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Stomach, liver, and colon cancers are the most common digestive system

cancers leading to mortality. Cancer leader genes were identified in the

current study as the genes that contribute to tumor initiation and could shed

light on the molecular mechanisms in tumorigenesis. An integrated

procedure was proposed to identify cancer leader genes based on

subcellular location information and cancer-related characteristics

considering the effects of nodes on their neighbors in human

protein–protein interaction networks. A total of 69, 43, and 64 leader

genes were identified for stomach, liver, and colon cancers, respectively.

Furthermore, literature reviews and experimental data including protein

expression levels and independent datasets from other databases all

verified their association with corresponding cancer types. These final

leader genes were expected to be used as diagnostic biomarkers and

targets for new treatment strategies. The procedure for identifying cancer

leader genes could be expanded to open up a window into the mechanisms,

early diagnosis, and treatment of other cancer types.
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Introduction

Digestive system cancers represent an important cause of

mortality worldwide. Of these cancer types, colon, liver, and

stomach cancers are among the top five common leading causes

of cancer deaths in the world according to the International

Agency for Research on Cancer (https://www.iarc.who.int/wp-

content/uploads/2020/12/pr292_E.pdf).

To better understand the molecular mechanisms of

cancers and develop the paradigm and biomarkers of

targeted anticancer therapies, it is critical to accurately

identify important genes that contribute to cancer initiation

and development (Tamborero et al., 2018; Colaprico et al.,

2020). Several computational methods have been developed

for finding these kinds of genes. Some of these methods rely on

mutations in genomic data or expression data of cancer cell

lines. For example, Bailey et al. (2018) performed a pan-cancer

and pan software analysis on point mutations and small indels

in cancer genomic datasets, identifying 299 cancer driver

genes. Ding et al. (2021) gave a computational investigation

on expression data of cancer cell lines and discovered a new set

of potential biomarkers of different cancers. Other methods

identify genes on the basis of their proximity to cancer genes

from various evidence, such as biomolecular networks. Liu

et al. (2022) employed a model-free computational method to

not only identify the critical transition states of ten cancers but

also provide new biomarkers from a network perspective. Nie

et al. (2020) constructed a protein–protein interaction (PPI)

network for differentially expressed genes (DEGs) between

stomach cancer and normal tissues and identified ten hub

genes highly related to stomach cancer. Furthermore, the Cox

regression model showed high expression of five genes that

were significantly associated with late-stage stomach cancer.

Hu et al. (2020) discovered three most significant genes

involved in liver cancer progression by examining signaling

pathway networks. In a study by Zhao et al. (2019), a PPI

network was constructed for DEGs of colon cancer patients,

and the hub genes were identified as potential key genes. Based

on related research studies on PPI networks and graph theory,

it was assumed that a set of genes could affect the entire

network by affecting the expression of their neighbor genes

through interactions (Wuchty, 2014). Of these genes, those

that were directly involved in the occurrence of cancer were

defined as cancer leader genes in this article.

The subcellular location of gene products is fundamental

for understanding their functions in biological processes (Su

et al., 2020). Li et al. (2017) reported that dysregulation of

USP9X, an integral component of centrosome and a requisite

for centrosome biogenesis, contributed to centrosome

amplification, chromosome instability, and breast cancer.

TMEM106B is a transmembrane protein located on cellular

lysosomes. Kundu et al. (2018) demonstrated that

TMEM106B-induced lysosomes released active lysosomal

cathepsins necessary for cancer cell invasion and

metastasis. Thus, in this article, on the basis of the disease

network obtained from PPI data, subcellular location-specific

networks were constructed with the subcellular location

information. Based on the definition of a leader gene set, a

graph theory-based algorithm was proposed and used to

recognize the candidate leader genes in each network.

Then, cancer-related characteristics, including hallmarks,

gene functions, and classification performance, were

considered to identify cancer leader genes. The results of

the disease network and the subcellular location-specific

ones were compared. The union of the leader genes from

all networks was the final result of this article. This integrated

procedure was conducted on three digestive system cancers,

namely, stomach cancer, liver cancer, and colon cancer, to

identify their leader genes.

