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Abstract: Culturing three-dimensional (3D) tissues with an appropriate microenvironment is a critical
and fundamental technology in broad areas of cutting-edge bioengineering research. In addition,
many technologies have engineered tissue functions. However, an effective system for transporting
nutrients, waste, or oxygen to affect the functions of cell tissues has not been reported. In this study,
we introduce a novel system that employs diffusion and convection to enhance transportation. To
demonstrate the concept of the proposed system, three layers of normal human dermal fibroblast cell
sheets are used as a model tissue, which is cultured on a general dish or porous collagen scaffold
with perfusable channels for three days with and without the perfusion of culture media in the
scaffold. The results show that the viability of the cell tissue was improved by the developed system.
Furthermore, glucose consumption, lactate production, and oxygen transport to the tissues were
increased, which might improve the viability of tissues. However, mechanical stress in the proposed
system did not cause damage or unintentional functional changes in the cultured tissue. We believe
that the introduced culturing system potentially suggests a novel standard for 3D cell cultures.

Keywords: 3D tissue culture; cell sheet technology; perfusion system; convection-diffusion equation

1. Introduction

In recent years, there has been a rapid increase in the number of bioengineering studies
using cultured cell tissues, such as regenerative medicine, drug screening systems in vitro,
and the fabrication of cell-based food [1–4]. As a common and important technology in
such fields, culture technologies required to realize physiological conditions and to develop
valuable cell tissues have been investigated, and the fabrication of three-dimensional
(3D) cell tissues has attracted considerable attention [5–7]. Although many trials and
strategies including 3D bioprinters and cell-laden microfibers have been developed to
fabricate 3D tissue [8,9], cell sheet technology has emerged as one of the most promising
of these methods [10]. The main advantage of this technology is the fabrication of dense
cell tissue without any inclusion inside 3D cell tissues. Thus, cell sheet technology permits
the fabrication of dense tissues such as the cornea, skeletal muscle, myocardium, and
other organs, such as the liver [11–14]. Many trials have been conducted in fields such as
regenerative medicine, drug screening based on cell sheet technologies [15–19].

To improve the function of 3D cell tissue based on cell sheet technology, many strate-
gies have been reported to simulate physiological conditions. To develop engineered
cell tissues, several types of mechanical stresses have been applied to them [16,20,21].
The modification of culture media is one of the most conventional approaches in cell cul-
ture technology, requiring knowledge of chemistry and molecular biology. Furthermore, it
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has been reported that in vitro static culture creates oxygen and nutrient gradients in the
culture media and even in the tissue [22]. In the worst case, cell tissues undergo necrosis
owing to a lack of oxygen, nutrients, or accumulated waste products [23]. In addition, the
constitution of culture media around the cell tissue varies during culture [24] and may
result in a decrease in cell function. Thus, there is a need for appropriate technology for
the replacement of the culture media around the cell tissue in vitro in order to maintain
culture conditions.

In general, the static culture on a plastic culture dish is a conventional culture method.
Cells comprising a cell tissue intake nutrients and oxygen from and output waste to culture
media in vitro [22], which creates a gradient in the concentration of chemical substances
and oxygen in the culture media. However, in addition to static conditions generating the
gradient, the plastic culture surface to which the tissue adheres does not facilitate such an
exchange (see Figure 1A,C) [25]. This is a significant difference in comparison to the in vivo
case, where blood or lymph always exchange substances with cells. To realize such an
exchange even at the bottom of the tissue (see Figure 1B), cell tissues were cultured on a cell
culture insert having multiple micropores, resulting in the enhancement of the exchange
and cell viability [25]. Thus, as a next step, we should realize the active replacement
of the media to prevent the development of the gradient in culture media and tissues.
There are two possible approaches for the active replacement of media: enhancing diffusion
and utilizing convection–diffusion. The diffusion equation is expressed as follows:

∂φ

∂t
= ∇·(D(φ,

→
r , t)∇φ(

→
r , t)) (1)

where φ represents the density of the diffusing material at location
→
r and time t, and D is

the diffusion coefficient. Therefore, the diffusion coefficient should increase to enhance the
diffusion. The diffusion coefficient is determined by the Stokes–Einstein equation:

