
atomic radius (Ga3+ = 0.62 Å vs. Fe3+ = 0.65 Å)15 and valence.
In cases where iron is replaced by radionuclides such as
gallium-68, a positron emitter with a short half-life (68 min)
capable of forming highly stable complexes with the side-
rophores, targeting imaging of infections by positron emission
tomography (PET) is possible.16,17 Other medical applications
are reported in the field of malaria and cancer, wound healing,
or even for biosensors.1,9,12

Apart from iron and gallium, siderophores can chelate with
several other metals, forming soluble metallophores with
divalent cations such as Zn2+, Ni2+, Cd2+, Cu2+, and Pb2+ and
trivalent cations including Al3+, In3+, Mn3+, V3+, and Co3+.
Additionally, they can also form complexes with actinides like
Th4+, U4+, and Pu4+18 and lanthanides.19 This capacity makes
them promising candidates for the bioremediation of
ecosystems, as they can remove heavy metals from
contaminated areas, weathering soil minerals and enhancing
plant growth, and improve the contaminant degradation
abilities of microbes, or they can be used as biocontrol
agents1,8,20,21 for remediation purposes, as they can mobilize
diverse metals and efficiently remove them from contaminated
ecosystems.
All the previously described siderophore applications have

been widely reviewed over the years,5,9,10,17,20−22 highlighting
their numerous applications in either the medical or environ-
ment field, with most of the authors concluding that there is
still a long and promising way to go, with many opportunities
to further use the available knowledge toward the development
of new and improved approaches in both fields. The
characterization of new siderophores can further spark the
synthesis of improved siderophore mimetics, which can
potentially lead to the implementation of new strategies.
Nevertheless, the current literature lacks an updated practical
toolkit for detecting, isolating, and characterizing siderophores
and metallophores. The existing protocols are either
outdated23−25 or limited26,27 and do not encompass the full
range of methodologies available. This highlights the need for
more comprehensive and up-to-date protocols in this area.
Gathering a comprehensive range of standard and improved
methodologies that have been developed over the last years,
this review aims to assist researchers in the identification of
new siderophores from microbial sources.

2. DETECTION AND IDENTIFICATION OF
SIDEROPHORES IN MICROBIAL CULTURES

Numerous techniques have been devised to universally identify
various types of siderophores by leveraging their biological and
functional characteristics.24 The majority of the functional

assays are based on the chrome azurol S (CAS) universal assay.
This assay uses a growth medium containing both essential
nutrients and inhibitory compounds, making it unsuitable to
cultivate certain microorganisms like fungi and Gram-positive
bacteria.28 A number of modifications to the CAS assay have
been introduced, including the CAS agar plate technique. Early
modifications were found to be time-consuming and
ineffective, as they could only identify one type of micro-
organism at a time. However, recent methodologies use fewer
toxic surfactants and yield comparable results while allowing
the growth of yeast and fungi. Although widely employed, the
CAS assay is limited by its nonspecificity. Other colorimetric-
and fluorescence-based methods are more specific for different
types of siderophores, allowing the identification of their class.
These alternative methods can be used in conjunction with
CAS detection to indicate the specific type of siderophores
produced, such as catecholates, hydroxamates, or carboxylates.
2.1. Universal Chemical Methods for Siderophore

Detection. The CAS assay, a frequently used universal
colorimetric assay developed by Schwyn and Neiland, is one of
the most widely used screening methods for detecting
siderophores.29 This assay involves a competition between
the siderophore and the ferric complex of the CAS dye for
iron. Due to a higher affinity for iron by the siderophore, the
metal is removed from the dye by the siderophore.
Consequently, the dye changes its color from blue to orange,
indicating that the siderophore strongly chelates the iron from
the iron−dye complex, and the dye becomes free in the
medium.30 One disadvantage of this methodology lies in the
presence of hexadecyltrimethylammonium bromide
(HDTMA) in the medium,29 a detergent component that is
highly toxic for some microorganisms such as Gram-positive
bacteria and fungi, inhibiting the growth of both when present
in high concentrations.31 To solve this problem, several
modifications of the CAS universal assay were performed
over the years. One modification involves the addition of an
adsorbent resin, XAD-4 adsorbent polystyrene, to the CAS-
malt extract blue agar plates to neutralize the excess
HDTMA.31 This modification has proven effective in enabling
the growth of 10 hymenomycetous (fungi) isolates, with the
CAS assay revealing that all of them were positive for
siderophore production.31 The incorporation of the CAS-
blue dye in a medium with no contact with the microorganisms
tested constitutes another methodology to enable the use of
the CAS blue agar medium to a broader range of Gram-
positive bacteria and fungi while circumventing the issues
caused by the toxicity of the HDTMA detergent.32 The dye
can either be applied as a solution test or incorporated into the
solid growth medium for direct plating mode, both for the
screening of several microorganism siderophore producers.30

Petri dishes can be used to test several strains of fungi
(basidiomycetes, deuteromycetes, ascomycetes, and zygomy-
cetes) and bacteria (Gram-positive and -negative) by splitting
the surface using half for the cultivation medium and half for
the CAS detection medium. Although this methodology allows
for the development of a wide variety of microorganisms, it has
been revealed to be extremely laborious and time-consuming,
since it only permits the identification of one single type of
microorganism per plate.32 The use of an overlay technique, in
which a modified CAS medium is cast upon culture agar plates
(overlaid CAS, O-CAS), allows previous methodological
limitations to be surpassed, avoiding the above-mentioned
problems of toxicity and growth inhibition while allowing the

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c03042
ACS Omega 2024, 9, 26863−26877