Materials and methods

The procedure of our article is shown in Figure 1, and the

details are described in the following sections

Data

In this study, publicly available expression data for stomach

adenocarcinoma (STAD), liver hepatocellular carcinoma

(LIHC), and colon adenocarcinoma (COAD) cohorts were

obtained from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) for analysis. The stomach cancer

cohort contained 407 samples (375 cancer and 32 normal

samples), liver cancer contained 424 samples (371 cancer and

53 normal samples), and colon cancer contained 521 samples

(478 cancer and 43 normal samples). Differential expression

analysis was performed using the DESeq2 R package (adjusted

p-value <0.05 and |log2FC| > 1). Also, 5797, 5240, and

6645 DEGs were obtained for stomach, liver, and colon

cancers, respectively.

PPI data were retrieved from the STRING database (https://

string-db.org/) (Szklarczyk et al., 2019). A total of

392,028 interactions between 9,588 gene products with a

combined score >0.9 were obtained. In the following sections,

they were treated as gene interactions.

Gene subcellular location information was obtained from

UniProt, Gene Ontology (GO, http://geneontology.org/) (Gene

Ontology, 2021), and Recon3D (http://vmh.life) (Table 1) (Brunk

et al., 2018). Genes located in nine main subcellular locations

were used in this study.

Cancer genes were downloaded from the Cancer Gene

Census (http://cancer.sanger.ac.uk/census) (Kundu et al.,

2018). For stomach, liver, and colon cancers, 24, 13, and

15 genes were retrieved, respectively.
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FIGURE 1
Workflow of our methodology. (A) Data sources. (B) Disease network construction. (C) Candidate leader gene recognition. (D) Leader gene
identification and validation.
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Disease and subcellular location-specific
network construction

By using the gene interactions as edges and DEGs and

cancer genes as nodes, a disease network for stomach cancer,

liver cancer, and colon cancer was constructed. Considering

gene subcellular location information, nine subcellular

location-specific networks for each of these three cancer

types were filtered out from the disease network by

extracting interactions between genes of specific subcellular

locations, respectively.

Candidate leader gene recognition

Cancer leader genes affect the entire network by

influencing their neighbors in the network. The maximum

independent dominant set in the graph theory has similar

properties as leader genes in networks. Therefore, based on

two theorems in the graph theory, the maximal independent

set of a graph must be its minimal dominating set that affects

the entire network, and the largest clique of a graph must be

the largest independent set of its complement, which is a

graph that has the same points as an original graph, and these

points are connected by edges if and only if they are not

connected by edges in the original graph. A graph theory-

based algorithm was proposed to recognize genes that affect

all nodes in the networks (Figure 2), which were referred to as

candidate leader genes.

TABLE 1 Number of genes in different subcellular locations.

Subcellular location Number of genes

Cytoplasm 8539

Nucleus 8476

Endoplasmic reticulum 2215

Mitochondrion 1949

Golgi apparatus 1832

Centrosome 676

Lysosome 657

Ribosome 318

Peroxisome 170

FIGURE 2
Graph theory-based algorithm for candidate leader gene recognition.
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Leader gene identification and validation

Leader genes were identified from candidate genes based

on cancer-related characteristics. On the one hand, cancer-

related genes were supposed to affect primarily a handful of

essential cellular functions, termed cancer hallmarks

(Hanahan and Weinberg, 2000). Therefore, enrichment

analysis was conducted on each candidate leader gene set

recognized from the networks. Enrichment categories were

cancer hallmarks (50 hallmark gene sets from the Molecular

Signatures Database (MSigDB)) (Liberzon et al., 2015) and

biological processes enriched by cancer genes. Gene

functional annotation was carried out with the

clusterProfiler R package.

On the other hand, cancer leader genes contributing to

tumor initiation should be able to classify samples of cancer/

normal status. Here, a support vector machine (SVM)

classifier was built to distinguish between cancer and

normal samples using the expression of leader genes for

cancer/normal samples from TCGA data as features. A

leave-one-out cross-validation (LOOCV) was used to

evaluate the overall performance of the classifier. Then, a

receiver operating characteristic (ROC) curve was plotted, and

the value of the area under the curve (AUC) was calculated to

evaluate the classification performance.