D =
KBT
6πηr

(2)

where KB, T, η, and r represent Boltzmann’s constant, absolute temperature, viscosity,
and particle radius, respectively [26]. Every factor was fixed under certain culture con-
ditions. Thus, it is necessary to employ another approach of using convection-diffusion.
It is well known that the mentioned gradient disappeared owing to convection in previous
studies [27]. However, conventional flow on the surface of cell tissues results in shear
stress, which may change the function of cell tissue, and may even cause morphological
changes [28–31]. To realize a culture system in which cultured tissues are continuously
provided with fresh media that can be broadly applied to research, simple replacement of
the media is the only factor that should be considered. However, if mechanical stimulation
that changes the cell function occurs in the process, it will be very difficult to understand
the effect on the system. In summary, it is necessary to develop a cell tissue culture system
that can replace the media around the tissue without causing mechanical stress-based
functional/morphological alterations.

In this study, we developed a culture system in which culture media were perfused
into the scaffold of cell tissue with a negligible mechanical stimulus. In this system, a
3D cell tissue made of piled cell sheets was cultured on a porous collagen gel scaffold
with a perfusable channel (Figure 1D). Owing to this system, cell tissue viability and
glucose metabolism were enhanced without dramatic mechanical stimulus, causing a
change in the cell function through mechanotransduction, as previously reported [28–31].
The present study provides a simple but versatile cell tissue culture system that improves
the microenvironment of cultured cell tissues for broad applications in bioengineering.
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Figure 1. The concept of the perfusion system. Comparison of conventional culture (A) and the ideal
culture (B) environment. Schematic images of the conventional culture method (C) and the culture
method realized in this study (D).

2. Results
2.1. System Development

We developed a cell tissue culture system to enhance the abovementioned exchange,
as shown in Figure 2. The proposed system is composed of a ring pump (RE-F100,
Aquatech Co., Ltd., Osaka, Japan), a bubble trap, a culture vessel with a culture device,
and connective tubes. The culture device has a porous collagen scaffold with a perfus-
able channel (see Appendix A for information of the collagen used), where the cell tissue
can be adhered to and cultured (Figure 2B). The ring pump delivers the culture medium.
The bubble trap prevents bubbles from entering the channel because without the bubble
trap, bubbles entering the channel may prevent the perfusion of the media. The culture
media can be delivered into the channel in the collagen gel, which enhances the transport
of nutrients and waste. The detailed procedure to prepare the collagen in the device is
shown in Appendix A, and the device used in this system was developed in a previous
study [32]. Furthermore, in the present study, normal human dermal fibroblasts (NHDF)
were employed as model cell types to demonstrate our proposed concept.

2.2. Viability of Tissue Cultured Using Each Method

As shown in Figures 3 and A2 in Appendix B, the 3D cell tissues cultured on a general
dish underwent damage even with delamination after a three day culture, whereas tissues
on collagen scaffolds did not. Since it has been reported that a three day-cultured cell
tissue composed of three-layered-cell sheets shows decreased viability, a three day culture
was employed in our study to investigate the effect of the proposed culture system [25].
This demonstrates that culture on the porous collagen gel scaffold prevents necrosis inside
3D tissues cultured on a general dish. Figure 4 shows the lactate dehydrogenase (LDH)
level in the supernatant cultured with tissue for three days and culture media incubated
for three days. LDH has been used as an index to determine cell viability [33]. As shown
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in Figure 4, except for the tissue cultured on a dish, LDH levels were lower than those in
the incubated culture media. In summary, tissues cultured on collagen scaffolds did not
secrete LDH compared to general cultured tissues, which is consistent with and supports
the qualitative results of hematoxylin and eosin (HE) staining without necrotic cells during
culture on the collagen gel (see Figure 3B–D).
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Fig. 3 The densities of the cell tissue cultured for 3 days with
each method. HE stained cross section views with the cell tissues
culture on a general dish (A) and collagen gel with 0 (B), 0.3 (C),
0.5 (D) mL/min perfusion rate. Scale bars indicate 100 µm.
Figure S1 shows the reproducibility of the results with the cell
tissues culture on a general dish and collagen gel with 0.5
mL/min perfusion rate.

