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The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the
protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the
experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the
MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB.
Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel
MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated
using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on
the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the
low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand
positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by
the new semiempirical quantum-chemical PM7 method.

1. Introduction

Protein-ligand binding free energy calculation is one of the
key problems for molecular modeling in the computer-aided
structural based drug design [1–4]. However, the accuracy of
such calculations better than 1 kcal/mol has not been reached
yet for a randomly selected target protein [1]. Only with
such high accuracy of the protein-ligand binding free energy
calculations is it possible to perform the rational inhibitor
optimization on the basis of computer modeling and to
advance fromweak inhibitors to lead compounds (hit to lead)
followed by the lead optimization to increase the binding
affinity and to improve the selectivity of new inhibitors.
Though the most accurate calculations of the protein-ligand
binding free energy can be done with molecular dynamic
(MD) simulations [5], other approaches of the protein-ligand
binding energy calculations, especially docking, are also in
demand. Docking is the molecular modeling method based
on the search of the ligand binding pose in the target protein

active site and the subsequent calculation of the score, which
allows the protein-ligand binding free energy to be estimated.
Although appreciable progress in improving accuracy of
protein-ligand binding free energy calculations with docking
is visible in recent years, for example, see [6, 7], the success
rate, but not high accuracy, is still a measure of the docking
success in ligand positioning as well as in the ligand bind-
ing energy calculation [7]. It is not surprising because the
accuracy of such calculations depends on many interrelated
factors in a complicated manner. Those factors are the force
field describing inter- and intramolecular interactions, the
solvent (water) model, the target protein and ligand models,
method and approximations of the free energy calculation,
and algorithms of calculations and computing resources
concentrated on solving the docking problem for one protein-
ligand pair, and so forth.

In the frame of the docking procedure, the ligand binding
pose is generally believed to be the global minimum of
the protein-ligand potential energy function (the docking
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paradigm). Thus, the ligand positioning is the global mini-
mum search problem for the energy target function, depend-
ing on the degrees of freedom of the given protein-ligand sys-
tem. Due to thermal motion in the thermodynamic equilib-
rium state, the ligand continuously jumps from one binding
pose to another and for binding energy estimation we have to
find not only the energy global minimum but also at least the
low-energy part of the whole local minima spectrum.

The target function is defined by the choice of either the
force field or the quantum-chemicalmethod describing inter-
and intramolecular interactions and also by solvent, target
protein, and ligand models. Obviously, high accuracy of the
correct ligand positioning is the necessary condition for high
accuracy of the protein-ligand binding energy calculation
and the latter is vitally important for high reliability of dock-
ing programs and high effectiveness of their application in
drugs design. So, the adequate choice of the target function
is extremely important for high accuracy of docking.

There is a wide variety of docking programs, such as
AutoDock [8, 9], FlexX [10], FlexE [11], ICM [12, 13], DOCK
[7, 14], GOLD [15], SOL [16–18], TTDock [19], BUDE [20],
and Surflex-Dock [21] with their own target functions and the
global minimum search algorithms for the ligand position-
ing. The situation is aggravated by the fact that most of the
target functions used in these docking programs in addition
to force field parameters have usually some extra parameters
fitted for better predictions at a certain training set of proteins
and ligands. These fitting parameters have no physical sense,
and their usage makes it difficult to estimate a priori the
ligand positioning accuracy as well as the accuracy of the
protein-ligand binding energy calculations for a given force
field.

In this work, we evaluated 5 target functions for ligand-
protein docking on the base of the MMFF94 force field
(Merck molecular force field) [22] in vacuum, on the base of
the PM7 quantum-chemical semiempirical method in vac-
uum [23] and also taking into account several implicit solvent
models: PCM [24, 25], COSMO [26], and SGB [27, 28].These
target functions were used without any fitting parameters for
the same proteins and ligands structural models. As a global
optimization algorithm, we chose the simple Monte Carlo
search method to perform the comprehensive search of the
protein-ligand low-energy local minima.This search method
was implemented in the novel FLM (Find Local Minima)
docking program [29]. The FLM program is too slow to
compete with existing docking programs but it can find all
low-energy local minima in a given part of the protein-ligand
phase space if large enough computer resources are available.

The detailed examination of the low-energy minima
spectra of a set of protein-ligand complexes has been fulfilled
due to use of large supercomputer resources concentrated for
this task at the Lomonosov supercomputer of Lomonosov
Moscow State University.

2. Methods

2.1. The FLM Program. The FLM program is the MPI (mes-
sage passing interface) based program, developed to find low-
energy minima of the ligand-protein system. During the

minima search, the protein is considered as rigid and the
ligand is fully flexible.

2.1.1. Minima Search Algorithm. The FLM program finds
local energy minima of the protein-ligand complex by the
simple Monte Carlo search algorithm: multiple local opti-
mizations are performed starting from random initial ligand
positions.The random initial ligand position is obtained by a
random continuous ligand deformation and rotation-transla-
tion:

(i) The ligand geometrical center is moved to a random
point in the search area. The geometrical center of a
molecule is defined here as its center of gravity with
all atomic masses equal to unity. The search area is
defined as the sphere with the center at the ligand
native position geometrical center andwith the radius
of 8 Å. The ligand native position is the position of
the ligand in the crystallized protein-ligand complex
structure.The search area sphere covers the active site
of the target protein.

(ii) The ligand is rotated as a whole around a random axis
passing through the ligand center by a random angle
from [−𝜋, 𝜋].

(iii) The ligand torsions are rotated by a random angle
from [−𝜋, 𝜋] (torsion is a single acyclic bond of the
ligand).

