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The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the
sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric
of the human body’s standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human
standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers.
Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent
was calculated. Finally, the results of the proposed approachwere analysed and comparedwith the traditionalmethod, for which the
largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions
can be obtained.Themultivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-
closed conditions.TheMLLE value reflects the overall coordination betweenmultisegmentmovements. Individuals of different ages
can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age.

1. Introduction

An age-related trend of a decline in human standing balance
ability is obvious [1].Themethod of effectively measuring the
body’s balance is significant for rehabilitation and diagnosis
of the diseases of standing balance disorder [2]. In order
to solve the corresponding actual application problems,
some researchers have studied the relevant variables using
mathematical models to simulate the human biomechanical
or control system. Although some researchers have obtained
valuable findings, it is impossible to precisely represent the
human body, which is a complex biological system, by
establishing a mathematical model [2].

Based on chaos theory, the largest Lyapunov exponent
(LLE) can be used to understand the hidden properties of
standing balance. LLE is a typically nonlinear parameter used
to quantify the sensitivity to the initial conditions. It indicates
the average rate of divergence of two neighbouring attractor
trajectories.The existence of a positive exponent for almost all
initial conditions in a bounded dynamic system is a widely

used definition of deterministic chaos. A negative exponent
implies that the orbits approach a common fixed point. Some
researchers reconstructed the phase space of the standing
centre of pressure (COP) data and then calculated the LLE. As
all the LLE values were positive and close to 0, they suggested
that the body’s standing balance system is weakly chaotic
[3, 4].

In previous studies, standing balance is evaluated by the
COP trajectory from a force platform. However, the COP
trajectory has its limitations because the human body is
multisegmental and does not always act as a single inverted
pendulum. Those approaches are not sensitive enough to
investigate the dynamics of the system [5, 6]. By using
multisensor systems, we can acquire information on human
motion types, such as the flexion angle and body shaking
acceleration time series.

In reality, because the time series obtained are of finite
length and have noise mixed in, the phase space reconstruc-
tion of single-dimensional time series cannot always accu-
rately describe the trajectory of the original dynamical system
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[7].There has been a lot of research onmultidimensional time
series phase space reconstruction techniques [8]. Reference
[9] proposed the multivariate largest Lyapunov exponent
(MLLE) calculation method.

In this study, a metric of the human standing balance
ability based on the MLLE is proposed. The dynamic mul-
tivariate data of ankle, knee, and hip can be measured
by three joint angle sensors. Thirty-six normal people of
different ages took part in the test, and themultivariate largest
Lyapunov exponent was calculated from their time series.
In order to statistically analyse and compare the proposed
approach and the traditional method, the single variety LLE
from the COP was also calculated. The results show that
the MLLE is advantaged in differentiating balance under
eyes-closed conditions; sway data are analysed especially
under the eyes-closed condition, and this approach based on
multidimensional time series confers significant advantages.

2. Methodology

2.1. Subjects. Thirty-six normal subjects of different ages
and having no muscle or neurological movement disorders
participated in the experiment.The subjectswere divided into
an elderly group and a young group according to age. The
old group included 16 healthy old residents (8 females and
8 males; age range: 60–78 years; mean age: 65.7 ± 6.1 years;
mean height: 161.6 ± 8.3 cm; average weight: 53.6 ± 9.3 kg);
the young group included 16 healthy students (8 females and
8 males; age range: 22–33 years; mean age: 25.7 ± 3.1 years;
mean height: 165.6 ± 6.8 cm; average weight: 60.6 ± 8.7 kg).

2.2. Sensors System

2.2.1. Electrical Goniometer (Noraxon DDTS). Three goni-
ometers, which are attached on the hip, knee, and ankle joints
(Figure 1), are used to collect the sagittal kinematics of the
joints. The collected signal is sent to personal computer by
Bluetooth.

2.2.2. Force Plate. An OPT400600 (AMTI) is used to obtain
the COP position time series. The subject stands on the force
plate during the experiment.The collectedCOPposition time
series is sent to personal computer through USB.

The sampling frequencies of both sensors are set to
1000Hz. And the sample synchronization of two-sensor
system is via a trigger of rising edge.

2.3. Experimental Method. After measuring and recording
the basic information (height and weight), the angle sensor
was positioned at the ankle, knee, and hip joints. Subjects
stood barefoot on a static platform, with hands naturally at
their sides. Their two feet were apart at their shoulder-width,
and so on (as shown in Figure 1). They were asked not to lift
foot or swing arms, if possible using only the ankle, knee, and
hip joints to adjust their balancing postures. Subjects were
asked to stand upright in eyes-closed (EC) and eyes-open
(EO) condition, respectively, during 100 s.