Figure 2. Illustration of the culture system. Overview of the whole perfusion system (A). Schematic
image of culture device with the collagen scaffold (B).
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culture on a general dish (A) and collagen gel with 0 (B), 0.3 (C),
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Figure 3. The densities of the cell tissue cultured for 3 d with each method. HE stained cross-section
views with the cell tissue culture on a general dish (A) and collagen gel with perfusion rates of 0
(B), 0.3 (C), and 0.5 (D) mL/min. Scale bars indicate 100 µm. Figure A2 in Appendix B shows the
reproducibility of the results with the cell tissue culture on a general dish and collagen gel with a
0.5-mL/min perfusion rate.

2.3. Glucose Metabolism

Glucose and lactate concentrations in the supernatant were cultured with tissue for
three days, and the culture media were incubated for three days, as shown in Figure 5.
The density of glucose in the supernatant decreased with every cell tissue after three day
culture, compared with the culture media. Further, there is a certain trend of decreasing
glucose along with increased perfusion rate, although this is not clear. In our experiments,
the tissue cultured on a dish consumed the minimum amount of glucose, and glucose
consumption of tissues cultured on a collagen gel increased along with an increase in
perfusion. Figure 5B shows that lactate production from cultured tissues followed a similar
trend to that of glucose consumption. In summary, the tissue cultured on a dish produced
the least lactate, and lactate production of tissues cultured on a collagen gel increased along
with an increase in perfusion late in our experimental conditions.
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Figure 4. Results of LDH assay (n = 3~7, mean ± SD). The cell tissue cultured on ubiquitous culture
dish released LDH in the media. However, cell tissues cultured using the other methods did not
show the release.
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Figure 5. The results of glucose assay (A) and lactate assay (B) (n = 3~7, mean ± SD). The y-axis
represents the concentration of each substance in the supernatant with each culture method and
incubated DMEM without cells. The cell tissue cultured on a collagen gel scaffold shows a higher
glucose consumption and lactate production. Further, along with increasing perfusion speed, both
the glucose consumption and lactate production increased.

2.4. Gradient of Oxygen Concentration

The gradient of oxygen concentration along the vertical direction , above and below
the 3D cell tissue cultured on collagen gel was measured under static conditions without
perfusion (0 mL/min) and with a perfusion rate of 0.5 mL/min. As shown in Figure 6B,
without perfusion, a monotonous decrease was observed in the depth direction of the
z-axis. With perfusion, different trends in oxygen distribution were observed. As shown in
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Figure 6C, with perfusion, the minimum oxygen concentration was at the center of the cell
tissue. Furthermore, when the results of oxygen distribution with and without perfusion
overlapped, the value of oxygen concentration at the center of the cultured tissue was
equivalent, as shown in Figure 6D. Furthermore, at the upper side of the cell tissue, the
distribution of oxygen concentration showed a similar trend.
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Figure 6. Oxygen concentration around and in the tissue (n = 3). The schematic image showing
measured region (A). Without perfusion, a gradual decrease in the oxygen concentration was shown
along with the depth direction (B). However, owing to the perfusion, the minimal point of oxygen
concentration was at the location of the cell tissue (C). On the other hand, the density of oxygen itself
around the cell tissue is very similar. The results shown in (B,C) were overlapped for comparison (D).
Note that the perfusion speed is 5 mL/min.
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2.5. Morphological Evaluation of Cell Tissues from the Top View

Top views of 3D tissues before and after three day culture under all conditions in the
present study were observed, as shown in Figure 7A. No abnormal morphological changes,
such as pierced holes, were observed for all conditions. Further, the shrink ratio of cell
tissue cultured for three days under each condition was evaluated, as shown in Figure 7B.
The standard deviation of the shrink ratio of the tissue cultured on a dish was larger than
that under the other conditions, but except for that there was no clear trend.
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Figure 7. Evaluation of the morphology from the top view of tissue cultured using each method. The
macro top-view images of the tissues (A). The shrink ratios of tissues are shown (n = 3~7, mean± SD) (B).
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2.6. Mechanical Stress on Cell Tissue Owing to Perfusion