Not all random system conformations are further opti-
mized. At first, atom-atom distances are checked: atoms
from each ligand-ligand or protein-ligand atom pair must be
separated bymore than 0.5 Å. Otherwise, this random system
conformation is rejected. Local optimization is performed by
the L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-
Shanno) [30, 31] algorithm without any restrictions on the
positions of the ligand atoms in the search area. All Cartesian
coordinates of ligand atoms are moved during optimization.
Each local optimization stopped when the maximal compo-
nent of the optimized target function gradient decreased to
the value 10−5 kcal/mol/Å. If the ligand center moves out of
the search area after the optimization, the respective local
minimum is rejected.

After successful local optimization, the energy minimum
can be recalculated taking into account interaction with
solvent; see Section 2.2.

A set of computed different local minima with the lowest
potential energies is being kept in operative memory during
FLM calculations. A new computed local minimum is inc-
luded into the set, if it differs from any minimum of the set,
and the minimum with the highest energy is excluded from
this set. Twominima are different if RMSD (rootmean square
deviation) between them exceeds 0.1 Å. The RMSD is calcu-
lated over the ligand heavy atomswithout taking into account
possible chemical symmetry. The minima search for each
protein-ligand complex was conducted during the given time
interval: 3 hours. This way of the program halt was used due
to some peculiarities of our supercomputer queuing system.
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2.1.2. Parallelization Algorithm and Efficiency. The local min-
ima search is parallelized: independent local optimizations
of different initial ligand conformations are continuously
performed in parallel by different MPI processes. The opti-
mization results are collected in the master process to form
the low-energy minima set.The current collected minima set
is repeatedly sent back from the master process to other pro-
cesses, so other processes can select only promising minima
to send.

Calculations were done on the “Lomonosov” supercom-
puter [32]: 1024 nodes (8192 CPUs) were utilized for each run
of the FLM program and about 20 000CPU ∗ hours per a
protein-ligand complex and about 100CPU ∗ hours per a free
ligand were consumed during these calculations. Total time
for obtaining all minima sets was about several million CPU
∗ hours (including time of postprocessing minima energies
recalculations with the other programs: MCBHSOLV and
MOPAC). Parallelization efficiency can be estimated via
number of finished optimizations in a fixed time. Table 1 pre-
sents amount of “useful” calculations in a fixed time of 3
hours (number of finished local optimizations) depending on
number of used nodes for the 1DWCprotein-ligand complex.

As we can see in Table 1, the FLM program performance
scales linearly with the increasing number of working pro-
cesses. So, the chosen simple Monte Carlo search method for
the global optimization is justified in terms of scalability.

2.2. Minima Obtaining Protocol. The set of 16 protein-ligand
complexes with experimentally known structures and bind-
ing constants was chosen from the Protein Data Bank (PDB)
[33] for low-energy local minima search:

(i) 4 complexes of the CHK1 (checkpoint kinase 1) pro-
tein (4FT0, 4FT9, 4FSW, and 4FTA).

(ii) 2 complexes of the ERK2 (extracellular signal-regula-
ted kinase 2) protein (4FV5 and 4FV6).

(iii) 2 complexes of the thrombin protein (1DWC and
1TOM).

(iv) 6 complexes of the urokinase protein (1C5Y, 1F5L,
1O3P, 1SQO, 1VJ9, and 1VJA).

(v) 2 complexes of the factor Xa protein (2P94 and
3CEN).

These protein-ligand complexes were chosen, because
they are available in PDB with good resolution, and the lig-
ands variety covers a wide range from small and rigid ligands
(4FSW ligand: 26 atoms including hydrogen atoms, 0 tor-
sions) to big and flexible ones (1VJ9 ligand: 74 atoms includ-
ing hydrogen atoms, 19 torsions). Also, the locally optimized
ligand native position has RMSD from the original native
pose less than 1.5 Å for all these 16 complexes, both for the
optimization with the MMFF94 in vacuo target function and
for the optimization with the PM7 in vacuo target function.
That means that the locally optimized ligand native position
still can represent the native ligand pose.

Protein structures were prepared by elimination of all
“HETATM” records (i.e., the records corresponding to atoms,

Table 1: Parallelization efficiency of the FLM program: number
of finished optimizations (𝑤) in 3 hours depending on number of
nodes (𝑁), in other words, on number of working processes 𝑛 =

8 ∗ 𝑁 − 1.

𝑁 𝑛 𝑤 𝑤/𝑛

1 7 329 47
32 255 11567 45
1024 8191 379885 46

ions, and molecules which are not part of the protein struc-
ture) from the PDB files of the complexes, and then hydrogen
atoms were added by the original APLITE program [16] to
the protein structures. The APLITE program adds hydrogen
atoms according to the standard amino acid protonation
states at pH = 7. Histidine protonation state is chosen by
comparing of electrochemical potentials for hydrogen atom
at “HD1” and “HE2” positions. Optimization of hydrogen
atoms positions is performed with MMFF94 force field after
the hydrogen atoms preplacement. During this optimization,
all rotation variants of torsionally moveable hydrogen atoms
(e.g., hydroxyl hydrogen atom from tyrosine) are tested. The
heavy atoms optimization is not performed.

Ligands were also taken from the PDB files. Hydrogen
atoms were added to the ligands by Avogadro program [34].
The heavy atoms optimization is not performed for the initial
ligand conformation.The table with 2D ligand structures and
information about their charges and numbers of atoms and
torsions is presented in the Supplementary Material available
online at http://dx.doi.org/10.1155/2015/126858.

The target protein was considered as rigid, and the ligand
was considered as totally flexible and moveable in the search
area (see Section 2.1.1) around its native position during the
minima search.

