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Abstract: G-quadruplexes (G4s) are noncanonical forms of DNA involved in many key genome
functions. Here, we exploited UV Resonance Raman scattering to simultaneously explore the
vibrational behavior of a human telomeric G4 (Tel22) and its aqueous solvent as the biomolecule
underwent thermal melting. We found that the OH stretching band, related to the local hydrogen-
bonded network of a water molecule, was in strict relation with the vibrational features of the
G4 structure as a function of temperature. In particular, the modifications to the tetrahedral ordering
of the water network were strongly coupled to the DNA rearrangements, showing changes in
temperature that mirrored the multi-step melting process of Tel22. The comparison between circular
dichroism and Raman results supported this view. The present findings provide novel insights into
the impact of the molecular environment on G4 conformation. Improving current knowledge on the
solvent structural properties will also contribute to a better understanding of the role played by water
arrangement in the complexation of G4s with ligands.

Keywords: G-quadruplex; hydrogen bonding; resonant Raman spectroscopy; circular dichroism;
hydration water

1. Introduction

In molecular biology, guanine-rich sequences of nucleic acids can fold into four-
stranded, non-canonical secondary structures called G-quadruplexes (G4s). G4s were
initially considered as a rather rare structural novelty, but recent discoveries suggest
their involvement in key genome functions, such as transcription, replication, epigenetic
regulation, and genome stability, with the following numerous connections to cancer
biology [1–5]. As a whole, these discoveries stimulated a huge body of research to probe
G4 functional mechanisms and the consequent opportunities for therapeutic intervention.

The G-tetrad, a cyclic Hoogsteen hydrogen-bonding arrangement of four guanines
with each other, is the building block of G4s. The quadruplex stem is composed of stacked
G-tetrads with phosphodiester backbones delimiting cavities called grooves. The formation
of G4s is driven by monovalent cations such as Na+ and K+; hence physiological buffers
favor their assembly [6,7]. G4s can be unimolecular or intermolecular and can adopt a
wide diversity of topologies arising from different combinations of strand direction, as well
as sequence length and loop (the chains linking the strands) composition. A systematic
classification of G4 topologies can be made by exploiting the glycosidic bond angle of the
intervening bases, which can assume either an anti or a syn arrangement [8]. Different
combinations of these units, i.e., anti–anti, syn–anti, anti–syn, or syn–syn, give rise to
parallel and anti-parallel strand orientations [9–11]. Hybrid conformations composed
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of mixtures of parallel and anti-parallel strands are also allowed [12,13], and several
classifications have been reported in the literature [13,14].

The G4 assembling process is mainly governed by non-covalent interactions of indi-
vidual nucleosides and their aqueous environment. A key contribution to the structural
stability is given by the hydrophobic stacking interactions between guanine bases [15]. The
stacking directionality and orientation are affected by the backbone steric constraints and
electrostatic interactions involving oligonucleotides and their environment. The latter is a
crucial point to be explored, as it has been demonstrated that waters that are in close contact
with biomolecules (i.e., hydration water layers) play a key role in the folding, stability, and
function. On the other hand, due to mutual solute–solvent interactions, both the structural
organization and mobility of solvent in close proximity to biological macromolecules differ
from bulk solvent [16–21].

In the case of duplex DNA, one of the most well-known hydration-dependent effects
is the structural transition between the A- and B-form [22]. It is also acknowledged
that changes in the hydration shell may alter the DNA shape in a sequence-dependent
way [23–29]. Unlike duplex DNA, which is characterized by two wide and narrow grooves,
G4s have four grooves, each held together by phosphodiester chains. Depending on
the G4 topology, these grooves have varying widths. In parallel quadruplexes, they are
all of medium extent, while hybrid and anti-parallel structures may have three types of
grooves: wide, medium, and narrow. Host water molecules can fill both the narrow and
medium grooves, but it was recently shown that only the narrow one can accommodate
extended filiform networks of water molecules [30]. These water channels, by analogy with
the water arrangement in the minor groove regions of duplex DNA, were referred to as
spines. It follows that anti-parallel and hybrid structures can host more stable water spine
structures than parallel ones. Moreover, there is evidence that, under crowded conditions,
G4s are more mobile than DNA duplexes and more prone to changing their conformational
state [31–33]. Such a structural polymorphism of G4s was found to be strictly regulated by
their state of hydration [34–39].