Final leader genes were identified as those enriched in

cancer hallmarks and cancer-related functions (BH-adjusted

p < 0.05) and had good classification performance

(AUC >0.75). Final leader genes were evaluated using the

literature review, which was searched in the PubMed database

(https://pubmed.ncbi.nlm.nih.gov/). To demonstrate the

clinical significance of final leader genes, expression

differences for gene products and classification

performance of final leader genes for other datasets were

analyzed. Expression levels for proteins encoded by final

leader genes were obtained from the Human Protein Atlas

(HPA, https://www.proteinatlas.org/) database (Wang et al.,

2020a), which is an online server containing the human

transcriptomic and proteomic data in cells, tissues, and

organs from human normal or pathological tissues via

immunohistochemistry (IHC) (Uhlen et al., 2017). The

pathology section of HPA shows the protein levels of

cancer patients. Expression levels for proteins encoded by

final leader genes in normal and cancer tissues could be

obtained in HPA by using gene names as the search terms.

The expressional levels of the gene products were denoted as

high, medium, low, or not detected as the combination of

staining intensity and fractions of stained cells based on

immunohistochemical data. Expression values of final

leader genes were also used to classify samples from three

independent datasets from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database (Barrett

et al., 2013).

Results

Subcellular location-specific networks

Disease networks and subcellular location-specific networks

for stomach, liver, and colon cancers were constructed by

combining protein interaction data, DEGs, cancer genes, and

gene subcellular location information (Table 2). The degree

distribution for each of these networks approximated a

power-law distribution (Figure 3), demonstrating the

biological significance of these networks.

Candidate leader genes from networks

The candidate leader genes of stomach, liver, and colon

cancers were recognized as maximum independent dominant

sets from the disease networks and subcellular location-specific

networks (Table 3).

Expression values of candidate leader genes from each

network were used as features for SVM classifiers to

distinguish between cancer and normal samples. Classification

performance was compared with that of cancer genes (Table 4).

Most candidate leader genes from disease networks or subcellular

location-specific networks could classify samples better than

cancer genes and had a larger size.

Cancer leader genes from disease
networks and subcellular location-
specific networks

To reduce the size of candidate leader genes, further

classification and enrichment analysis were performed to

screen cancer leader genes as candidate leader genes that had

good classification performance (AUC >0.75 in the SVM

classifier) and enriched in cancer hallmarks (Table 5).

Candidate leader genes from some subcellular location-specific

networks were not enriched in cancer hallmarks; thus, no leader

genes were screened out for them.

Leader genes from different networks were used to classify

samples, and the performance was compared. It was

demonstrated that genes from disease networks could classify

samples better with a larger size. Cancer genes could also classify

samples with better performance and larger size. Thus, random

genes with the same number as leader genes from subcellular

location-specific networks were selected from disease network

leader genes and cancer genes to classify samples. Their

classification performance was compared (Figure 4). For liver

cancer and colon cancer, the performance of leader genes from

subcellular location-specific networks was significantly better

than that of cancer genes in all cases and better than that of

genes from disease networks inmost cases. However, for stomach
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cancer, only leader genes from the endoplasmic reticulum and

Golgi apparatus-specific networks performed better than cancer

genes or genes from disease networks.

Functions that were enriched by cancer genes were more

related to their corresponding cancer types. Then, functional

enrichment analysis was performed for leader genes from disease

networks and subcellular location-specific networks (Figure 5).

Compared with the leader genes obtained from disease networks,

the genes obtained from subcellular location-specific networks

were enriched in significantly more cancer-related functions. At

the same time, compared with the leader genes obtained from

subcellular location-specific networks, the genes obtained from

disease networks were mostly enriched in ancestor functions.

Therefore, it was speculated that the leader genes obtained from

subcellular location-specific networks were more relevant to

cancer-related functions.

Furthermore, since each network has its own unique leader

genes, the classification performance of unique leader genes from

disease networks and from subcellular location-specific networks

was compared for each cancer type. It was found that these

unique genes either from disease networks or from subcellular

location-specific networks had good classification performance

(AUC >0.8 in the SVM classifier, Table 6).

Functions enriched by the unique leader genes from disease

networks and subcellular location-specific networks were also

compared. Some obvious differences have been found. For

example, the cancer-related functions significantly enriched by

unique leader genes from the disease network for stomach

cancer, such as DNA metabolic process and DNA replication,

were not significantly enriched by the results from subcellular

location-specific networks. Meanwhile, functions enriched by

unique leader genes from subcellular location-specific

networks, including cell cycle process and organelle fission,

were not enriched by those from the disease network.

Final cancer leader genes

The aforementioned results verified that the leader genes of

these networks complement each other. Thus, the final cancer

leader genes were all genes identified from subcellular location-

specific networks and from disease networks. A total of 69, 43,

and 64 leader genes were identified for stomach, liver, and colon

cancers, respectively (Figure 6, Supplementary Table S1).