26864

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c03042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


detection of a variety of siderophore-producing microorgan-
isms at once.28 These methodologies have been redesigned and
optimized to enable the simultaneous identification of multiple
siderophore-producing strains in less than 30 min. They are
applicable to all types of microorganisms and growth media
and tailored specifically for siderophore-producing micro-
organisms, as evidenced by the lack of medium color change
in many strains during the selection process. Additionally,
neither the reagents nor the pH levels hinder the growth of
microorganisms.28 In addition, it is possible to recover fungi
from the original culture medium and reuse them, avoiding the
use of replicas.28 The replacement of HDTMA by N-dodecyl-
N,N′-dimethyl-3-amino-1-propanesulfonate (DDAPS) as the
surfactant in the CAS assay is also a promising strategy to
optimize the development of siderophore-producing fungi
since DDAPS is less toxic to the microorganism and produces
similar results33

The simple double-layered CAS agar (SD-CASA) assay was
developed as a quantitative, low-cost methodology to screen
potential biocontrol microorganisms based on their side-
rophore production.34 This modified CAS assay involved the
use of paper-disc agar diffusion to inoculate a specific amount
of bacteria suspension onto CAS agar plates.34 The authors
used this methodology to assess the impact of pH, carbon−
nitrogen ratio, and type of exogenous amino acids of the
medium on siderophore production by Bacillus subtilis QM3
and growth of the referred strain.34

Although the CAS assay relies on agar plate cultivation and
uses the CAS reagent under iron-depleted conditions by using
a modified M9 (MM9) medium devoid of iron, the MM9
medium is not always ideal for the growth of a diverse range of
microorganisms. Commonly used growth media are also not
suitable for the CAS assay because of their high iron and

nutrient content. A recent study explored a high-throughput
CAS shuttle assay in a 96-well microplate in which a
concentrated CAS reagent was used and the MM9 growth
medium was replaced by a diluted growth medium in the
absence of artificial iron depletion.35 The use of the diluted
growth medium in the CAS assay was intended to mimic the
low concentrations of organic compounds in the natural
environment.35 High-throughput detection of siderophore
production can also be achieved by combining the CAS
assay with a 96-channel manual pipetting workstation.36 In a
modified CAS assay method, siderophore production was
assayed in 2150 representative bacterial members.36 Besides all
the above-mentioned modifications to the CAS assay, the
possibility of using azo dyes [methyl orange (MO) and
Eriochrome black T (EBT)] to replace the common CAS dye
(more expensive) revealed that EBT dye, in controlled
concentrations (20−30 ppm), allows siderophore detection
through a different color change (from red to blue).37 Even
though iron is the metal of choice for the referred methods, the
production of siderophores can also be evaluated with different
cations (Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ according to ref 38
and Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+, and Te2+

according to ref 39) by CAS; supplemented agar plate shows
that use of iron is not required in this type of assay to detect
siderophores since the competition for iron or any of the other
tested metals is similar. Despite the proven utility of the CAS
assay (Table 1), including all the valuable modifications
performed throughout the years, it is essential to emphasize
that this methodology presents a noteworthy drawback: any
substance secreted by the microorganism that is capable of
forming a complex with iron or another metal but is not a
siderophore will also be detected in this type of test.

Table 1. Advantages and Disadvantages of the Different Modifications to the CAS Assay

assayref(s) methodology advantages (↑)/disadvantages (↓)
CAS29 Siderophores scavenge iron from an Fe−CAS−hexadecyltrimethylammonium

bromide complex; release of the CAS dye results in a color change from blue to
orange.

↑ simple methodology
↓ presence of HDTMA in the medium, which is
highly toxic for some microorganisms, inhibiting
their growth

CAS modification31 Addition of an adsorbent resin, XAD-4 adsorbent polystyrene, to neutralize the
excess HDTMA.

↑ effective in enabling the growth of 10
hymenomycetous (fungi) isolates

CAS modification32 The dye can either be applied as a solution test or incorporated into the solid growth
medium for direct plating mode, both for the screening of several microorganism
siderophore producers.

↑ wide variety of microorganisms
↓ extremely laborious and time-consuming

O-CAS28 Use of an overlay technique: a modified CAS medium is cast upon culture agar plates. ↑ identification of more than one siderophore-
producing strain at once

↑ results available in less than half an hour
↑ suitable for any kind of microorganism and
growth medium

↑ neither the reagents nor the pH causes
inhibition of growth

↑ possible to recover the microorganisms from
the original culture medium and reuse them,
avoiding replicas

SD-CASA34 Performed on both the microorganism culture supernatant as an inducer and the
microorganisms themselves as main producers.

↑ quantitative and low-cost methodology

CAS modification33 Replacement of HDTMA by DDAPS as the surfactant ↑ less toxic to the microorganism while producing
similar results

high-throughput CAS
shuttle assay35 ,36

Use of a 96-well microplate with CAS reagent. ↑ fast identification
• 96-channel manual pipetting workstation36 ↑ mimic the low concentrations of organic

compounds in the natural environment• MM9 growth medium replaced by a diluted growth medium in the absence of
artificial iron depletion35

CAS modification37 Use of azo dyes (MO and EBT) to replace the common CAS dye. ↑ lower costs
CAS modification38,39 Monitor chelation of elements other than Fe2+, including Mn2+, Co2+, Ni2+, Cu2+,

Zn2+, Mg2+, V3+, Se4+, and Te2+.
↑ evaluation of siderophore production with
cations other than iron
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The quantification of siderophores produced by micro-
organisms can be achieved through spectrophotometric
estimation. In this traditional method, CAS reagent is mixed
with microbial culture supernatant, and the amount of
siderophore is estimated by a colorimetric/spectrophotometric
method, measuring the absorbance of each sample individually.
This quantification is usually performed by extrapolating a
standard curve using a CAS assay solution. The CAS solution
is mixed with the culture supernatant, and the absorbance of
the final solution is measured at 630 nm after incubation (1−2
h). The siderophore content is then calculated according to the
equation