The deformation of the cell sheet along the z-axis due to perfusion with a perfusion
rate of 0.5-mL/min was evaluated, as shown in Figure 8. The deformation of cell tissues
was measured using a laser displacement meter (ZX1-LD50A61, OMRON, Kyoto, Japan),
as shown in Figure A3, after one day static culture. The entire cell tissue was lifted owing
to perfusion, and the maximum value of elevation was approximately 0.05 mm.
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Figure 8. Evaluation of morphological change in the direction of the z axis owing to the perfusion. The positional change of
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The shear stress on the surface of the cultured tissue was evaluated using fluorescent
particles (R0300, Thermo Scientific, Waltham, MA, USA). The density and volume of the
particle were 1.05 g/cm3 and 14.1 µm3, respectively. Based on the experimental results, no
moving particles were observed. This observation was performed after one day culture
under static conditions, and the employed perfusion rate was 0.5 mL/min.

3. Discussion

We hypothesized that culturing cell tissue on porous collagen gel would improve the
cell culture environment owing to the media provided from the bottom of the cell tissue
and that perfusion causes convection-diffusion and an improved culture environment
compared with static culture. This hypothesis is based on the convection-diffusion of
culture media that should be realized in our proposed system. The above hypothesis
was supported by the results (see Figure 6), and we proposed that fresh media could
be provided to cultured 3D tissue in our system. As shown in Figure 3, the 3D tissue
cultured on a general dish exclusively showed necrosis inside the tissue, which occurs
because of diffusion limitations [34]; thus, we concluded that culturing cell tissue on
the porous collagen gel scaffold improved the diffusion rate even inside the 3D tissue.
The advantage of perfusion can be determined from glucose and lactate assays as well as
the evaluation of the oxygen gradient. The results of the glucose and lactate assays showed
a trend of increased glucose metabolism along with an increase in the perfusion rate.
This indicates that glucose-rich media were provided to the tissue owing to perfusion or
that the transportation of glucose improved cell tissue viability. Although only the glucose
intake and lactate output were evaluated in this study, the intake and output of other
substances are expected to be enhanced by the present system. Furthermore, as shown
in Figure 8, there was a convection flow in the collagen scaffold owing to perfusion. The
evaluation of the oxygen gradient also indicates the effect of perfusion. Therefore, owing
to the perfusion in the collagen scaffold, there was a convection flow in the scaffold that
provided fresh media to the cultured tissue.

The oxygen gradient was particularly interesting from three viewpoints. First, as
shown in Figure 6B, without perfusion, the oxygen concentration was lower below the
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cell tissue than that inside the tissue. This can be explained by the one-dimensional (1D)
convection-diffusion Equation:

∂φ

∂t
+ v

∂φ

∂z
− D

∂2φ

∂z2 = S(z) (3)