To show the effectiveness of final leader genes, their

performance in classifying cancer and control samples was

evaluated, which was significantly better than that of cancer

genes. This might be the result of the larger size of genes

achieving better classification performance. Therefore, genes

with the same number as cancer genes were randomly

selected from the final leader genes, and their classification

performance was also compared with cancer genes. Final

leader genes and random genes had better performance,

demonstrating the effectiveness of these final leader genes

(Figure 7).

Validation of final leader genes was performed in three

aspects, namely, literature review, expression difference for

gene products, and classification performance for other

datasets. First, a literature review was conducted for the final

leader genes of three cancer types, respectively. Of these genes for

each cancer type, 92.754% (54/69) were verified to be associated

with stomach cancer, 95.349% (41/43) were associated with liver

cancer, and 78.125% (50/64) were associated with colon cancer

(Figure 8).

For all three cancer types, TRIP13 mainly located in the

nucleus was identified as a common leader gene. Zhu et al. (2019)

found that TRIP13 was the most prominent differentially

expressed AAA ATPase gene and a promising candidate

oncogene in liver cancer. In addition, the TRIP13 mRNA level

was upregulated in peripheral blood in colon cancer tissues, thus

TABLE 2 Scale of disease and subcellular location-specific networks for stomach, liver, and colon cancers.

Network Stomach cancer Liver cancer Colon cancer

Number of
nodes

Number of
edges

Number of
nodes

Number of
edges

Number of
nodes

Number of
edges

Disease 1264 13,806 1378 16,478 1383 6896

Subcellular location-specific Cytoplasm 812 7592 862 7984 900 3768

Nucleus 578 6640 663 8440 636 2744

Endoplasmic reticulum 234 1916 246 2152 234 871

Mitochondrion 124 388 152 624 132 208

Golgi apparatus 148 706 148 728 136 375

Centrosome 69 1096 70 1168 66 378

Lysosome 47 140 46 176 56 91

Ribosome 7 28 5 18 16 55

Peroxisome 11 50 20 154 17 33
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FIGURE 3
Degree distribution for part of disease networks and subcellular location-specific networks for stomach, liver, and colon cancers. (A) Disease
network for colon cancer. (B) Cytoplasm-specific network for colon cancer. (C) Disease network for liver cancer. (D) Mitochondrion-specific
network for liver cancer. (E) Disease network for stomach cancer. (F) Nucleus-specific network for stomach cancer.
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making it a potential target for early-stage diagnosis (Soylemez

et al., 2021). Nevertheless, no literature showed its association

with stomach cancer, and further research is needed.

Twenty-two genes were identified as leader genes across two

types of cancers, 16 (72.727%) of which were verified to be

associated with corresponding cancers by the literature review.

TABLE 3 Number of candidate leader genes for stomach, liver, and colon cancers.

Network Stomach cancer Liver cancer Colon cancer

Disease 529 591 604

Subcellular location-specific Cytoplasm 340 377 411

Nucleus 247 298 292

Endoplasmic reticulum 103 102 104

Mitochondrion 65 75 64

Golgi apparatus 73 74 91

Centrosome 24 24 24

Lysosome 19 19 22

Ribosome 3 0 6

Peroxisome 3 8 8

TABLE 4 Classification performance (AUC) of candidate leader genes.

Genes Stomach cancer Liver cancer Colon cancer

Disease network 0.991 0.996 0.999

Subcellular location-specific network Cytoplasm 0.991 0.996 0.999

Nucleus 0.995 0.993 0.999

Endoplasmic reticulum 0.980 0.996 0.998

Mitochondrion 0.987 0.994 0.999

Golgi apparatus 0.985 0.997 0.999

Centrosome 0.895 0.995 0.999

Lysosome 0.977 0.983 0.999

Ribosome 0.846 - 0.969

Peroxisome 0.644 0.947 0.994

Cancer genes 0.951 0.976 0.993

TABLE 5 Leader genes for stomach, liver, and colon cancers.