Less studied is the relation between the polymorphic nature of quadruplexes and
their solvation attitude in diluted aqueous solutions. In these conditions, the different
folds can be separated by relatively small energy barriers, and the switching between
distinct conformers may occur fairly easily under the action of external parameters, such
as temperature, pressure, and ionic strength [6]. Additionally, the unfolding pathway
generally occurs through intermediate stages, in response to even small environmental
variations [40,41]. In this context, the connection between the rearrangement of the H-bond
network in G4 solutions and the G4 conformational switching upon unfolding deserves
to be studied. An unrivaled technique suitable for this purpose is Ultra Violet Resonance
Raman (UVRR) spectroscopy [42], in which the UV excitation wavelength is in resonance
with DNA electronic transition [43–46]. This provides both chromophore selectivity and
special sensitivity for label-free recognition of a chromophore moiety of the molecule
even at biologically relevant micromolar concentrations. The Raman signal is, in fact,
selectively enhanced by a few to several orders of magnitude. Such an enhancement allows
for the investigation at the same time of the vibrational markers of the G4 and of the
solvent, making it possible to combine information from Raman experiments with those
from techniques especially suited for highly diluted systems. One of these techniques is
circular dichroism (CD), which is an excellent tool for rapid determination of the secondary
structure and folding properties of biomolecules.

Here, we show how UVRR and CD spectroscopies can be effectively combined to
provide insights into structural and molecular aspects of the interaction between G4s and
their environment upon thermal unfolding. Among the G4 families, we focused on the
archetypal human telomeric sequence d[AG3(TTAG3)3], consisting of 22 nucleobases (Tel22),
that, in a K+ environment and at ambient temperature, is formed by a mixture of hybrid and
anti-parallel topologies [47,48]. Several techniques have already been employed to study
the structure and thermodynamics of Tel22 solutions [49–53]. Singular value decomposition
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(SVD) analysis [53–56] applied to experimental data revealed that Tel22 undergoes melting
through a multi-state process, i.e., by populating different intermediate states in a sequential
manner. In this study, we used a multivariate method to analyze both solute and solvent
UVRR fingerprint regions, and then related vibrational features with secondary structure
characteristics elucidated by CD.

2. Results
2.1. A Broad Band UVRR Data Treatment

The potential of UVRR spectroscopy is here exploited by using the excitation wave-
length λexc = 220 nm so as to separately enhance the chromophore-specific vibrations from
a dG, dT, and dA basis [57,58], simultaneously acquiring the intense broad OH stretching
region in the same spectrum. The whole collection of UVRR spectra of the Tel22 water
solution, over the huge wavenumber range (1000–4000 cm−1), as a function of temperature
is represented in Figure 1, where two main regions are separately enhanced: the first (I)
over the 1300–1800 cm−1 range, mainly due to the Tel22 vibrations, and the second (II)
over the 3000–3900 cm−1 range, related to the intramolecular structure of the H-bond
network. The strength and novelty of the present work, therefore, resides in its ability to
(1) jointly follow the trend of the vibrational features of both the solute and the solvent
in a wide spectral profile with the high selectivity of the UVRR probe, and (2) to apply a
bidimensional analysis over the Raman fingerprint regions to investigate whether or not
those vibrations are correlated as the temperature is increased.
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Figure 1. UVRR spectra of the Tel22 K+ water solution at 45 µM as a function of temperature. Colors
from blue to red indicate the Raman profiles recorded from 26 ◦C to 90 ◦C with steps of 4 ◦C.

The very first step of the analysis was to apply the SVD method to the UVRR spectra
of the Tel22 aqueous solution shown in Figure 1. SVD is a model-free analytical tool widely
used to analyze data where the experimental response is a function of two quantities,
temperature and wavenumber in our case (further details are given in the Supplementary
Materials). Application of SVD to the present three-dimensional UVRR data provides
two sets of eigenvectors, one depending on temperature and the other on wavenumber
(Figure S1 in the Supplementary Materials). By using an acceptance/rejection criterion on
eigenvectors and eigenvalues, it is then possible to determine the number of significant
spectral species, Ns, able to reproduce the significant changes in the experimental profiles
with the increasing temperature.