Wireless Bluetooth
receiving system

Force platform

Sensor ankle

Sensor hip

Sensor knee

Bluetooth to send

Bluetooth to send

Bluetooth to sendCOP data sent
to PC by USB

Bluetooth to receive

PC

Figure 1: Posture of the subject and testing system.The angle sensor
was positioned at the ankle, knee, and hip joints. Subjects stood
barefoot on a force platform, with hands naturally at their sides.
Their two feet were apart at their shoulder-width. Subjects were
asked to stand upright with eyes-closed and eyes-open, respectively,
for 100 s.

3. Metric Algorithm

3.1. Filtering. The time series obtained in this experiment
was finite and noisy. A band pass digital filter with a range
frequency of 0.1–5.0Hz was applied in this study. On the one
hand, no discernable spectral peaks were found above 5Hz
for normal subjects [3, 10]. On the other hand, COP always
migrates in special pattern, which is fast or slow continuous
displacement around the average position of COP [10, 11].
The raw time series captured from the angle sensors and the
force plate were pretreated in the software environment of
MATLAB 2010b. Data of the two typical subjects are shown
in Section 4.

3.2. Reconstruction of Phase Space ofMultivariate System. For
computing the LLE, the first step is to carry out a reasonable
reconstruction of the phase space of the system [12]. The
reconstructed phase space from the dynamical data must
preserve the invariant characteristics of the original unknown
multivariate system. Because the data in experiment is finite
and noisy, choice of delay time is important in the recon-
struction of the attractor. As in the case of one-dimensional
discrete time series, the coordinate delay method is used by
embedding time series variable delay to reconstruct the phase
space of a nonlinear system. Supposing that the human body
is a multivariate system, we then have an 𝑀-dimensional
time series from the electrical goniometer system: {𝑥}𝑁

𝑛=1
=
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where 𝜏
𝑖
and 𝑚

𝑖
(𝑖 = 1, 2, . . . ,𝑀) are the time delays and

the embedding dimensions, respectively. Following Takens’
delay-embedding theorem, there exists in the generic case a
function 𝑓 : R𝑑 → R𝑑 (𝑑 = ∑𝑀
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Time delay 𝜏
𝑖
affects the quality of the reconstructed phase

space. If the selection of each time delay 𝜏
𝑖
is reasonable

and each embedding dimension 𝑚
𝑖
is sufficiently large, the

geometrical characteristics of the strange attractor in the
reconstructed space are equivalent to the original state space
[13].

Using mutual information [14, 15], the time delay of
each variable of the time series can be solved. Based on
information theory, the mutual information between time
series𝑋 and its delay time series𝑋

𝜏
can be derived:
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) by the histogram-

based statistic estimator [15], and 𝜏
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first local minimum point, is regarded as the delay time of
𝑖th variable. By calculating time series data of all subjects,
reasonable reconstructing time lag can be obtained (the
average time lag of 36 subjects is 𝜏ankle = 17 ± 7.3, 𝜏knee =
21 ± 5.8, and 𝜏hip = 19 ± 8.3).

In 1998, Cao et al. proposed a method for obtaining the
embedding dimension𝑚, which was named as the prediction
error method [8]. By using the continuity of 𝑓 in (2), this
method assumes to choose the embedding dimension 𝑚

reasonably; if the points 𝑉
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attractor space are sufficiently close, then𝑥(𝑖, 𝑛+1) and𝑥(𝑖, 𝑗+
1)will be relatively close. We consider the problem of finding
the embedding dimensions of𝑓. We put the determined time
delays vector 𝜏 and randomly chosen embedding dimension
vector 𝑚 into Formula (2). For any given set of dimensions,
the reconstruction phase space results �̃�
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where 𝑍𝑀 = ∏
𝑀

𝐼=1
𝑍 represents all nonnegative integers.

By calculating the time series data of all subjects, reason-
able embedding dimensions 𝑚ankle, 𝑚knee, and 𝑚hip can be
obtained (the average embedding dimensions of 36 subjects
are 𝑚ankle = 4.02 ± 0.94, 𝑚knee = 4.17 ± 0.73, and 𝑚hip =
5.03 ± 0.81). Since the optimal embedding dimension vector
is also unique to one dynamical system, the corresponding
optimal reconstructing parameters sets [𝑚ankle, 𝑚knee, 𝑚hip]
and [𝜏ankle, 𝜏knee, 𝜏hip] should be applied to calculate theMLLE
for the time series of one multivariate dynamical system.