The first set of the low-energy local minima was obtained
by the FLM program with the target function from the
MMFF94 force field [22]: the local optimization of the
random initial ligand position in the search area and the local
minimum selection into the minima set were made on the
base of the protein-ligand MMFF94 energy value in vacuo.
This set is designated as “{1}MMFF94”. Then, these local
minima were recalculated for the same protein-ligand
geometries with the MMFF94 force field target function
taking into account the interaction with water solvent by the
MCBHSOLV program [35] in the frame of the PCM implicit
model. This low-energy local minima set is designated as
“{1}MMFF94 + PCM”. The third local minima set was
obtained from the “{1}MMFF94” set by the protein-ligand
energy local optimization in the frame of the semiempirical
quantum-chemical PM7 method [23] with the help of the
MOPACprogram [36], and thisminima set was designated as
“{1}PM7”. Finally, energies of all minima from the “{1}PM7”
set were recalculated for the same geometries by the PM7
method with the COSMO implicit water solvent model [26]
implemented in the MOPAC program, and this minima set
was designated as “{1}PM7 + COSMO”.
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Further, the second option of the low-energy minima
search was performed by the FLM program for all 16 protein-
ligand complexes as follows: the selection of local minima
into the low-energy minima set was made on the base of the
MMFF94 force field taking into account water in the frame
of the PCM implicit solvent model. In other words, the local
energy optimization of the initial random ligand position in
the search area was carried out in the frame of the MMFF94
force field in vacuo as previously, but the selection into the
low-energy local minima set was made on the base of the
minima energies recalculated in the final optimization point
taking into account the protein-ligand complex interaction
with water solvent in the frame of the PCM model [35]. This
set was designated as “{2}MMFF94+PCM”. Energies of these
minima have been recalculated with the MMFF94 force field
in vacuo (the minima set “{2}MMFF94”) and also taking into
account interaction of protein-ligand complexes with water
in the frame of the SGB [27] implicit solvent model (the set
“{2}MMFF94+ SGB”) implemented in the DISOLV program
[16, 28].

In other words, the 1st group of the minima sets has been
obtained on the base of MMFF94 in vacuo target function
local minima search: “{1}MMFF94” and “{1}MMFF94 +

PCM”, with one ensemble of configurations, and “{1}PM7”
and “{1}PM7 +COSMO”, with another ensemble of configu-
rations. The 2nd group of the minima sets has been obtained
on the base of the local minima search with the MMFF94
target function taking into account the PCM solvent model:
“{2}MMFF94”, “{2}MMFF94 + PCM”, and “{2}MMFF94 +

SGB”, all with the same minima configurations.
Implicit solvent models PCM and SGB are implemented

in the DISOLV program, and it has been shown that the
sufficiently high accuracy (<1 kcal/mol) of the protein-ligand
complex interaction with solvent could be achieved only for
a sufficiently small (≤0.1–0.3 Å) step of the triangulation grid
on the SES (Solvent Excluded Surface) surface [28]. However,
the PCM solving in the DISOLV program is too slow to be
used in the docking process. Nevertheless, the MCBHSOLV
program [35] has been developed recently on the base of
the multicharge method for approximation of large dense
matrices [37] generated by triangulation of themolecular SES
and by discretization of polarized charges on it. This new
implementation of the PCM model is about 300 times faster
than the DISOLV program without the accuracy loss. Just
the MCBHSOLV program has been used for obtaining the
minima sets “{1}MMFF94+PCM” and “{2}MMFF94+PCM”
with the triangulation grid steps 0.2 Å and 0.3 Å, respectively,
and in the latter case all selected minima energies have
been recalculated with the triangulation grid step 0.15 Å. The
minima set “{2}MMFF94 + SGB” has been obtained with the
DISOLV program using the SGB method (the triangulation
grid step was also 0.15 Å), which was not so accurate as PCM
[28] but it is several times faster than MCBHSOLV [35].

Parameters of the FLM minima search were chosen in
such a way that 105–106 test local optimizations were per-
formed for one protein-ligand complex and only 103–104 dif-
ferent minima (without taking into account chemical sym-
metry) were chosen into the low-energy minima set. Among

these low-energyminimaup to several dozen oneswere in the
interval 5kT from the lowest energy minimum, for example,
46minima for the 1VJA complex, and only those gave a signif-
icant contribution to the protein-ligand binding free energy.

In addition to the low-energy minima found by the FLM
program, we considered also the locally optimized ligand
poses obtainedwith the same target functions local optimiza-
tion but from the experimentally observed native ligand ini-
tial positions. Just these optimized native ligands were com-
pared with the respective low-energy minima found by the
FLM program.

2.3. Binding Free Energy Calculation. The protein-ligand
binding free energy Δ𝐺bind is calculated as Δ𝐺bind = 𝐺(PL) −
𝐺(P) − 𝐺(L), where 𝐺(PL), 𝐺(P), and 𝐺(L) are free energies
of the protein-ligand complex, the free protein, and the free
ligand, respectively. Proteins are considered as rigid and free
energies of protein-ligand complexes and free ligands are
calculated in the multiwell approximation which is similar to
the “miningminima”method of Chen et al. [6].The potential
energy of a molecular system is approximated by a set of
independent parabolic wells in these methods. The multiwell
approximation differs from the “mining minima” method
mainly by more uniform and exhaustive low-energy local
minima search by the FLM program instead of configuration
space exploration along a combination of low-frequency
modes as it was made by the “mining minima” method; also
we used the Cartesian coordinates instead of the bond-angle-
torsion coordinates.The configuration integral of amolecular
system 𝑍 (thus, the free energy 𝐺 = −𝑘𝑇 ln(𝑍)) is approxi-
mated by a sum of contributions from different energy wells
𝑍
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𝑍
𝑖

𝑡

= 𝑒 ∗
(2𝜋𝑀𝑘𝑇)

3/2

ℎ3𝜌
, (3)

where 𝑒 is Euler’s constant,𝑀 is the overallmass of themolec-
ular system, 𝜌 is the concentration (the reciprocal volume per
one molecule; in the case of standard free energy calculation
𝜌 = 1mol/L = 6.02∗ 1026 units/m3), and ℎ is Planck’s constant:
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here 𝐼
𝐴

, 𝐼
𝐵

, and 𝐼
𝐶

are principal moments of inertia of the
molecule.

Natural frequencies for protein-ligand complexes and
ligands were calculated through respective Hessian matrices.
Proteins were considered as rigid, and no frequencies were
calculated for them.