= ×A A
A

% siderophore units 100r s

r

where Ar is the reference absorbance and As is the absorbance
of the sample.25,40 This methodology was used throughout the
years, with small modifications to the CAS assay. A CAS agar
diffusion (CASAD) assay, a modification of the universal plate
and liquid CAS assay, can be used to quantitatively measure
total siderophores existing in any biological fluids.41 This
improved protocol takes advantage of the universal CAS assay,
where the iron bound to CAS is easily chelated by
siderophores to produce a color change from blue to orange,
and simultaneously takes advantage of the principle of
antimicrobial diffusion, where the siderophores applied to
the hole diffuse to radially build a concentration gradient from
the center.42 Another methodology suitable for the quantifi-
cation of siderophores produced in solid media consist in
measuring the rate of color change of CAS medium (mm/day)

with the production in liquid medium, evaluated as %
siderophore units.43 This methodology was applied to three
species of Aspergillus that were cultivated in the absence or
presence of iron; a similar profile regarding siderophore
production was observed on both media.43 However, these
methodologies require large amounts of chemicals, time, labor,
and space. For this reason, a modified microplate method for
siderophore quantification was developed.30 Specifically, the
absorbance is read using a microplate reader in a 96-well
microplate at 630 nm, and siderophores are quantitated using
the equation shown above. This method was shown to be less
laborious, cheaper, and less toxic for the environment (less
amount of CAS reagent used).30 Additionally, it can be used
for quantification of siderophores by any bacteria as a better
alternative to the routine colorimetric method. The universal
CAS assay originally designed for bacterial siderophore
detection and later designed for fungus was recently adapted
for the diffusive equilibrium in thin-film gel technique
(DET).44 Hence, the CAS-DET device matches the colori-
metric reagent CAS with DET. This improved methodology
allows the detection of all the ligands with higher affinity for
iron than the CAS ligand, proving to be ideal for mapping the
siderophores in an artificial environment such as agar medium,
and, combined with the use of the hyperspectral imaging, to
quantify them at micromolar scale.44 Additionally, it allows
detection of the production of siderophores in the rhizosphere
and their quantification at a micromolar level.44

2.2. Specific Chemical Methods for Siderophore Type
Identification. 2.2.1. Identification of Catecholate-Type
Siderophores. Arnow Colorimetric Test. The Arnow colori-

Figure 2. Representative structures of catecholate-type siderophores.
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metric test, developed by Arnow in 1937,45 is commonly used
for identifying catecholate-type siderophores. This test detects
the presence of these siderophores by the yellow color
formation when the catechol group combines with nitrous
acid (HNO2).

25 Compounds containing phenolic hydroxy
groups yield colored compounds when heated with sodium
nitrite. It was hypothesized that hydrogen ions from the
phenolic hydroxy groups combine with nitrite ions (NO2

−),
and the molecular nitrous acid then forms NO compounds
with the phenols. If sodium nitrite is added to an acid solution,
the nitrous acid that is formed decomposes fairly rapidly.

Sodium molybdate is therefore added to prevent rapid
decomposition.45 Under alkaline conditions, the color can
turn into a deep-red shade, and the intensity of the color relies
on the amount of catechol present.25 Similarly, the presence of
the 2,3-dihydroxybenzoyl fragment, which represents the
catechol moiety, can be confirmed by analyzing the UV
spectrum since it presents three absorption bands (320 nm,
250 nm, and the most intense at 210 nm).23,46 For instance, B.
subtilis strain LSBS2 produces a siderophore that has been
identified as bacillibactin after testing positive in the Arnow
assay (Figure 2).47 In some cases, both the Csaky test

Figure 3. Principle of the method to evaluate Fe2+ chelating activity using ferrozine.50

Figure 4. Representative structures of hydroxamate-type siderophores.
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(mentioned below) and Arnow test show positive results, as
seen in Azotobacter vinelandii Deutsche Sammlung von
Mikroorganismen and Zellkulturen (DSM) 2289 when testing
for the presence of catechol and hydroxamate moieties.48 This
suggests that the siderophores produced by A. vinelandii may
be of the mixed type or that the bacteria can produce two
different types of siderophores.48 The ferric chloride (FeCl3)
test (see below) can also detect both the catecholate-type and
hydroxamate-type siderophores by producing a wine color or
an orange color, respectively.49

FeCl3 Test. The FeCl3 test is also mentioned as a
colorimetry-based method (Figure 3), whose foundation is
the formation of a complex between the Fe2+ ion and the
reagent 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-tria-
zine (ferrozine) (Figure 3). The complex has a purple color,
and its absorbance can be measured at a wavelength of 562
nm. The chelating potential is evaluated by the decrease in
absorbance at the referred wavelength. Thus, the lower the
absorbance, the higher the chelating potential.50

2.2.2. Identification of Hydroxamate-Type Siderophores.
Csaky Test. The Csaky test (developed by Csaky in 1948 as a
modification of the Blom method that involved a direct
determination of hydroxylamine) is specific to determine
hydroxamate-type siderophores (Figure 4) and is based on the
chemical characteristics of these siderophores.25,51 This assay
depends on the formation of NO2

− via the oxidation of
hydroxylamine (NH2OH) by an iodine solution and the
formation of a colored dye by coupling to 1-naphthylamine.48

Initially, sulfuric acid (H2SO4) is added to hydrolyze the
hydroxamate ligand following oxidation by the iodine (Figure
5). This hydrolysis is necessary since oxidation by iodine does
not occur directly on secondary hydroxamic acids.51 After
oxidation, the HNO2 is diazotized and coupled with the
respective coupling agent, sulfanilic acid.51 The presence of a
deep-pink color indicates the presence of the hydroxamate-

type siderophore.25 Purified desferrioxamine can be used as a
standard, showing a red color upon reaction with the azo
dye.25