3.3. Determinism Test and Stationarity Test. In reality,
because the time series is noisy, the typically nonlinear
parameter cannot always correctly quantify the dynamics of
the original dynamic system. Therefore, two confirmatory
tests (determinism test and stationarity test) need to be
carried out to prove whether systems of human standing
belong to dynamic system. If the two tests are positive, we
could then proceed to calculate the MLLE of the multivariate
dynamic system [16–18].

The determinism test, which is based on a correct recon-
struction of the attractor, enables us tomeasure average direc-
tional vectors in the coarse-grained embedding space [19].
The embedding space should be coarse-grained into equally
sized boxes. Each pass 𝑙 of the trajectory through the 𝑘th box
can be regarded as a unit vector 𝑒

𝑙
, and their directions are

approximated by the points where the particular pass enters
and leaves the box. Their average directional vector 𝑉

𝑘
of the

unit vector through the 𝑘th box is defined by

𝑉
𝑘
=
1

𝐶

𝐶

∑

𝑝=1

𝑒
𝑙
, (7)

where 𝐶 is the total of all passes in box 𝑘. Therefore, an
approximate direction for the vector field can be obtained by
all occupied boxes. If the data set sources from a deterministic
dynamic process as well as a fine enough coarse-grained
partitioning, the vector 𝑒

𝑙
inside one box would nearly not

cross. Since each crossing will decrease the size of the average
vector𝑉

𝑘
, the average length of all directional vectors will be 1

for a deterministic process, while for a random process it will
be 0.
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Table 1: Average PSD values for COP in AP of all subjects under different eyes conditions. The bands of frequency area are defined as 0.1–
0.5Hz, 0.5–1Hz, 1–1.5Hz, and 1.5–2Hz.

Eyes condition 0.1–0.5Hz 0.5–1.0Hz 1.0–1.5Hz 1.5–2.0Hz
Young Old Young Old Young Old Young Old

EO 760 ± 220∗ 742 ± 280 130 ± 50 124 ± 47∗ 43 ± 18 37 ± 19∗ 36 ± 15 33 ± 14
EC 828 ± 350∗ 793 ± 310 104 ± 32 88 ± 39∗ 37 ± 22 28 ± 8∗ 31 ± 17 29 ± 11
∗The significant difference between different eyes conditions (𝑝 < 0.05).

In order to verify whether the studied sway is from a
stationarity process, stationarity test is evaluated [16, 20].
To perform this method, the time series (20000 points) is
divided into ℎ (ℎ = 100) short nonoverlapping segments;
therefore, a cross-prediction error (𝛿

𝑖𝑗
) statistic is calculated

for ℎ2 possible combinations. We obtain a very sensitive
statistic capable of detecting minute changes in dynamics
and thus a very powerful probe for stationarity. If 𝛿

𝑖𝑗
of

each combination is not much larger than the average,
the examined time series can be considered to be from a
stationary system.

In this section, the data set of joints and COP in AP from
a typical subject is evaluated by the determinism test and
stationarity test. The determinism factors are 0.8385 (time
series of ankle angle, 𝜏 = 20 and 𝑚 = 3), 0.8202 (time series
of knee angle, 𝜏 = 22 and 𝑚 = 4), 0.8330 (time series of
hip angle, 𝜏 = 24 and 𝑚 = 3), and 0.8612 (time series of
hip angle, 𝜏 = 30 and 𝑚 = 4). The pertained to embedding
spaces are shown in Figures 2(a), 2(c), 2(e), and 2(g). This
clearly confirms the deterministic nature of human balance
system. The average cross-prediction error for all possible
combinations of 𝑖 and 𝑗 is given in Figures 2(b), 2(d), 2(f),
and 2(h).The average values of all 𝛿

𝑖𝑗
are 0.1839, 0.2215, 0.1398,

and 0.8951 (for the time series of hip, knee, ankle, and COP in
AP, resp.). Since each maximal cross-prediction error is not
significantly larger than the average, the studied time series
are clearly stationary.

3.4. Algorithm of Multivariate LLE. Reference [9] proposed
the multivariate largest Lyapunov exponent (MLLE) cal-
culation method. In the multivariate phase space, suppos-
ing that each point 𝑉

𝑗
has a nearest neighbor point 𝑉

𝑗
,

thus, there must be a short separation between these two
points in order to ensure that the two points are running
along different tracks. The separation interval is defined as
𝑤 = max(𝑇ankle, 𝑇knee, 𝑇hip), and 𝑇ankle, 𝑇knee, 𝑇hip denotes the
mean period of each time series, and a unique𝑤 is set at 1000
in this work. The distance between 𝑉

𝑗
and 𝑉

𝑗
is defined as

𝑑
𝑗
(0):