Network Stomach cancer Liver cancer Colon cancer

Number AUC Number AUC Number AUC

Disease 37 0.982 27 0.987 43 0.999

Subcellular location-specific Cytoplasm 23 0.841 0 - 13 0.994

Nucleus 31 0.894 0 - 6 0.999

Endoplasmic reticulum 4 0.930 0 - 10 0.999

Mitochondrion 7 0.822 9 0.984 0 -

Golgi apparatus 3 0.862 6 0.985 8 0.999

Centrosome 9 0.869 4 0.914 0 -

Peroxisome 0 - 1 0.823 5 0.974
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For example,MSH2 was a leader gene for both stomach and liver

cancers. Germline MSH2 X314_splice variants contributed to

carcinogenesis, prompting the consideration of other surgery

and/or therapy methods for multiple stomach cancer patients

(Wang et al., 2020b). Eso et al. (2016) demonstrated that

inflammation-mediated dysregulation of MSH2 was a

mechanism of genetic alterations during liver cancer

development. RFC3 mutation and loss of RFC3 expression

FIGURE 4
Classification comparison (AUC values) for three types of genes. Leader genes from subcellular location-specific networks are represented by
horizontal lines, and random genes from disease networks and random cancer genes are represented by box plots. Different filled colors represent
different subcellular locations. (A) Stomach cancer, (B) liver cancer, and (C) colon cancer.
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may contribute to the pathogenesis of stomach and colon cancers

by deregulating DNA repair and replication (Kim et al., 2010),

which was concordant with our result that RFC3 was identified as

a leader gene for both stomach and colon cancers. Another gene

HELLS was identified as a leader gene for liver and colon cancers.

HELLS was reported to regulate chromatin remodeling and

FIGURE 5
Functions enriched by cancer genes and leader genes from disease networks and from subcellular location-specific networks. Lines in yellow
represent ancestor functions, and columns in gray represent networks with no final leader genes.

TABLE 6 Classficiation performance of unique leader genes from disease networks and from subcellular location-specific networks.

Network Stomach cancer Liver cancer Colon cancer

Number AUC Number AUC Number AUC

Disease 13 0.973 23 0.986 27 0.999

Subcellular location-specific Cytoplasm 14 0.841 0 - 3 0.984

Nucleus 15 0.911 0 - 4 0.998

Endoplasmic reticulum 2 0.849 0 - 7 0.999

Mitochondrion 7 0.822 7 0.966 0 -

Golgi apparatus 2 0.818 6 0.985 4 0.989

Centrosome 4 0.837 2 0.916 0 -

Peroxisome 0 - 0 - 4 0.970
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epigenetic silencing of multiple tumor suppressor genes in

human liver cancer (Law et al., 2019). Alterations in HELLS

recruitment and function could contribute to the somatic

demethylation of SST1 repeat elements undergone before and/

or during the pathogenesis of colon cancer (Samuelsson et al.,

2017). Previous studies with recent genome-sequencing efforts

have revealed there are a limited number of large-effect genes that

participate in multiple cancer types (Rickel et al., 2017), which

was consistent with our results. These common leader genes

indicated that these three types of digestive system cancer might

be associated with or have some common pathogenesis.

Other genes act as specific leader genes in one cancer type,

and 82.171% of them were found related to a corresponding

cancer type in the literature. Shimura et al. (2020) suggested that

urinary levels of ADAM12 were a significantly independent

diagnostic biomarker for stomach cancer, and a urinary

biomarker panel containing ADAM12 significantly

distinguished between cancer patients and normal samples.

TACC3 promotes stemness and is a potential therapeutic

target in hepatocellular carcinoma (Zhou et al., 2015). GNAO1

was found to be differentially expressed in colon cancer

compared to normal samples and might be a potential colon

cancer biomarker (Hauptman et al., 2019). These specific leader

genes indicated that although these three types of digestive

system cancer might be associated with or have some

common pathogenesis, their pathogenic mechanisms still have

many differences.

Some final leader genes were identified from multiple

subcellular location-specific networks. One final leader gene

for stomach cancer, CDC45, was identified from three

subcellular location-specific networks and the disease network.

Its main subcellular locations were the cytoplasm, nucleus, and

centrosome. Two previous studies have found that CDC45 could

promote some cancers by co-expressing with other genes (Hu

et al., 2019; Lu et al., 2021). One final leader gene for colon cancer,

CLU, was identified from the cytoplasm, endoplasmic reticulum,

Golgi apparatus-specific networks, and the disease network. A

previous study has found that the high mRNA expression level of

CLU in colon cancer patients indicated a poor prognostic

outcome (Artemaki et al., 2020).