3. Results and Discussion

3.1. Minima Analysis. In principle, the Monte Carlo search
algorithm is able to find the truly global minimum at the
expense of huge computational resources. If we want to treat
the result of theMonte Carlo search as global minimum, then
this minimum, at least, must have energy below or equal to
the energy of any arbitrary ligand position. The ligand native
position is believed to be the global minimum of the protein-
ligand system potential energy. So, the optimized ligand
native position can be used as good upper estimate of the
global minimum energy. We can check whether the Monte
Carlo search algorithm has found the minimum with the
energy below or equal to the energy of the optimized ligand
native position. We checked this statement for both of the
the FLM program run results, that is, for “{1}MMFF94” and
“{2}MMFF94+PCM”minima sets, and this statement is true
in all cases except the 1VJA case from the “{2}MMFF94 +

PCM” minima set. So, we can adopt that the Monte Carlo
search parameters were good enough, and the found minima
are the real low-energy minima. The exceptional case of the
1VJA complex, where ligand has 61 atoms and 17 torsions, is a
hard system for the global minimum search, and the time of
the minima search was not long enough to reveal the global
minimum.

Reliability of the low-energy minima search for a given
protein-ligand complex can be verified as follows. Let us
analyze the update rate of the local minima set (the set of
different local minima with the lowest energies) during “test
optimizations.”The local minima set is updated, when a new
local minimum after a “test optimization” is accepted into it.
If the local minima set is not updated for a long time, then the
local minima search is likely thorough. Two examples of the
local minima set update rate are shown in Figure 1, where the
dependences of the number of updates on the total number
of the performed “test optimizations” are presented for two
protein-ligand complexes. First example, the protein-ligand
complex 1SQO where the ligand has 34 atoms and 4 torsions,
is a simple system for the local minima search. Second
example, the protein-ligand complex 1VJA where the ligand
has 61 atoms and 17 torsions, is a hard system for the local
minima search. As we can see fromFigure 1, the localminima
set for the 1SQO complex almost reached the saturation after
4 ∗ 105 “test optimizations”, but the local minima set for
the 1VJA complex was far from the saturation after 4 ∗ 105
“test optimizations.” So, it indicates that the completeminima
search for the protein-ligand complex with a big flexible lig-
and requires more than 4 ∗ 105 “test optimizations.”

It is also interesting to analyze the global minimum
update rate.The global minimum of the 1SQO protein-ligand
complex was found almost immediately, after 661 done “test
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Figure 1: The dependence of the local minima set updates number
(𝑁
𝑢

) on the total number of the performed “test optimizations”
(𝑁
𝑜

) is presented for 1SQO (black lower line) and 1VJA (red higher
line) protein-ligand complexes. The saturation means that 𝑁

𝑢

is
not changed with the increase of 𝑁

𝑜

. The target function was the
MMFF94 energy in vacuum.

optimizations,” and it has not changed till the end. But the
global minimum of the 1VJA complex was updated for the
last time only after 64205 done “test optimizations.” If we did
more than 4 ∗ 105 “test optimizations,” we would probably
find a deeper global minimum of the 1VJA complex.

Let us introduce some notations. The minima set of the
given protein-ligand complex with energies calculated by
a given target function can be sorted by their energy in
ascending order; that is, every minimum gets its own index
equal to its number in this sorted list of minima. The lowest
energy minimum has index equal to 1. When we include the
energy of the locally optimized native ligand in this sorted
list, it also will get a certain index and we will designate
it as “Index of Native” or “IN.” When we do not include
the optimized native ligand in this sorted minima list, some
minima from the list might be close in space to the native
(nonoptimized) ligand position. It is possible even that one
minimum found by the FLM program will coincide with the
optimized native ligand position. We designate the index of
the minimum having RMSD from the nonoptimized native
ligand position less than 2 Å as “Index of Near Native” or
“INN.” If there are several suchminimawhich are close to the
native position, we will choose the minimum with the lowest
energy (with the lowest index) as “INN.” The extreme values
of these indexes could be interpreted as follows:

(i) IN = 1 and INN = 1: the target function is valid for lig-
and positioning, and the minima search is thorough.

(ii) IN = 1 and INN≫ 1: the minima search is most likely
to be incomplete.When the optimized native position
has the lowest energy, some near-native positions will
certainly have also low energies.

(iii) IN≫ 1 and INN= 1: there are likely to be experimental
inaccuracies in the native ligand position. The target
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Table 2: IN/INN values for all tested 16 protein-ligand complexes and all 7 minima sets. “inf” for INmeans that all (1024 minima) calculated
low-energy minima have energy below the energy of the optimized native ligand. “inf” for INNmeans that all the low-energy minima found
by FLM have RMSD from the native position above 2 Å.

PDB ID {1}MMFF94 {1}MMFF94 + PCM {1}PM7 {1}PM7 + COSMO {2}MMFF94 {2}MMFF94 + PCM {2}MMFF94 + SGB
4FT0 36/20 8/7 37/12 1/1 180/99 164/159 8/6
4FT9 45/28 1/1 25/6 1/1 194/125 3/1 1/1
4FSW 5/5 6/6 40/40 12/13 110/102 134/140 21/3
4FTA inf/inf 4/inf 379/inf 1/inf inf/inf 186/187 97/97
4FV5 204/131 3/3 253/194 2/1 186/134 6/3 5/5
4FV6 inf/inf 1/inf 49/inf 1/inf 86/289 3/68 1/24
1DWC inf/670 245/25 689/661 158/141 245/114 250/35 107/8
1TOM inf/inf 13/inf inf/inf 1/inf inf/inf 13/4 7/1
1C5Y 1/1 2/1 7/1 2/1 1/1 2/1 1/1
1F5L 1/1 1/1 43/16 69/30 1/1 10/1 1/1
1O3P 20/18 21/1 5/1 3/1 69/62 274/1 130/2
1SQO 1/1 2/1 1/1 1/1 1/1 54/1 5/1
1VJ9 46/1 86/51 32/1 26/8 6/1 11/18 10/14
1VJA 42/3 7/1 7/4 6/4 4/49 1/2 1/1
2P94 36/2 19/1 23/6 7/1 22/1 35/1 21/1
3CEN 96/1 18/1 13/1 3/1 90/1 35/1 13/1

function is most likely valid for ligand positioning,
and the minima search is thorough.