Ferric Perchlorate Assay. The ferric perchlorate assay
(developed by Atkin in 1970) also identifies hydroxamate-type
siderophores and is represented by the appearance of an
orange-red or purple color.24,52 Since this is a test for
hydroxamic acids, which form di-, tetra-, and hexadentate
derivates with Fe3+ ion, the absorbance covers a range from
300 to 500 nm.53 In particular, at low pH in perchloric acid
(HClO4), this assay can also detect other siderophores that can
form stable complexes with iron.24

Tetrazolium Test. The tetrazolium test is a simple way to
detect hydroxamates. By adding a few drops of NaOH and the
corresponding sample to the tetrazolium salt, the presence of
an hydroxamate siderophore can be confirmed by the
emergence of a deep-red color.54 This test is based on the
hydrolysis of hydroxamate groups, which reduces the
tetrazolium salt, as reported by Kotasthane et al.55 Of the
three assays presented for the identification of hydroxamate-
type siderophores, the Csaky assay is considered to be the
most sensitive.51

2.2.3. Identification of Carboxylate-Type Siderophores.
Vogel Chemical Test. Carboxylate-type siderophores can be
determined using Vogel’s chemical test and Shenker’s
spectrophotometric test.2 In the Vogel assay, phenolphthalein
is added to a solution of NaOH. Sterile deionized water is then
added to the mixture until the appearance of a light-pink color.
Disappearance of color by the addition of culture supernatant
indicates the presence of siderophores with a carboxylate
nature. The latter is specifically used to identify hydrox-
ycarboxylate-type siderophores. To do so, full wavelength
scanning is conducted to identify the presence of a
hydroxycarboxylate copper−siderophore complex. If the

Figure 5. Csaky test reactions: (a) hydrolysis of hydroxamate ligand by sulfuric acid to originate the hydroxylamine; (b) oxidation of
hydroxylamine by iodine solution to originate nitrous acid; (c) diazotization reaction with the formation of the diazonium cation that will couple
with 1-naphthylamine (coupling agent) to obtain a colored dye (deep-pink color).51
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solution contains hydroxycarboxylate-type siderophore, the
maximum absorption peak is between 190 and 280 nm.56

2.2.4. Identification of Pyoverdines. Fluorescent side-
rophores (e.g., pyoverdines; Figure 6) can be detected by a

fluorescence-based method. These types of siderophores have
an intrinsic fluorescence, and upon binding to metal ions, the
fluorescence is quenched.57 Pyoverdine contains a chromo-
phore, the quinoline derivative 2,3-diamino-6,7-dihydroxyqui-
noline, that confers both color and fluorescence, and an acyl
chain is attached to the NH2 group of the chromophore with a
peptide chain linked by its N-terminus to the carboxyl group of
the chromophore.58 Fluorescence quenching can be evaluated
by adding different metals to metal-free culture filtrates and
incubating them for a specific period before measurement. To
accurately estimate the total amount of siderophores produced
by the organism, it is essential to know the fluorescence
quenching of siderophores.25 The fluorescence of pyoverdine
can be observed at an excitation wavelength of 345 nm and an
emission wavelength of 460 nm. A study was conducted to
investigate the correlation between the concentration of
pyoverdine and the fluorescence intensity at 460 nm in a
diluted growth medium. The fluorescence intensity of
pyoverdine was measured using a 96-well microplate reader,
and the calibration curves generated were used to estimate the
amount of pyoverdine in the supernatant of each sample
culture.35

Since the 1980s, about 50 structurally different pyoverdines
have been described, each with a specific peptide chain varying
by the aminoacyl residue type and number. Rapid methods of
pyoverdine differentiation have been developed to overcome
redundancies among structural studies.59 The two most
practical methods are isoelectrophoresis analysis of the
pyoverdine content of iron-starved bacterial culture super-
natants (pyoverdine typing by isoelectric focusing, PVD-IEF)
and bacterial specificity determination of pyoverdine-mediated
iron uptake. These methods have allowed the recognition of

numerous original compounds representing most of the 50
structurally defined pyoverdines and about 60 additional
compounds with unknown structures.59 However, some
pyoverdines cannot be distinguished because of identical IEF
and iron uptake behaviors due to small structural differences.
These discrete changes do not affect the overall charges of the
molecules and do not affect their IEF patterns59

2.3. Biological Methods for Siderophore Detection.
Bioassays involving a tester strain are a reliable method for
identifying various types of siderophores. For instance,
Escherichia coli was used to estimate the presence of
ferrichrome siderophores (Figure 7) in soil-water samples.24,60

Ferrichrome is capable of stimulating the growth of E. coli
under iron-deprived conditions by competing with ethylenedi-
amine-N,N′-bis(2-hydroxyphenylacetic acid) (EDDHA), an
iron chelator, which is added to the medium to inhibit the
growth of the tester strain.61

Another example was developed to detect siderophores
(containing monoprotic keto−hydroxy bidentate ligands) from
low-iron cultures using bacteria from the Proteeae group.62

Morganella morganii SBK3 was chosen as an indicator strain,
and the assay involved testing siderophore-containing disks on
agar with a ferrous iron chelator. Growth inhibition reversal
indicated siderophore presence, and various siderophores,
including α-hydroxycarboxylates and others, showed significant
growth stimulation.62 A few other examples were re-
ported;63−66 however, the CAS assay rapidly surpassed this
methodology due to its simplicity and instant results.

3. SIDEROPHORE EXTRACTION AND PURIFICATION
The direct assessment of the concentration of natural
siderophores in the environment can be challenging due to
the high complexity of sample matrices (soil extracts, pore
water, seawater, and microbial culture media).67 Hence, a
combination of both extraction and purification of the samples
is a requirement for a reliable analysis.68 Various methods,
including reversed-phase, size-exclusion, and ion-exchange
chromatography as well as solid-phase extraction (SPE), have
been employed to isolate and concentrate siderophores.69−71

However, these approaches often yield inconsistent and
suboptimal chromatographic recoveries for siderophores.
Additionally, concentrated siderophore fractions obtained by
using these methods frequently contain numerous other
compounds with similar polarities. To overcome the draw-
backs associated with siderophore purification, liquid chroma-
tography methodologies associated with mass spectrometry
techniques were later employed in an attempt to facilitate the
purification and further identification of siderophores.69,72−77

However, although these techniques were an improvement
over the previous ones, they still present some limitations such
as generating false positives due to complex mass signatures or

Figure 6. Structure of pyoverdine.