Then, to demonstrate the clinical significance of final

leader genes, we performed the analysis with experimental

data from HPA and GEO. Alteration of protein expression

levels for products of these final leader genes in cancer and

normal condition was assessed. Expression levels for proteins

encoded by final leader genes were obtained from the HPA

database, in which 11, 5, and 9 final leader genes were not

found for stomach, liver, and colon cancers, respectively. For

other final leader genes, 39, 34, and 26 final leader genes for

stomach, liver, and colon cancers, respectively, obtained from

the HPA database showed the same up/downregulation

direction as those from TCGA data (some significantly up/

downregulated ones are shown in Figure 9), such as COL1A1,

MCM3, and CAV1. Proteins encoded by HELLS were not

expressed in normal tissues, whereas high expression levels

were observed in both liver and colon cancer tissues. Protein

expression levels of 13, 3, and 8 final leader genes for stomach,

liver, and colon cancers, respectively, also changed between

cancer and normal statuses, while they had an opposite

regulation direction to TCGA.

Furthermore, expression values of final leader genes of three

cancer types were used as features for SVM classifiers to classify

FIGURE 6
Number of final leader genes for stomach, liver, and colon
cancers.

FIGURE 7
Classification performance comparison for three types of
genes. Final leader genes are represented by blue dots, randomly
selected final leader genes (the same number as cancer genes) are
represented by box plots, and cancer genes are represented
by red diamonds.
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samples from independent GEO datasets of different platforms

for further validation. All final leader genes could distinguish

between cancer and normal samples with high performance

(AUC >0.95) (Table 7).

Validation of the aforementioned three aspects exhibited that

part of final leader genes for stomach, liver, and colon cancers

were related to corresponding cancer types. Since all of these

genes could be used to classify different samples, genes without

FIGURE 8
Literature review and subcellular location for final leader genes. Red represents validated and green represents for not validated genes. (A)
Stomach cancer. (B) Liver cancer. (C) Colon cancer.
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FIGURE 9
Images for part of final leader gene immunohistostaining between cancer tissues and normal tissues in the Human Protein Atlas database. (A)
Stomach cancer. (B) Liver cancer. (C) Colon cancer. High, medium, low, or not detected represent the expressional levels of the gene products,
whose difference meant expression difference for gene products.
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literature or altered regulation direction were also disease-related

and could be used as diagnostic biomarkers. Further studies are

still needed.

Moreover, the final leader genes identified by our integrated

procedure were compared with the result genes of methods from

Bailey et al. (2018), Ding et al. (2021), and Liu et al. (2022) according

to the AUC values of SVM classifiers. The results of our genes and

other methods all had good classification performance with no

significant difference in terms of classification performance

(Table 8). However, most genes of final leader genes could not

be obtained by other methods, which were performed from different

aspects, such as CDC45 and CLU. Therefore, the comparison with

several latest methods demonstrated that the final leader genes

identified by our integrated procedure would contribute to future

digestive cancer research studies.

Discussion

Colon, liver, and stomach cancers are among the top five

most common causes of cancer death in the world. In this article,

leader genes for these three digestive system cancer types were

identified by our proposed procedure. First, disease and

subcellular location-specific networks for these three cancer

types were constructed, respectively. Candidate leader genes

were recognized in these networks. Then, candidate leader

genes enriched in cancer hallmarks and disease-related

functions and able to distinguish between cancer and normal

samples were identified as final leader genes.

In addition to classification performance for cancer and

normal samples, the value of cancer genes manifests in

predicting overall survival to reflect tumor progression at the

molecular level, achieve individualized survival predictions, and

guide clinical management. Thus, a univariate Cox regression

analysis was performed to investigate the association between

each final leader gene and the prognosis for patients with survival

and clinical information in TCGA. About half (Hauptman et al.,

2019) of stomach cancer final leader genes, most (65) of the liver

cancer final leader genes, and only two colon cancer final leader

genes were found to be significantly associated with survival (p <
0.05). The reason for some final leader genes identified in this

article not being appropriate for prognosis prediction is probably

that the networks were constructed using DEGs between cancer

and normal samples rather than other prognosis-related genes.

Taking prognosis into consideration and identifying prognosis-

related genes will be a concern in our research in the future.