(iv) IN≫ 1 and INN≫ 1: the target function is invalid for
ligand positioning.

The “IN” and “INN” values for all 16 complexes and for 7
target functions are presented in Table 2.

We can see in Table 2 that the protein-ligand MMFF94
energy in vacuo is the valid target function for ligand posi-
tioning strictly speaking only for few protein-ligand com-
plexes: 1C5Y, 1F5L, and 1SQO (see column “{1}MMFF94”).
Only for these three complexes (20% out of 16 complexes;
this percentage was the same when we expanded the test set
up to 30 complexes) the optimized native ligand position has
the lowest energy among all energy minima found by the
FLM program (IN = 1), and the position of the minimum
with the lowest energy (the global minimum of the target
function) found by the FLM program is close to the ligand
native pose (INN = 1). For all other 13 complexes, the energy
of optimized native ligand position is higher (IN > 1) than
energies of some minima of the target function (MMFF94
in vacuo) and the difference between the optimized native
ligand position and the global energy minimum can be
several kcal/mol (4.7 kcal/mol for the 1VJA complex) or as
large as 91.2 kcal/mol for the 4FTA complex. Nevertheless,
there is a low-energy minimum of the target function close
to the native ligand pose for many of these complexes
(INN = 1, 2, . . . , 28, 131). We can definitely conclude that the
MMFF94 in vacuo target function is invalid only for ligand
positioning for four complexes (4FTA, 4FV6, 1DWC, and
1TOM): the energy of the optimized native ligand position
is higher than energies of many target function local minima
(IN ≫ 1) and there are no target function local minima close
to the native pose (INN≫ 1). Except for these four “bad” com-
plexes, for all other complexes there is a local minimum of

the target function (MMFF94 in vacuo) which is situated near
the ligandnative pose and its index is not larger that≈102.This
means that if we find 102–103 local minima of the target func-
tion (MMFF94 in vacuo) there will be ligand poses among
them which are situated near the native ligand pose or near
the optimized native ligand pose. So, for the accurate calcula-
tions of the protein-ligand binding free energywe have to take
into account the whole spectrum of the target function low-
energy local minima. In this case, the local energy minimum
(or several minima) near the native ligand pose or near the
optimized native ligand position will be included in the cal-
culation of the protein-ligand binding energy formany (for 13
complexes of 16) of the considered protein-ligand complexes.

We can see in Table 2, comparing “{1}MMFF94” and
“{1}MMFF94 + PCM” columns, that taking solvent into
account in the frame of the PCM method can improve the
target function quality for most complexes, except for the
1VJ9 case. For example, the optimized native ligand position
for the 4FV6 complex has too high energy (IN = inf) with the
MMFF94 in vacuo target function and all found by FLM low-
energy minima are far from the native position (INN = inf).
However, the energy recalculation for the same minima with
the “{1}MMFF94 + PCM” target function put the optimized
native ligand position into the global energy minimum (IN =
1). In other words, the “{1}MMFF94+PCM” target function is
more adequate for ligand positioning in 4FV6 complex than
the “{1}MMFF94” target function does. Similarly for 4FV5
complex, transition from the “{1}MMFF94” in vacuo target
function to “{1}MMFF94 + PCM” one results in the decrease
of IN/INN indexes from 204/131 to 3/3.

Comparing the “{1}PM7” and “{1}PM7 + COSMO” col-
umns,we can see similar target function quality improvement
when the COSMO solvationmodel is taken into account.The
semiempirical PM7 method in vacuo is not noticeably better
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Figure 2: The distribution of the RMSD of the low-energy minima from the nonoptimized native ligand positions for 16 complexes for
“{1}MMFF94” and “{1}MMFF94 + PCM” sets (a) and for “{2}MMFF94”, “{2}MMFF94 + PCM”, and “{2}MMFF94 + SGB” sets (b). The
lowest RMSD values are presented for each complex in the insets.

than the MMFF94 force field in vacuo for ligand positioning:
indexes IN/INN have similar values for both target functions
(cf. “{1}PM7” and “{1}MMFF94” columns).

The second independent minima search with the FLM
program (“{2}MMFF94”, “{2}MMFF94 + PCM”, and
“{2}MMFF94 + SGB” columns) confirms the significance
of taking into account solvent during minima selection
and ranking; indexes IN/INN are noticeable lower for
“{2}MMFF94 + PCM” and “{2}MMFF94 + SGB” target
functions than for any other target functions presented in
Table 2.

Also, comparing “{2}MMFF94 + PCM” and
“{2}MMFF94 + SGB” columns in Table 2, we can conclude
that the SGB method improves positioning quality better
than the PCM method (e.g., IN/INN for 4FT0 decrease
from 164/159 to 8/6 with changing the target function from
“{2}MMFF94+PCM” to “{2}MMFF94+SGB”), although the
PCMmethod is more sophisticated [28]. We explain this fact
by relative smoothness of the SGB method comparing with
PCM.The latter depends on the surface triangulation and the
multicharge large matrixes approximation [35] which can be
different for close local minima and demandsmany iterations
to reach self-consistency. However, the SGB method is based
on direct calculations and for close minima it must give close
energies of protein-ligand complex interaction with solvent.