Figure 7. Representative structures of carboxylate-type siderophores.
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reduced intensities and detection thresholds caused by ion
suppression from coeluting substances.68

Immobilized metal affinity chromatography (IMAC) is a
sample separation technique mainly used to purify proteins
based on the affinities of some proteins to the immobilized
metals.78 The applicability of this technique was also extended
to immobilized metal-ion-affinity capillary electrophoresis and,
more recently, to the purification of siderophores. The basis of
this technique relies on the immobilization of the metal ion in
a support matrix and subsequent sample loading, where the
active substances are bound to the immobilized metal and
separated from the rest of the sample.78 Hence, Fe(III)-
immobilized IMAC columns can be used for the extraction of
siderophores from complex samples.68,78−81 IMAC has a
limited range of methodological applications due to a few
drawbacks. One of these is that its best siderophore adsorption
(hydroxamate) occurs around pH 9, which necessitates
adjusting the spent medium or sample to pH 9 before
adsorption.81 A pH-independent chromatographic method
would be beneficial in minimizing processing and reducing
changes to the natural ratio of ligands in the sample. Certain
ligands have a stronger attraction to the immobilized metal
cations (such as iron or nickel) than to the IMAC resin itself,
which can cause these cations to be removed from the resin.
This can result in either the release of the bound ligand or a
reduction in the number of available binding sites. Since IMAC
only binds free ligands, samples with a high proportion of
bound ligands will need to be subjected to a decomplexation
process.81 This can be accomplished using agents such as
EDTA, however, it will result in the removal of these ligands
from the sample via chromatography, as they can strip metal
cations from IMAC and reduce the number of available
binding sites.81 Based on the fact that Ni(II) has a strong
affinity toward hydroxamic acids, Ni(II)-IMAC was used to
capture pure hydroxamic acids and hydroxamate-containing
siderophores, such as desferrioxamine B, from the supernatant
of Streptomyces pilosus (ATCC 19797) cultured under Fe(III)-
deprived conditions.80 Although this new application repre-
sented an advancement on the purification of hydroxamate-
containing siderophores directly from bacterial culture super-
natants80 and was even successfully applied to hydroxamate
siderophores such as ferrioxamine and ferrichrome,82,83 other
examples were not as successful. IMAC purification of catechol
bacillibactin resulted in the recovery of a fragment containing
only one catechol group, whereas the complete siderophore
with three catecholate groups was not obtained.78 It was not
possible to detect the mixed-ligand siderophore pyoverdine in
the eluates obtained from IMAC,83 indicating that side-
rophores with high complex stability constants cannot be
retained.
A novel type of affinity chromatography that allows for

simultaneous analysis of siderophores irrespective of their
polarity and complex stability constant was developed and
arose as a valuable tool to overcome the current limitations of
this methodology. Previous studies showed that catecholates
and hydroxamates adsorb well on TiO2 surfaces, therefore
suggesting metal oxide affinity chromatography (MOAC)
utilizing TiO2 as a potential alternative for metal ligand
extraction.84,85 An advanced methodology was developed to
efficiently and specifically enrich hydroxamate-type side-
rophores from complex polar protic matrices, through TiO2
nanoparticle (NP)-based SPE.81 The model siderophore
desferrioxamine B was used to test the binding capacity of

TiO2 NPs for siderophore extraction. The results showed that
TiO2 NP SPE had a higher binding capacity compared to the
IMAC methods, with similar recovery for 1 mg of TiO2 and 1
mL of IMAC.81 Alkaline buffers containing phosphate were
found to be effective in achieving a high recovery (77.6 ±
6.2%) of desferrioxamine B extracted from complex bacterial
culture supernatants. The TiO2 NP SPE also proved to be a
useful cleanup procedure for processing complex samples
containing an unknown mixture of siderophores. Since the
TiO2 NP SPE step removed most contaminants, it enabled the
detection of siderophores or hydroxamates directly from liquid
chromatography−mass spectrometry (LC−MS) base peak
chromatograms.81 After this proof of concept, where it was
confirmed that TiO2 NP SPE is well-suited to extract and elute
hydroxamate siderophores from complex matrices,81 titanium
dioxide affinity chromatography (TDAC) was developed for
the selective purification of the three main siderophore classes
(i.e., catecholates, α-hydroxycarboxylates, and hydroxamates)
and mixed ligands.68 This new and improved methodology is
scalable, can selectively purify siderophores, and was able to
remove organic “contaminants” almost completely from a
bacterial culture supernatant mix containing all four types of
model siderophores with recoveries of up to 82% (Petrobac-
tin).68 Thus, this methodology simplifies the purification of
siderophores and may facilitate the discovery and quantifica-
tion of siderophores in a variety of natural matrices such as
seawater, soil, and medical samples.68 However, TDAC
presents a methodological challenge of achieving the same
recovery and selectivity for picomolar concentrations of
siderophores in natural samples, since other factors will
interfere with its efficiency (e.g., coadsorption, self-assembly,
metal contamination, and natural phosphate concentrations);
nonetheless, it still presents as a robust method against many
chromatographically challenging conditions and will facilitate
the study of microbial iron cycling, pathogenicity, and
symbiosis.68