where v, z, and S(z), respectively represent the velocity of the convection flow, the location
along the z-axis in Figure 6A, and the source term [35]. The gradient was measured at
one time point, and there should be no gradient if t = 0. Thus, φ is a function of z. Under
static conditions, v = 0. Furthermore, the cell sheet S has a negative value when z = 0.
However, at a certain position above the cell sheet, S has a positive value because of
the interface between the media and air, while S is 0 below the cell sheet owing to the
bottom of the vessel. Under the initial condition before culturing the cell tissue, the oxygen
concentration should be homogeneous [22], and thus this monotonous decrease in the
oxygen gradient is reasonable. Although the oxygen gradient around the tissue cultured on
the dish was not measured, S should have negative and positive values at the cell tissue and
the interface between the media and air, respectively. More oxygen exists in the atmosphere
than in the liquid, even if the liquid is oxygen-saturated [36]. Thus, the interface between
the medium and air is a source term. Note that oxygen is provided only from the air-
liquid interface in our system. It is reasonable to regard the surface source as a volume
source at an infinitesimal volume, as has been numerically done in previous research [37].
On the other hand, under conventional culture conditions using a general culture dish, S = 0
below the cell tissue even at t = 0, which indicates a more hypoxic condition. Second, with
perfusion, the minimum value was observed inside the tissue, and oxygen concentration
below the cell tissue was increased due to the perfusion compared to a condition without
perfusion. Therefore, it can be predicted that the source term is also located below the
cell tissue. This source term should be the perfused microchannel, that is, S has a positive
value at certain points above and below the cell tissue. Furthermore, as shown in Figure 8,
leaky flow from the microchannel pushes cell tissues upward, which indicates that v has
a positive value with perfusion. In short, the import of oxygen was definitely increased
owing to perfusion. Farther, even without perfusion, the porous collagen scaffold imports
more oxygen than the conventional dish culture, since from the lateral side of the collagen
gel fresh media was provided to cell tissues. Third, even with perfusion, the oxygen
concentration inside the cell tissue was similar to that without perfusion. Moreover,
as the source values increase, it can be assumed that the loss term increases. In other
words, the oxygen imported to and consumed by the cell tissue increases with perfusion.
Inside the dense tissues, convection flow cannot be expected, and the diffusion term
dominates the transport. However, as shown in Equation (2), it is difficult to change the
diffusion coefficient D for the cell culture conditions. Thus, to transport oxygen into the
tissue, the oxygen concentration at the surface of the tissue should be increased, which has
been realized in our proposed system.

We also evaluated the mechanical stimulus applied to the cell tissues owing to the
present culture method, because cell function can be regulated by mechanical stimula-
tion [38–41]. It is known that cultured tissue based on cell sheet technology shrinks during
culture owing to its active inter/intracellular tension [42] because the tissue does not have
any artificial inclusion to disturb the deformation. Moreover, dramatic deformation of cell
tissue affects cell function [43]; hence, the shrinkage rate of the cell tissue cultured under
each condition was evaluated. Regardless of the perfusion rate, no trend was observed
in the shrinkage rate. One of the driving forces for intracellular tension was actin skele-
ton, which can be affected by mechanical stimulation [44–46]. Thus, this result indicates
mechanical stimulation affecting actin polymerization is not given in our culture system.
Furthermore, the shrinkage rates of the tissues cultured on the collagen scaffolds were
more stable than those cultured on general dishes, which may indicate the good stability of
the present culture method owing to the stable adhesion between the cell tissue and colla-
gen gel. We also showed that the lifting of the cell tissue was entirely owing to perfusion.
As the level of lifting at the measured points of the sheet was not homogeneous, the
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cell tissue was stretched. In our proposed system, even if we focused on the most
stretched part, there was a deformation of 0.017%. However, in previous studies, approxi-
mately 68% stretch was employed to change the cell sheet morphology dramatically [13].
Furthermore, owing to the intra/intercellular force, more than 10% of deformations oc-
curred during the three-day stationary and perfusion cultures. Thus, the deformation
caused by perfusion should be minor. Observing particles did not confirm the convection
flow, as shown in Figure A3, which is consistent with a comparable oxygen gradient above
the cell tissue, with and without perfusion. Consequently, we argue that there is a negligible
microenvironment from the perspective of the mechanical stimulus in our system.