Values of minima RMSD from the native (crystallized)
ligand position are given in Figure 2 for all 1024 low-energy
minima for each of all 16 complexes. Figure 2(a) presents the
RMSDof conformations obtained for the “{1}MMFF94” (and

also for “{1}MMFF94 + PCM”) set, and Figure 2(b) presents
the RMSD of conformations obtained for the “{2}MMFF94+

PCM” (and also for “{2}MMFF94” and “{2}MMFF94+SGB”)
set. Local optimization from the initial “{1}MMFF94” con-
formations carried out by the PM7 method and resulting in
“{1}PM7” and “{1}PM7+COSMO” sets did not change signif-
icantly the conformations of the ligands: RMSD between the
initial “{1}MMFF94” and PM7 optimized poses were in the
range ≈0.1–1.0 Å. All low-energy minima were ranked by the
RMSD value and the relationships between the RMSD and
order number are presented in Figure 2. It may be remarked
that the lowest RMSD values are less than 2 Å for all com-
plexes (excluding the 4FTA, 4FV6, and 1TOM complexes
from the “{1}MMFF94” set).

The comparison of the RMSDvalues obtained by the FLM
program with those obtained by other docking programs
(SOL [16–18] and Autodock [8, 9]) shows that SOL docking
with standard parameters (and 99 runs) gives 13 complexes
out of 16 which have the smallest RMSD <2 Å, and Autodock
docking with standard parameters (and 100 runs) gives 14
complexes out of 16 which have the smallest RMSD <2 Å.
Thus, all these programs can find well enough the position
near the native ligand position, but this position does not
always correspond to the energy global minimum, which is
defined by the energy target function.

All low-energy minima found by FLM can be grouped
into different clusters with respect to RMSD between the lig-
and conformations. Two conformations belong to one cluster
if RMSD between them is less than 1.4 Å. Numbers of clusters
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Figure 3: The number of clusters for each protein-ligand complex.

Table 3: The indices of the clusters where the native ligand confor-
mation is located. The clusters are sorted here by lowest energies of
their conformations in ascending order; that is, the cluster contain-
ing the minimum with the lowest protein-ligand energy has index
equal to 1. “inf” means that the native position does not fall into any
cluster.

Complex ID {1}MMFF94 {2}MMFF94 + PCM
Cluster number with native pose

4FT0 10 139
4FT9 29 1
4FSW 4 12
4FTA inf 59
4FV5 10 3
4FV6 inf 23
1DWC 1 14
1TOM inf 2
1C5Y 1 1
1F5L 1 1
1O3P 2 1
1SQO 1 1
1VJ9 1 inf
1VJA 2 2
2P94 2 1
3CEN 1 inf

for each protein-ligand complex are presented in Figure 3 and
Table 3.

We can see that, for some complexes, 1TOM and 1O3P,
all minima are divided into only several groups, but for
many other complexes the number of clusters varies from
several dozen to several hundred. Also, change from the
energy in vacuum ({1}MMFF94) to the energy in solvent

({2}MMFF94 + PCM) during the minima search results in
considerable increase in number of clusters for most of the
complexes; that is, the diversity of low-energyminima config-
urations increases. Table 3 shows that the native ligand con-
figuration does not always belong to the cluster with the
lowest minima energies.

3.2.TheBinding Free EnergyComponents. As the initial appro-
ximation for the binding energy, it is possible to take the
difference between potential energy of the protein-ligand
complex global minimum, potential energy of the free ligand
global minimum, and potential energy of the free protein.
These values for the MMFF94 force field in vacuum together
with several additive corrections as well as the total binding
energies (calculated in the multiwell approximation and
experimental ones) are shown in Table 4.

As we can see from Table 4, the potential energy compo-
nent of the binding energy is themost variable and important.
The binding energy corrections, corresponding to trans-
lational and rotational degrees of freedom, are practically
constant for all protein-ligand complexes, and binding energy
corrections, corresponding to vibration degrees of freedom
andmultipleminima accounting, are relatively small.Thereby,
the protein-ligand binding free energy is primarily deter-
mined by the potential energies of the global minima. We
would like to emphasize that the energy of the ligand defor-
mation from its free conformation to the bound one (the lig-
and strain energy) is automatically taken into account in our
calculations, and its value is in the range from several kcal/
mol to several dozen kcal/mol for tested complexes. This
strain energy is neglected in the score of most docking pro-
grams.

3.3. Calculated and Experimental Binding Energies for Dif-
ferent Energy Functions. Finally, we compared experimental
and calculated binding energies, and the results are presented
in Table 5. For comparison of our results with those obtained
through more conventional approaches and real docking
programs, we also presented in Table 5 scoring functions
obtained with docking programs SOL [16–18] and Autodock
[8, 9]. The Autodock program is widely used for docking and
the SOL program was successfully used recently for devel-
opment of new thrombin [40], urokinase [41], and factor Xa
inhibitors [42].

Experimental binding free energy Δ𝐺exp were obtained
from the respective binding constants 𝐾

𝑖

by (5), where 𝐾
𝑖

are substituted in mol/L units and temperature 𝑇 is equal to
310 K:

Δ𝐺exp = 𝑘𝑇 ∗ ln (𝐾
𝑖

) . (5)

The “{1}MMFF94”, “{1}MMFF94 + PCM”, “{1}PM7”, and
“{1}PM7 + COSMO” and “{2}MMFF94”, “{2}MMFF94 +

PCM”, and “{2}MMFF94 + SGB” energies were calculated as
a difference between potential energies of the protein-ligand
complex (in the global minimum), free ligand (in the global
minimum), and free protein (in its initial conformation,
because it is considered as rigid).
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Table 4:The protein-ligand binding energy components: potential energies and additive corrections to it. Δ𝐸 is the binding potential energy
from the MMFF94 force field in vacuum, calculated by the global minima of the protein-ligand complex and the free ligand with energy
of the free protein. Δ𝐺] is the correction due to vibration degrees of freedom calculated with respective configuration integral 𝑍] (2). Δ𝐺

𝑡

and Δ𝐺
𝑟

are corrections due to translational and rotational degrees of freedom calculated with configuration integrals 𝑍
𝑡

(3) and 𝑍
𝑟

(4),
respectively. Corrections Δ𝐺], Δ𝐺

𝑡

, and Δ𝐺
𝑟

include both enthalpy and entropy components. Δ𝐺all is the correction for multiple minima
accounting; it is calculated as a difference between binding free energy Δ𝐺bind, calculated with multiple minima accounting, and binding free
energy, calculated with only the global minima of the complex and the ligand. Δ𝐺exp is the experimental binding energy calculated from the
binding constant.