4. SIDEROPHORE CHARACTERIZATION
The isolated/purified siderophores can be characterized by
common spectroscopic and spectrometric techniques. Fourier
transform infrared (FTIR) analysis can be used to determine
the functional groups present in the analyzed sidero-
phores.47,54,86 Thermal and pH treatments combined with a
comprehensive use of curve-fitting analysis can provide
improved band resolution, facilitating functional group
identification.87 Additionally, through FTIR analysis, it is
possible to identify the functional groups involved in the
interaction of the siderophore with the metal by the absence of
specific bands in the spectrum when the metal ion is present,
indicating that the respective functional groups are involved in
the metal bonding.88 In the chemical and structural character-
ization of a siderophore produced by marine Vibrio harveyi,
FTIR and 1H NMR spectra revealed the hydroxamate nature
of the siderophore produced.89 In another study, ultrahigh-
performance Fourier transform ion cyclotron resonance mass
spectrometry at 21 T was used to detect and identify metal
chelators produced by microbes residing in calcareous soils
from Eastern Washington.74 The technique allowed for fast
and confident identification of four major classes of side-
rophores, namely, ferrioxamines, pseudobactins, enterobactins,
and arthrobactins. It was observed that each siderophore likely
originates from a unique microbial community member and
has distinct chemical characteristics and uptake pathways. This
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fierce competition for iron within calcareous soils is likely due
to the different siderophore-producing microbes and their
specific uptake mechanisms.74

NMR spectroscopy is commonly used to identify the
structure of siderophores and detect impurities.54,90−93 For
instance, a high similarity of the citrate framework to other
citrate-based siderophores such as synechobactins, orchobac-
tin, and acinetobactin was observed in the 1H NMR spectra of
chryseochelin A.94 Additionally, heteronuclear multiple-bond
correlation (HMBC) and nuclear Overhauser effect spectros-
copy (NOESY) correlations were essential for the structure
elucidation of this siderophore.94 NMR has also been used to
study the ability of siderophores to form complexes with
different metal ions. In a recent review, attention was devoted
to the three natural products derived from Pseudomonas
aeruginosa, namely, pyocyanin, pyochelin, and pyoverdine(s),
and their ability to form complexes with Fe2+, Fe3+, Mn2+,
Mn3+, Ga3+, Cr3+, Ni2+, Cu2+, Zn2+, and Cd2+, highlighting the
use of NMR for the characterization of the pyochelin−Zn2+
and −Ga3+ complexes.95 Other examples include the character-
ization of the metal complexes of the siderophore desferri-
ferricrocin with Fe3+, Cr3+, Al3+, Ga3+, Cu2+, and Zn2+;96 while
the authors were able to obtain the NMR spectra for Al3+,
Ga3+, and Zn2+, spectra could not be obtained for Cu2+, Fe3+,
and Cr3+ due to line broadening from the paramagnetic nature
of divalent copper and trivalent iron and chromium.96

X-ray diffraction analysis can also be employed in cases
where the metal−siderophore complex crystallizes.23 With this
structural analysis, it is possible to reveal the sites where the
complexation of the metal occurs.23

High-performance liquid chromatography with UV detec-
tion (HPLC-UV) analysis is another technique used to
characterize siderophores, which puts in evidence any
degradation products or the presence of impurities.47 Through
the analysis of the retention times, it is possible to know the
polarity of the siderophores due to their affinity for the
column. When comparing the aforementioned new petrobactin
sulfonate siderophore (Figure 8) with the petrobactin
siderophore (Figure 8) in reversed-phase HPLC-MS, it was
possible to observe that the most hydrophilic siderophore, i.e.,
the one with the shortest retention times, is petrobactin
sulfonate.97 In addition, liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) is a useful technique
to identify and characterize siderophores, with their fragments
represented by peaks,90 and has been applied in the
identification of siderophores in complex samples, such as
soils.98

Siderophores have been characterized by mass spectrometry
(MS) and associated combinational technologies such as LC−
MS, gas chromatography−mass spectrometry (GC−MS), and
capillary electrophoresis−mass spectrometry (CE−MS).99−101

Since the first report of the use of MS to detect enterobactin in

1970,102 MS has been used to assess various biological
molecules in different matrixes over the past 20 years.103−108

Specifically, several ionization and analytical techniques, such
as electrospray-ionization mass spectrometry (ESI-MS),
matrix-assisted laser desorption/ionization mass spectrometry
(MALDI-MS), inductively coupled plasma mass spectrometry
(ICP-MS), and mass spectrometry imaging (MSI), have been
u s e d t o i d e n t i f y a n d c h a r a c t e r i z e s i d e r o -
phores.86,91−93,101,109,110

External calibration curves are required for some methods to
quantify siderophores (e.g.: UV−vis spectrophotometry,
fluorescence spectroscopy, HPLC, and MS). In contrast,
HPLC−ICP-MS can be used as an alternative method to
obtain the necessary data without the need for authentic
standards. This methodology offers a response factor
independent of the molecular structure of the metal complex
and has been suggested for quantifying iron complexes with
biological ligands.111 Another method for the quantification of
iron−siderophore complexes without the use of authentic
standards has been developed using electrospray high-
resolution accurate mass (HRAM) MS.112 This methodology
was applied to peat samples from the French Pyrenean
mountains, resulting in the identification and quantification of
19 siderophores belonging to four different classes. The results
were then validated using ICP-MS detection of iron by
matching the sum of iron complexes determined by isotope
exchange−ESI-MS within each peak observed by fast size-
exclusion (FastSEC) ICP-MS.112