We developed a system in which 3D cell tissues can be provided with fresh culture
medium. The greatest contribution of our novel system is the realization of a 3D cell
culture method to maintain cell viability higher than that of a conventional cell culture
method using a general dish. Furthermore, although we evaluated glucose intake, lactate
production, and oxygen gradient in this study as representative factors, the intake, output,
and gradient of other substances might be improved. However, mechanical stimulation
resulting in major functional and morphological changes in the cultured tissue has not
been confirmed. Although the cell tissue of three-layered-NHDF cell sheets was used to
investigate the proposed concept, our system does not have a strict limitation on the cell
type or the number of layered cell sheets. It is expected that perfusion may affect the
viability of tissues if other cell types with higher metabolism or cell tissues with more
layered cell sheets are employed in this system. The fabrication of 3D cell tissue is a very
common goal in tissue engineering, which is a basic technology for regenerative medicine,
cell-based food, and drug screening assay models [1–3]. Furthermore, although the scaffold
was made of native collagen gel, another type of biocompatible porous gel could be utilized.
Thus, when implanting the fabricated 3D cell tissues to a patient, an atelocollagen gel can
be used. For the fabrication of cell-based food, this collagen gel is of biological origin
and has no toxicity, which indicates the possibility of eating the tissue with a scaffold.
Since other types of gel can be used as a scaffold, investigations into the type of gel may
be an interesting topic to realize a better culture environment. Although we used our
system to culture a 3D cell tissue made of layered cell sheets, it can be employed to culture
any form of cell tissue. As the culture environment around cell tissues can be improved,
a monolayer cell sheet, cell aggregation, or organoids may be a target. Therefore, our
proposed system can be a fundamental technology in the field of tissue engineering and
should advance the broad field of bioengineering.

4. Materials and Methods
4.1. Cell Culture

NHDF (CC-2511, Lonza, Basel, Switzerland) cells were cultured in Dulbecco’s Mod-
ified Eagle Medium (D-MEM; 043-30085, FUJIFILM Wako Pure Chemical Corporation,
Osaka, Japan) supplemented with 10% fetal bovine serum (FBS) (10270, Thermo Fisher,
Waltham, MA, USA) and 1% penicillin-streptomycin (168-23191, FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan). Cells were harvested using 5% trypsin (208-17251,
FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). Then, 2 × 106 cells were
seeded on a temperature-responsive cell culture dish (UpCellTM dish, I.D. 35 mm, Type-E,
CellSeed, Tokyo, Japan), the surface of which was coated with a matrix coating (Easy
iMatrix-511, 892018, Takara Bio Inc., Shiga, Japan). To obtain the coated surface, Easy
iMatrix-511 was introduced into the dish, which was then incubated for 1 h at 37 ◦C.
The seeded cells were cultured for three days. Cells were harvested as a cell sheet by
incubating the culture dish in a CO2 incubator set at 20 ◦C for 30 min.

4.2. Morphological Evaluation

To obtain a cross-sectional view of the cell tissue, the cell tissue was cut around
the center. Hematoxylin and eosin staining was then performed using the conventional
method. To evaluate the shrinkage rate, as shown in Figure 7B, the areas of cell sheets
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before and after three days of culture were measured manually using Image J (Bethesda,
MD, Rockville, USA) [47].

4.3. Oxygen Gradient Evaluation

To evaluate the oxygen gradient, the concentration of oxygen in the culture media
was measured using an oxygen sensor (OX-100, Aarhus, Denmark). For the measurement,
after 1-day static culture, the entire system was set in the chamber (Invivo2 300, Ruskinn,
Bridgend, UK). The media was agitated, and the oxygen gradient was affected. Thus, 1 h
before the measurement, gentle pipetting was applied to match the conditions.
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Appendix A

The detailed procedures used for the preparation of the collagen scaffold and setting
the cell tissue on the scaffold are provided below.

The following steps were taken to prepare the scaffold collagen gel, as shown in
Figure A1. A jig was placed on a culture dish to prepare a collagen gel (Figure A1A).
The culture device was inserted into the jig upside-down (Figure A1B). A collagen solution
was introduced into the device (Figure A1C). The formulation of the collagen solution is
shown in Table A1 [32]. The device was incubated for 40 min in an incubator to cure the
collagen gel (Figure A1D). The jig was removed, the wire was inserted into the device as a
mold for the channel, and the collagen solution was introduced into the device (Figure A1E).
The formulation of the collagen solution used in this step is shown in Table A2. The device
and gel were incubated for 60 min in an incubator to cure the collagen gel (Figure A1F).
After this step, the scaffold collagen gel was prepared by removing the wires.