Unique genes from disease or subcellular location-specific

networks have a good ability to distinguish between cancer and

normal samples (AUC>0.8). However, these unique leader genes

could not be obtained from other networks, which indicated that

the leader genes obtained from different networks have a certain

complementarity. These unique leader genes are involved in the

occurrence of cancer and have their own unique role according to

the networks they are located in. This could provide a certain

reference for understanding the underlying mechanism of each

subcellular region in cancer occurrence at the cellular level. The

final leader genes obtained in this article are the union of the

leader genes obtained from disease and subcellular location-

specific networks. These genes could distinguish between

cancer and normal samples with good performance

(AUC>0.8). Furthermore, literature reviews, protein

expression levels, and independent datasets all verified their

association with corresponding cancer types. These final

leader genes of digestive cancers are vital for understanding

the molecular mechanisms responsible for the onset of these

disorders. Identical genes may indicate the same pathogenesis.

A total of 69, 43, and 64 final leader genes for stomach, liver, and

colon cancer, respectively, were identified in this article. Based on the

Disease Ontology (https://disease-ontology.org/) database, six genes

in the final leader genes of colon cancer were confirmed to be

involved in the occurrence of colon cancer, such as CCND1, whose

overexpression significantly increased the progression of cancer (Li

et al., 2021), and CDKN1A, which is a tumor suppressor of colon

cancer (Halaburková et al., 2017). Similarly, there are 8 genes in the

final result of lung cancer that were confirmed to be involved in

important processes in cancer. For example, DNMT1 interacted

with NEAT1 to regulate cytotoxic T-cell infiltration in lung cancer

via inhibition of the cGAS/STING pathway (Ma et al., 2020). Also,

abnormal expression of CCNE1 is associated with cell cycle

dysfunction (Zheng et al., 2019). Five genes in the final leader

genes of stomach cancer play important roles in cancer. For instance,

MKI67 is a potential indicator to predict the prognosis of patients

with stomach cancer and identify high-risk cases (Guo et al., 2018),

and TYMS may be potential biomarkers for prognosis and

chemotherapy guidance for stomach cancer (Cao et al., 2017).

TABLE 7 Classficiation performance of final leader genes for GEO
datasets.

GEO dataset Platform AUC value

Stomach cancer GSE118916 GPL15207 0.955

Colon cancer GSE44076 GPL13667 0.999

Liver cancer GSE76427 GPL10558 0.952

TABLE 8 Classification performance of the result genes used as
features of SVM of the algorithm in this article and the latest
existing algorithms.

LIHC COAD STAD

Bailey et al 0.994010695 0.998831301 0.940333333

Liu et al 0.995775401 0.931046748 0.917083333

Ding et al 0.88 - 0.730

Final leader genes 0.98973262 0.99898374 0.97925
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Although subcellular location information from databases

was used to construct subcellular location-specific networks in

this article, the subcellular location of genes/proteins might

change or be influenced by many factors, affecting their

functions and leading to diseases, including cancers. For

example, colon cancer has been found related to many

subcellular translocations of proteins (Hauptman et al., 2019).

Therefore, early diagnosis of cancers can rely on not only the

known subcellular location information of genes/proteins but

also the change of subcellular locations between normal and

cancer cells. Further research studies on subcellular location

change will be essential to reveal other cancer leader genes.

Moreover, this is a study based on existing datasets using

bioinformatics. A graph theory-based algorithm was used to

recognize candidate leader genes in this study. In addition to

the leader genes in this article, some genes might not only directly

participate in cancer-related functions but only indirectly affect

the expression of other cancer-related genes through the protein

interaction network. Further extraction and study of these genes

are also important for complementing the leader genes and

understanding the underlying mechanisms of cancer in

protein interaction networks. Our understanding of the roles

these final leader genes play in the genesis of these cancer types is

in its infancy. Some results require further experimental

verification. We hope that there will be other databases and a

large number of experiments to verify the feasibility of these final

leader genes in the future and provide a reliable predictor and

therapeutic target for digestive system cancer patients.

Conclusion

In summary, our study identified leader genes for three digestive

system cancers, stomach, liver, and colon cancers, by application of a

proposed graph theory-based algorithm to human PPI networks

based on subcellular location information and further considering

cancer-related characteristics. These final leader genes were believed

to be an early signal in human carcinogenesis and to be potential

cancer biomarkers. The integrated procedure proposed in this article

for identifying cancer leader genes could be expanded to shed light on

themechanisms, early diagnosis, and treatment of other cancer types.
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