For several years, pyoverdines, siderophores of fluorescent
Pseudomonas, could usually be differentiated from each other
by two physicochemical and physiological methods: side-
rophore isoelectrofocusing and siderophore-mediated iron
uptake.113,114 In 2008, Meyer59 introduced mass spectrometry
as a useful methodology for the identification of pyoverdines.
Thus, mass spectrometry was useful in proving structural
differences between compounds not well-differentiated by the
two classic siderotyping methods, showing that they can be
complementary. The authors advised using them concom-
itantly for reaching accurate discrimination of pyoverdines and
their producing strains through siderotyping.59 Throughout
the years, the structural elucidation and characterization of
pyoverdines have required more comprehensive analytical
methods because bacterial extracts are complex mixtures. The
mass spectrometry techniques evolved and currently allow the
rapid identification of this class of siderophores. Rehm et al.
developed an approach that uses ultrahigh performance liquid
chromatography−ion mobility mass spectrometry (UHPLC−
IM-MS) in combination with broadband collision-induced
dissociation, which eliminates the need for MS/MS inter-
pretations or specialized equipment for iron uptake or IEF
studies. The researchers were able to analyze more than 17
pyoverdines that differ in peptide chain using a timsTOF

Figure 8. Structure of petrobactin and petrobactin sulfonate.
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Pro.115 The method utilizes ion mobility spectrometry (IMS)
to deliver highly specific collision cross section (CCS) values
that can be used to characterize pyoverdines, thus eliminating
the need for other analytical methods.115 The same authors
utilized UHPLC−high-resolution tandem mass spectrometry
(UHPLC−HR-MS/MS) to separate highly polar pyoverdines
and their derivatives.116 They employed all-ion fragmentation
(AIF) to generate mass spectra containing the characteristic
fragments of ferribactin, the biological precursor of pyoverdine,
allowing the determination of the mass of secreted
pyoverdines. The researchers used targeted MS/MS experi-
ments at multiple collisions to accomplish the full structure
elucidation of the pyoverdine peptide chain. To facilitate the
interpretation of MS/MS spectra, they employed a mass
calculator and a fragmentation predictor that provided accurate
masses for a straightforward comparison of measured and
theoretical values. The method was validated using four well-
known pyoverdines with various peptide chains, and it was
successfully applied to the analysis of 13 unknown pyoverdines
secreted by bacterial cultures. Among these, the researchers
discovered four novel pyoverdine peptide chains that were
reported for the first time.116

Although the determination of the exact mass of a
pyoverdine together with its IEF pattern or iron uptake
behavior provides sufficient information to unambiguously
identify a pyoverdine, this requires the performance of at least
two experiments. To avoid that, a comprehensive and easy to
replicate universal high-throughput UHPLC−MS/MS pipeline
was proposed to elucidate the peptide chain of pyoverdines
and their derivatives in bacterial liquid cultures.117 To avoid
the need for iron uptake or IEF experiments, the authors
proposed the measurement of CCS values by IMS as an
alternative identification marker.117

5. GENOMIC APPROACH AND BIOINFORMATIC
TOOLS

The increased availability of genome sequences has enabled
the development of valuable tools for the prediction and
identification of bacterial natural products.118 Advances in
next-generation sequencing technology and analysis over the
past 15 years have revolutionized microbial genomics and our
ability to unravel a microorganism’s metabolic potential
through bioinformatic analyses.119 Since siderophores are
assembled by biosynthetic assembly lines involving modular
multidomain enzymes such as nonribosomal peptide synthe-
tases (NRPSs), nowadays the purification of these metabolites
can be performed through a genome-guided approach, which
consists of using the genome sequence in silico for structural
and physicochemical prediction to guide the design of the
corresponding lab experiments. Genes encoding siderophore
biosynthesis, transport, and utilization are generally localized
on the genome, forming biosynthetic gene clusters (BGCs).118

The presence of a putative BGC not only provides evidence
that a siderophore is being produced but also can be used to
predict the chemical structure of the molecule and dereplicate
it against known compounds. Several platforms have been
developed for the automated detection of BGCs in a genome,
and two of the most popular are antiSMASH and
PRISM.119,120 AntiSMASH is a rapid and reliable source for
finding gene clusters responsible for the biosynthesis of
secondary metabolites and has been widely applied to the
discovery of new and known siderophores.121−123 The
antiSMASH analysis pipeline, designed for bacterial genomes,

and its recent counterpart, fungiSMASH for fungal genomes,
share a common codebase. Both pipelines offer specific options
through their respective web submission forms. PlantiSMASH,
a branch of antiSMASH, incorporates plant-specific function-
ality, including plant-adapted hidden Markov model profiles
and cluster detection logic, and supports coexpression
analysis.120 An interesting study reported the genome-guided
purification of high amounts of the siderophore ornibactin and
the detection of potentially novel burkholdine derivatives
produced by Burkholderia catarinensis 89T.124 In that study, the
authors, by using genome-guided purification protocols
followed by mass spectrometry techniques, were able to detect
masses related to putative new derivatives of the siderophore
ornibactin and the antifungal burkholdine as well as
homoserine lactones probably related to their regulation.124

The antiSMASH technology was used for the characterization
of siderophores from E. coli to find the secondary metabolites
that cause pathogenicity in urinary tract infections (UTIs).125

Since UTIs happen when exogenous and endogenous bacteria
enter the urinary tract and colonize there, the discovery of
secondary metabolites that cause pathogenicity can be used for
the development of future pharmaceutical approaches and
drugs.125

Several useful tools have been developed alongside
antiSMASH, including SMURF, which is used for identifying
fungal polyketide synthases, NRPSs, and terpenoid gene
clusters. Another noteworthy tool is PRISM, which focuses
on predicting the chemical structures of biosynthetic pathways.
PRISM is linked to the “Genomes-to-Natural Products”
platform (GNP), which matches these predictions with MS/
MS data, as well as the GRAPE/GARLIC tools, which match
such predictions to chemical databases.120 A recent study
explored the newly isolated Streptomyces thinghirensis strain
HM3 for possible new secondary metabolites to find novel
natural products.126 The in silico analysis by the antiSMASH
and PRISM 4 online software for SM-BGCs predicted 16
clusters, including four terpene, one lantipeptide, one side-
rophore, two polyketide synthase, two NRPS cluster/NRPS-
like fragments, two ribosomally synthesized and post-transla-
tionally modified peptide products, two butyrolactones, one
tRNA-dependent cyclodipeptide synthase, and one other
BGC.126 This study highlighted that S. thinghirensis strain
HM3 presents a potential new source of secondary metabolites
and the usefulness of these genomic approaches.126