𝑑
𝑗 (0) = min 𝑉𝑗 − 𝑉𝑗


,


𝑗 − 𝑗


> 𝑤. (8)

For each point 𝑉
𝑗
in the phase space, we can calculate the

distance to its nearest neighbour point after the evolution of
the 𝑘 steps:

𝑑
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, (9)
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logarithm of both sides, we obtain ln 𝑑
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Δ𝑡). By least squares, the curve ⟨ln 𝑑
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(𝑘)⟩ versus 𝑘 ⋅ Δ𝑡 can be

fitted, which is the LLE value:
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, (10)

where ℎ is the number of 𝑑
𝑗
(𝑘).

4. Results

4.1. Power Spectral Density Analysis. In order to compare the
methodwith the traditionalmethod, a power spectral density
(PSD) analysis was carried out on each time series of the
subjects. The results of two typical subjects are plotted in
Figure 3, where ten seconds of the four typical traces obtained
for COP and the sagittal kinematics is on the left, together
with the corresponding PSD on the right.

A one-way analysis of variance (ANOVA) was conducted
by SPSS 19.0 (SPSS, Inc., Chicago, IL) to determine if there
was statistical significance between different groups under
the EOor EC condition.The level of significant differencewas
set at 𝑝 < 0.05.

The average PSD of COP signal in different frequency
bands, which were defined as 0.1–0.5Hz, 0.5–1Hz, 1–1.5Hz,
and 1.5–2Hz, were analysed. The old group showed a smaller
average PSD than that of the young group under the EC
condition in all frequency bands. However, there is no signif-
icant difference in average PSD (𝑝 > 0.05, Table 1). The eyes
closing increases the average PSD values of frequency bands
0.1–0.5Hz and 1–1.5Hz in the old group (𝑝 < 0.05, Table 1).
In the young group, PSD values under the EC condition are
higher than that under the EO condition (Table 1). However,
the variances of PSD under the EC condition in both groups
are much larger, except the average PSD values of frequency
bands 0.1–0.5Hz (𝑝 < 0.05, Table 1). In addition, there is no
significant difference in average PSD between both groups in
the two conditions (𝑝 > 0.05, Table 1).

4.2. Results of MLLE Values. With the experimental data,
multijointed body MLLE values were obtained by Function
(10). Those values included the results under EO condition
and EC condition. In order to carry out a comparison with
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Figure 2:The results of the determinism test and stationarity test for the acceleration time series of a typical subject. (a) and (b) are the results
of the hip, (c) and (d) are the results of the knee, (e) and (f) are the results of the ankle, and (g) and (h) are the results of COP in AP. (a), (c),
(e), and (g) are the embedding space, and (b), (d), (f), and (h) are the average cross-prediction error for all the possible combinations of 𝑖 and
𝑗. The average values of all 𝛿

𝑖𝑗
are 0.1839, 0.2215, 0.1398, and 0.8951 (for the time series of hip, knee, ankle, and COP in AP, resp.).
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Figure 3: Continued.
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Figure 3: The results of PSD analysis. A PSD analysis of the frequency domain was carried out. The results of one typical young subject and
one typical old subject are plotted, where ten seconds of the four typical traces obtained for COP and the sagittal kinematics is on the left,
together with the corresponding PSD on the right. (a), (c), (e), (g), (i), (k), (m), and (o) are the time series and (b), (d), (f), (h), (j), (l), (n),
and (p) are their corresponding PSD plots.

previous conclusions obtained from one-dimensional COP
data, the method presented in [6, 21] was performed. All of
the human standing balance ability measurement results are
shown in Figure 4. A one-way analysis of variance (ANOVA)
was conducted to determine if there was statistical signifi-
cance between different groups under EO or EC condition in
MLLE values or LLE values.

In Figure 4, the abscissa is the actual age of the subjects,
and the vertical axis is the dimensionless exponent; the
exponents LLEEC and LLEEO denote the numerical metrics
based on theCOPdata in EC andEOconditions, respectively;
MLLEEC andMLLEEO denote the numerical metric based on
the joint angle data in EC and EO conditions, respectively.

The numerical metric of four methods is fitted with a linear
curve.