To set the cell tissue on the collagen gel, a three-layered cell sheet was fabricated and
placed on the collagen gel. For layering cell sheets, as a first step, a cell sheet of the bottom
layer was placed on a general culture dish and cultured for 1 h. The second and top layer
cell sheets were sequentially piled up using the same method. These process instructions
have been reported previously [48]. After the fabrication of the 3D tissue, an overhead
projector film was used to scrape the tissue and place it on the collagen gel. The tissue on
the collagen gel was cultured for 1 h, which allowed the tissue to adhere to the collagen gel.

Table A1. The content of the collagen solution introduced in the step shown in Figure A1C.

Media 600 µL
NaHCO3 (15 mmol/L) 120 µL
HEPES (10 mmol/L) 60 µL

Ultrapure water 420 µL
Collagen acidic solutions (5 mg/mL) 4800 µL

Media (11825015, Thermo Fisher) NaHCO3 (191-01305, FUJIFILM Wako Pure Chemical Corporation) 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; H4034, Merck, Darmstadt, Germany) Collagen Acidic
Solution (IAC-50, KOKEN CO., LTD, Tokyo, Japan).
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Figure A1. Procedure showing the preparation of the collagen scaffold.

Table A2. The content of the collagen solution introduced in the step shown in Figure A1E.

Media 600 µL
NaHCO3 (15 mmol/L) 120 µL
HEPES (10 mmol/L) 60 µL

Ultrapure water 420 µL
Collagen acidic solutions (3 mg/mL) 4800 µL

Thrombin Solution (2.5 U/mL) 3000 µL
Fibrinogen Solution (10 mg/mL) 3000 µL

Collagen Acidic Solution (IAC-30, KOKEN CO.) Thrombin Solution (T4648-1KU, Sigma-Aldrich, St. Louis, MO,
USA) Fibrinogen Solution (F8630-5G, Sigma-Aldrich).

Appendix B

HE cross-sectional images of the other samples (Figure A2) and a schematic showing
the measurement of mechanical stimulation (Figure A3) are presented in this study.
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Figure A2. The densities of the cell tissue cultured for three days. HE-stained cross-section views
with the cell tissue culture on a general dish (A) and collagen gel with a 0.5-mL/min perfusion rate
(B). Images of 1 and 2 were taken from different samples, and the sample is as shown in Figure 3.
Scale bars indicate 100 µm.



Int. J. Mol. Sci. 2021, 22, 6780 13 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 15 of 17 
 

 

 

Figure A2. The densities of the cell tissue cultured for three days. HE-stained cross-section views 

with the cell tissue culture on a general dish (A) and collagen gel with a 0.5-mL/min perfusion rate 

(B). Images of 1 and 2 were taken from different samples, and the sample is as shown in Figure 3. 

Scale bars indicate 100 µm. 

 

Figure A3. The schematic image shows the evaluation methods for shear stress from the media flow (left upper side) and 

the tensile deformation due to the leaky flow toward the bottom of the tissue. 

References 

1. Sekine, H.; Okano, T. Capillary Networks for Bio-Artificial Three-Dimensional Tissues Fabricated Using Cell Sheet Based Tissue 

Engineering. Int. J. Mol. Sci. 2021, 22, 92, doi:10.3390/ijms22010092. 

2. Sarkiri, M.; Fox, S.C.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Bioengineered Skin Intended for Skin Disease Modeling. Int. J. Mol. 

Sci. 2019, 20, 1407, doi:10.3390/ijms20061407. 

A-1 A-2

B-1 B-2

Fig. B1 The densities of the cell tissue
cultured for 3 days. HE stained cross section
views with the cell tissues culture on a
general dish (A) and collagen gel with 0.5
mL/min perfusion rate (B). Images of 1 and
2 were taken from different samples each
other and the sample shown in Fig. 3. Scale
bars indicate 100 µm.

x

y

0

1.5 mm

Measured position

y

z

y

z

Laser displacement 
meter

y

z

x

y

Figure A3. The schematic image shows the evaluation methods for shear stress from the media flow
(left upper side) and the tensile deformation due to the leaky flow toward the bottom of the tissue.
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