6. EVALUATION OF COMPLEX DYNAMICS
After the detection and characterization of siderophores, it is
essential to perform assays that validate the formation of
metal−siderophore complexes. When working with these
particular types of chelators, it is essential to consider
additional aspects, and this section is projected to give some
insights into complexation studies of siderophores.
6.1. Complexation Capacity Assays. Complexation

studies are important to evaluate the potential of siderophores
to chelate metal ions, testing their efficacy as chelators of
different microbial ligands. These assays are performed in
various fields of research, including environmental research,
when the formation of the metal−siderophore complex is
important. The capacity to form stable complexes with the
various heavy metals may differ from siderophore to side-
rophore, since the chelating action depends on several factors,
such as pH, geometric conformation, and the presence of other
siderophores.48
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The addition of ferric chloride (FeCl3) in an alkaline
solution (pH 9.0) is an example of a procedure used to
evaluate the chelating ability of siderophores.56 The key to
determining the complexation ability is the representation of a
graph of [metal ion]solution/[S] versus [metal ion]added/[S],
where [S] stands for the concentration of siderophores
determined by the CAS method.56 Strong complexation is
demonstrated when the [metal ion]added/[S] ratio is increasing
and the [metal ion]solution /[S] ratio remains constant.56

Atomic absorption spectroscopy with flame atomization (AAS-
FA) or inductively coupled plasma optical emission spectrom-
etry (ICP-OES) can be used to determine the concentration of
metal ions in solution.48,56,127 Another methodology widely
used to evaluate metal−siderophore complexation involves
spectrophotometric assays (e.g., UV−vis and fluorescence
spectroscopy). As an example, a solution of FeCl3 and CdCl2
are added to the purified siderophores to form the Fe3+− and
Cd2+−siderophore complexes, respectively, and the UV−vis
spectra of the metal ions in the absence of siderophores and of
the respective metal−siderophore complexes are analyzed.128

In this assay, the difference in peak intensities highlights the
complexation to occur between the siderophore and the metal
ions.128 The formation of the pyoverdine−Mn3+ complex was
also proved by similar spectrophotometric techniques.129

Another relevant advance to identify the existence of metal−
siderophore complexes is through the use of potentiometric
titrations.130 In particular, pH titration curves are obtained to
highlight the complexation, i.e., a comparative analysis is made
between the siderophore pH titration curve and the metal−
siderophore complex pH titration curve.130 These curves are
obtained by a graph of pH versus the ratio between the moles
of base added and the moles of siderophore present. These pH
curves have been used to prove the complexation between a
siderophore analog N,N′-dihydroxy-N,N′-diisopropylhexane-
diamide (DPH) and metal ions such as Ca2+, Mg2+, Cu2+, Zn2+,
and Mn2+.130 The pH−potentiometric technique has also been
used to determine complexation behavior between hydrox-
amate and catecholate siderophores and metal ions (Fe3+, Cr3+,
Cu2+, Co2+, and Ni2+).131 Siderophores produced by Alcaligenes
sp. RZS2 and P. aeruginosa RZS3 (hydroxamate- and
catecholate-type) have been proven to chelate Mn2+, Ni2+,
Zn2+, Cu2+, Co2+, Hg2+, and Ag2+ cations using the modified
CAS assay.38 As already explained, CAS agar plates can be
prepared with various metals beyond iron, indirectly showing
the chelation between siderophores and heavy metals.38 It is
noteworthy that the weak chelation with the mercury and silver
metals was demonstrated by the color intensity (less
intensity).38 Uranium complexation with desferrioxamine B
(Figure 4) was also confirmed by a modified CAS method.53

To complete these complexation studies, in silico studies
(docking) can also be performed to predict the coordination
chemistry and stability of the complex formed. In the case of
the previous study, the complexation with uranium was
validated by a docking study.53 In summary, a wide variety
of techniques are currently available to prove the binding of
the metal to the siderophore, including spectrophotometric
assays, potentiometric titrations, modified CAS assays, and
docking studies.

7. CONCLUSIONS AND FUTURE PERSPECTIVES
With the growing interest in siderophores and their widespread
application in the medical, technological, and environmental
fields, it has become essential to establish rapid and reliable

analytical methods for their identification and characterization.
Accurate and comprehensive information on siderophores is
crucial for understanding their potential applications and
improving the existing designs as well as for developing new
strategies. While many established techniques are available for
siderophore analysis, researchers should utilize them in a
complementary manner to ensure consistent and accurate
results.
Although the traditional detection and identification assays

are still quite valid, the innovative modifications performed on
these methodologies by complementing them with more
instrumental techniques among chromatographic and spectro-
metric approaches may promise valuable insights into this area
in the near future. Current genome mining techniques enable
researchers to acquire authentic information and use it for
novel applications. The development of in silico methodologies
allows a better understanding of the complex dynamics; the
identification and suppression of specific genes in pathogenic
microorganisms that are responsible for secondary metabolites
could be a new gate in providing novel siderophore structures
beyond synthetic mimetics. By the use of recombinant DNA
technology, siderophore-based molecules can be expressed in
recombinant bacteria for agriculture and other industrial
processes. Therefore, siderophore research has been escorted
by the advances in instrumental and molecular biology
techniques made in the last decades, which brought
exponential inputs to this field. Structure characterization of
siderophores in complex biological matrices continues to be
the bottleneck to more significant advances, but “omics” and
artificial intelligence can assist in generating novel siderophore
structures.
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