The subjects of different ages are mainly concentrated in
two regions of the abscissa. According to the visual and age
conditions, there is a significant difference in the distributions
of the two metrics’ values. Intuitively, a greater slope of the
fitted curve indicates that the metric has a bigger advantage
in distinguishing different individuals in the age group. The
fitted curves in Figure 4 show the effect of each metric:
MLLEEC > MLLEEO > LLEEC > LLEEO. There is significant
difference between two groups in EC conditions by themetric
MLLEEC (𝑝 < 0.05).
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data in CE andOE conditions, respectively; MLLEEC andMLLEEO
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In Figure 5, the results were statistically analysed by a
boxplot: (a) the statistical results in EO condition; (b) the
statistical results in EC condition. In EO condition, although
the values of LLE and MLLE can distinguish individuals
into two groups of different ages, there are more evident
differences in the MLLE mean between the groups, which
indicate that the MLLE algorithm has better distinguishing
effects. Meanwhile, the LLE values for the young group have
greater volatility, which indicates that the algorithm based
on COP data does not give a reliable evaluation for some
individuals.

In the boxplots of Figure 5(b), mean values for most
subjects in the EC condition increase compared with those
values in the EO condition, which is good for distinguishing
the different subjects. Also, we can see that the upper and
lower quartiles are enlarged, which indicates that the mean
difference between the groups is still large but does not affect
the distinction between the two groups.

5. Discussion

The LLE based on the COP time series has been discussed
as a data analysis indicator by many researchers [1, 3, 21].
However, in practical problems, it cannot guarantee that any
given one-dimensional time series is sufficient to reconstruct

the dynamical characteristics of chaotic systems [8, 9]. There
is a complicated coupling relationship in the body structure.
Stable standing balance depends on the ability of CNS to
control all body segments. This capability seems not to be
fully expressed by the motion data of a single segment, so
the one joint angle or COP data can only contain partially
dynamical characteristics of chaotic systems. In order to
compensate for the lack of a one-dimensional time series
LLE, the approach based on multidimensional time series is
proposed. Theoretically, the metric of MLLE represents the
special average of the𝑀-dimensional movement of attractor
trajectories of different body segments.

In Table 1, the ANOVA results indicate that vision plays
an important role in maintaining the balance. As well as in
Figures 4 and 5, it can be seen that the divergence metrics
(LLE and MLLE) of the attractor show a significant increase.
Both trends indicate that the human proprioceptive system
is reduced with the increment of age, which is the same as
the result ofJiang and Hidenori [22, 23], and maintaining
body balance is more dependent on visual information
feedback.

An MLLE value has a higher accuracy to distinguish
subjects from different age groups under the EC condition.
Although there is an extreme outlying MLLE value in the
boxplot, the overall mean and variance of the results clearly
illustrate the effectiveness of this approach. CNS uses various
control strategies to reduce the complexity of posture control
[24]. Different selections of control strategies diversify the
individuals’ dynamic process. This may be the reason for the
failure to describe the characteristic of the subject.

The results in Table 1 illustrate that the traditional PSD
method is not satisfactory to express intergroup differences.
This may be caused by many reasons. The pretreatment
method for the original data, such as different filter param-
eters of the pass band, will impact the value of PSD, and the
results of frequency domain analysis are apparently impacted
by the high-pass cutoff frequency. If the experimental data are
recorded for a long time, several types of human movement
COP would be found [10, 11]. However, in this research, the
experimental data were recorded for only 100 seconds. A
low-frequency COP sway trace was generally considered as
low-frequency errors from the sensor. In order to ensure the
stability of the data, a low cutoff frequency of 0.1 Hz was
applied.

The Lyapunov exponent spectrum of the COP signal has
been applied to characterize the human standing activity as
chaotic and as an aid to identify arrhythmias. The minimal
distance to define these two points of the phase space is 𝑤,
the range of which has been given in Section 3.4. In order
to obtain a uniform evaluation and to avoid the interference
of the evaluation of different parameters, 𝑤 was set at 1000,
which was within a reasonable range. Different working
parameters of 𝑤 may lead to different conclusions about
the same data [25]. If we change the 𝑤 value, the metric
would be inaccurate or even fail to assess human standing
ability. A sensitivity analysis of parameter 𝑤 will be carried
out by using the Lyapunov exponent spectrum in our future
work.
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Figure 5: The results of the boxplot. (a) Results in EO condition. (b) Results in EC condition. The results were statistically analysed by a
boxplot: (a) the statistical results in the EO condition; (b) the statistical results in EC condition.

6. Conclusion

Chaos theory has been used to explain complicated temporal
behavior in many research areas. In this study, human stand-
ing balance ability is quantified by MLLE. Compared with
the existing method, the metric based on multivariate largest
Lyapunov exponent has a higher degree of differentiation in
differentiating balance in eyes-closed conditions. The MLLE
value reflects the overall coordination betweenmultisegment
movements. Individuals of different ages can be distinguished
by their MLLE values to some extent. The stability of human
standing has reduced trend with the increment of age.
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