Protein PDBID Δ𝐺exp, kcal/mol Δ𝐺bind, kcal/mol Δ𝐸, kcal/mol Δ𝐺], kcal/mol Δ𝐺
𝑡

, kcal/mol Δ𝐺
𝑟

, kcal/mol Δ𝐺all, kcal/mol

CHK1

4FT0 −10.1 82.2 63.8 −3.9 10.6 10.3 1.4
4FT9 −10.9 −48.5 −63.7 −5.0 10.4 9.9 −0.1
4FSW −6.8 −44.2 −60.2 −3.7 10.3 9.4 0.0
4FTA −9.8 −9.8 −30.4 −0.2 10.6 10.1 0.1

ERK2 4FV5 −10.9 −79.3 −102.1 0.5 10.7 10.6 1.0
4FV6 −12.3 −74.6 −96.8 −0.4 10.8 10.7 1.1

Thrombin 1DWC −10.5 −128.5 −144.9 −4.2 10.9 10.5 0.2
1TOM −11.8 −224.1 −248.7 2.7 10.7 10.5 0.7

Urokinase

1C5Y −6.0 −16.3 −34.8 −0.7 10.0 8.7 0.5
1F5L −7.5 34.7 17.4 −2.3 10.2 9.3 0.1
1O3P −9.4 23.8 3.9 −2.0 10.6 10.2 1.1
1SQO −10.6 −4.6 −24.8 −0.4 10.3 9.6 0.7
1VJ9 −10.7 −25.9 −50.7 2.4 11.0 10.8 0.6
1VJA −10.9 −31.0 −51.1 −2.1 10.9 10.5 0.8

Factor Xa 2P94 −13.0 −42.0 −68.2 −5.5 10.9 10.8 0.0
3CEN −11.7 −49.2 −69.5 −1.9 10.9 10.6 0.7

Table 5: Binding energies (in kcal/mol) calculated as 𝐸
1

0

(PL) − 𝐸(P) − 𝐸
1

0

(L), where 𝐸
1

0

(PL) and 𝐸
1

0

(L) are energies of the protein-ligand
complex and the free ligand in their global minima, respectively, and 𝐸(P) is energy of the protein in its configuration prepared as it is
described in Section 2. The global energies of complexes and ligands were taken from respective minima sets (see Section 2.2). Δ𝐺exp is
the experimental binding energy calculated from the binding constant. “Energy range” is the difference between the highest and the lowest
energies among all 16 protein-ligand complexes. “Energy correlation” is Pearson correlation coefficient between experimental and calculated
binding energies. Autodock and SOL scoring functions are also given to compare (in kcal/mol).

PDB ID Δ𝐺exp {1}MMFF94 {1}MMFF94
+ PCM {1}PM7 {1}PM7 +

COSMO {2}MMFF94 {2}MMFF94
+ PCM

{2}MMFF94
+ SGB Sol Score Autodock

score
4FT0 −10.1 63.84 0.04 −39.48 −48.67 58.64 −0.08 3.03 −5.20 −7.15
4FT9 −10.9 −63.72 −9.98 −111.64 −48.77 −64.83 −10.05 −16.34 −4.29 −4.9
4FSW −6.8 −60.20 −5.89 −108.48 −46.41 −60.19 −6.53 −7.72 −4.78 −6.08
4FTA −9.8 −30.36 −5.44 −126.54 −58.61 −30.35 −15.04 −14.05 −4.35 −4.7
4FV5 −10.9 −102.01 −7.42 −168.44 −54.37 −102.01 −4.64 −11.16 −6.05 −8.25
4FV6 −12.3 −96.92 −7.75 −164.91 −72.68 −89.27 −13.42 −13.87 −5.26 −5.6
1DWC −10.5 −146.16 −33.43 −194.69 −70.12 −144.88 −32.93 −36.77 −2.86 −4.24
1TOM −11.8 −248.29 −49.66 −258.10 −73.67 −248.28 −49.89 −51.59 −8.11 −7.88
1C5Y −6.0 −34.83 −79.15 −33.81 −52.84 −34.83 −79.34 −80.85 −6.83 −5.28
1F5L −7.5 17.40 −52.26 −29.98 −81.95 17.40 −52.54 −52.88 −4.41 −6.62
1O3P −9.4 3.59 −40.30 −32.53 −64.60 3.59 −40.59 −42.54 −6.95 −8.43
1SQO −10.6 −24.78 −50.42 −58.75 −69.56 −24.78 −51.30 −52.22 −6.75 −8.68
1VJ9 −10.7 −49.57 −50.03 −91.69 −76.58 −49.20 −43.77 −49.18 −4.53 −3.17
1VJA −10.9 −49.87 −51.91 −95.43 −81.40 −47.97 −38.86 −41.85 −4.47 −1.82
2P94 −13.0 −68.20 −15.74 −153.53 −68.94 −67.28 −15.79 −20.87 −6.53 −13.09
3CEN −11.7 −69.48 −18.17 −133.10 −63.12 −69.47 −18.43 −26.62 −5.48 −11.68
Energy range 7.0 312 79.2 228 35.5 306.93 79.26 83.89 5.25 11.27
Energy correlation 0.41 −0.36 0.60 0.33 0.40 −0.39 −0.35 0.09 0.13
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The energy ranges (difference between the highest and
the lowest energies among the 16 protein-ligand complexes)
and coefficients of correlation with the experimental energies
are also shown in Table 5. We can see that calculated binding
energies differ strongly from the experimental values for all
investigated energy functions (excluding the SOL and the
Autodock scoring functions where the fitting coefficients are
used). Nevertheless, we can see noticeable improvement in
the values of the energy ranges when solvent is taken into
account and quantum-chemical PM7 method is used instead
of MMFF94 force field. Among seven variants of potential
energy function, the “PM7 + COSMO” energy function has
the most realistic energy range 35.5 kcal/mol to be compared
with 7 kcal/mol for the experimental binding energy range.

Also we can see that the correlation coefficients are not
close to 1, and for the “{1}MMFF94 + PCM”, “{2}MMFF94 +

PCM”, and “{2}MMFF94 + SGB” cases the coefficient is even
negative. But among seven variants of the potential energy
function, the “PM7” energy function has the best correlation
coefficient with experimental energies. We should emphasize
that these results have been obtained by using the general pur-
pose methods (MMFF94, PCM, PM7, and COSMO) without
any fitting coefficients to the special case of the protein-ligand
interactions.

Table 5 also presents the SOL and the Autodock scoring
functions, their energy ranges, and their correlations with
the experiment binding energies. Although the energy ranges
of Autodock and SOL scoring functions are closer to the
range of the experimental binding energies than the ranges
of binding energies calculated by the FLM program with
different target functions, the correlation coefficients of SOL
and Autodock scoring functions with experimental values
are much smaller than ones calculated with the FLM pro-
gram (“{1}MMFF94”, “{1}PM7”, “{1}PM7 + COSMO”, and
“{2}MMFF94”). This may follow from the fact that SOL and
Autodock docking programs are aimed to virtual screening
of large databases of compounds and many simplifications
are used in these programs (e.g., simplified force field and
absence of the ligand deformation energy in the scoring func-
tion).

4. Conclusions

The results of our investigations show that the docking target
function on the base of MMFF94 force field in vacuo can be
used for discovery of native or near native ligand positions for
some protein-ligand complexes by finding the global energy
minimum of the target function, for example, for five com-
plexes of 16 in Table 2 either IN = 1 or INN = 1 (there were 14
such caseswhenwe expanded the test set up to 30 complexes).
If a set of low-energy minima of this target function is taken
into account (not only the global minimum), we find the near
native ligand position formuchmore complexes; for example,
the number of such complexes in Table 2 will be 13 out of 16
for the set of 1024 low-energy minima. We can conclude that
for the calculation of the protein-ligand binding free energy, it
is better to take into account not only the global energy min-
imum but a whole set, for example, 1024, of the low-energy
local minima. In this case, we take into consideration near

native ligand positions formost of the complexes investigated
in the present research. Nevertheless for some complexes
(4FTA, 4FV6, and 1TOM in Table 2) it is impossible to find
near native ligand positions among 1024 local minima of
the target function (MMFF94 in vacuo): indexes IN/INN are
inf/inf. However, the rational target function improvement
has been demonstrated without use of any fitting parameters:
the ligand positioning is better for the target function of
the more sophisticated physical model, that is, taking into
account the implicit solvent model. Also improvement of the
ligand positioning occurs whenMMFF94 force field is substi-
tuted by the semiempirical quantum-chemical method PM7.
It is apparent from Table 2 that indexes IN and INN decrease
for the more sophisticated models. It is also obvious from
Table 2 that usage of more sophisticated target function at the
stage of low-energy minima selection results in better ligand
positioning: the lowest IN and INN indexes are in the two
rightmost columns in Table 2 and there are no “inf” labels at
all in these two columns.

The best target functions of all target functions examined
in this research are the protein-ligand potential energy in the
frame of MMFF94 force field [22] with the implicit solvent
SGB model [27, 28] and the potential energy in the frame of
the semiempirical PM7method [23] with the COSMO impli-
cit solvent model.

The results of the present investigation show that further
improvement of the docking target function is required until
its global minimum coincides with or is near the optimized
native ligand position for a broad set of protein-ligand com-
plexes (IN = 1, INN = 1).

Calculated in the multiwell approximation binding free
energies differ strongly from experimental binding energies
for all investigated energy functions. More realistic binding
energies were obtained for new quantum-chemical semiem-
pirical PM7 method and taking into account water in the
implicit COSMO model. The main contribution to the bind-
ing free energy is given by potential energies of the protein,
ligand (in the global minimum), and their complex (in the
global minimum) with solvent taken into account. Present
investigations show that for the increase of docking accuracy
for ligand positioning as well as for binding energy calcu-
lation it is necessary to take into account interaction of the
protein, ligand, and their complex with water solvent and also
to look for or create force field better than MMFF94 and/or
to carry out docking with quantum-chemical methods, for
example, with new semiempirical PM7 method.

The correlation coefficients between the experimental
binding energies and the energies calculated by the FLM
program are still far from unity, but for some target functions
they are much larger than correlation coefficients between
SOL or Autodock scoring functions and the experimental
binding energies.

On the other hand, the improvement of the docking
results for a given force field and a solvent model can be exp-
ected if we take into account themobility of the protein atoms
which locate close to the ligand (first of all, protein hydrogen
atoms whose positions are not determined experimentally).
Such a facility is included in the FLM program, and we hope
to carry out respective investigations in the near future.



Advances in Bioinformatics 11

Despite the fact that parallel computing is used now
mainly for docking of large ligand databases (virtual screen-
ing), the employment of advanced and more sophisticated
models demands larger computational resources and increa-
ses importance of parallel algorithms and their acceleration
[20] for docking of a single ligand.

Relying on the present investigations, we guess that cur-
rent supercomputers are powerful enough to perform a com-
prehensive search of protein-ligand low-energy minima in
the frame of existing two-body force fields with implicit sol-
vent models and without usage of preliminary calculated
energy grids for flexible ligands with up to about 20 internal
torsions. The respective search programs (e.g., our program
FLM) is a tool to evaluate adequacy of force fields and solvent
models for ligand docking into the active sites of the target
proteins.
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