To determine such a number, the autocorrelation of the eigenvectors, as well as the
magnitude and the percentage variance of the eigenvalues must be screened by referring to
a cut-off level defined on a statistical basis [55]. The SVD protocol applied to the UVRR data
of Figure 1 in the region I (selected range: 1390–1800 cm−1), over the measured temperature
range, showed evidence for three spectroscopically distinct species (Ns = 3, Table S1 in
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the Supplementary Materials). The significant vectors were then globally fit by iterative
nonlinear least-squares to the analytical expressions for thermal unfolding corresponding to
the two-step sequential pathway F
 I
 U (Figure S2). The global equation (Equation (3), in
Materials and Methods) is based on a van’t Hoff analysis of multiple thermal transitions [56],
in analogy with change in state functions of proteins. These SVD results, complementing
those obtained using a 250 nm excitation wavelength [51] where vibrational bands were
associated with different UV absorbing chromophores [58], support the evidence that the
molecular vibrations related to stretches of ring bonds of a nucleotide basis experience a
multistep thermal path towards unfolding.

After this first step, we progressed with the SVD analysis over the OH stretching
region (zone II, Figure 1), mainly attributed to water vibrations. Remarkably, we found
that the F-I-U pattern is still valid, suggesting a connection between solvent and solute
vibrational modes. We thus proceeded with a global fit of the two sets of data (I and II)
using Equation (3) and by sharing the Tm1 and the Tm2 parameters. Through this, we
were able to identify the transitional states in correspondence with the pre-melting and
melting temperatures equal to Tm1 (44 ◦C) and Tm2 (76 ◦C), respectively. The whole set of
thermodynamic parameters is reported in Table S2 in the Supplementary Materials. The
significant species and relative concentrations are shown in Figure 2a–d.
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Figure 2. Results of the SVD analysis on UVRR data of Figure 1. Left panels: spectra of significant
species for Tel22 (a) and OH stretching region (c). Right panels: relative concentration of significant
species as function of temperature for Tel22 (b) and OH stretching region (d). Blue, lilac and red
colors correspond to folded, intermediate and unfolded states, respectively.

2.2. The Fingerprint Region of Tel22 Cromophores

The unprecedented use of SVD analysis in such a wide spectral range points to the
important finding that there is a coupling between solute and solvent vibrations upon
thermal unfolding. To provide further insights on this hypothesis, we performed a quanti-
tative analysis of the UVRR spectra, based on literature reporting the assignment of Raman
bands [51,53,57,59–61]. The vibrational features of zone I were fitted by using a set of
Gaussian functions (Figure 3a), bringing attention to the temperature evolution of the peaks
centered at about 1482, 1575 and 1666 cm−1 (Figure 3a), attributed to out of phase stretches
of the dT ring bonds coupled to the C2 carbonyls and to C5H3, to dA N6H scissoring
(and, to a lesser extent, to stretching of the triene system C2 = N3-C4 = C5-N7 = C8 of dG)
and to the stretching of carbonyl moieties of dG residues (C6 = O), respectively [58,62].
This analysis shows a downshift in the ν1482 group band vibration on increases in the
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temperature, compatible with a change in the C5-H bond strength, and an upshift in the
ν1575 and ν1680 vibrations, which implies a strengthening variation in the N6-H and C6 = O
bonds, respectively, as conformational changes proceeded. These trends (Figure S3) are
also consistent with a loss of H-bonding as the temperature was increased.
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Figure 3. Panel (a) UVRR spectra of the Tel22 K+ water solution at 45 µM at ambient temperature
compared to the single and cumulative fitting curves. Panels (b) refer to the plot of ν1482 vs. νOH1

(left and bottom) and of ν1482 vs. νOH2 (right and top), panels (c) to the plot of ν1575 vs. νOH1 (left
and bottom) and of ν1575 vs. νOH2 (right and top), and finally panels (d) to the plot of ν1670 vs. νOH1

(left and bottom) and of ν1670 vs. νOH2 (right and top). The red lines represent a fit to a straight
line. The corresponding Pearson’s r values were −0.75 and −0.85 for data in the panel (b), 0.89 and
0.87 for the data in the panel (c), and 0.83 and 0.84 for the data in the panel (d); 95% confidence (green)
and prediction (blue) bands are also shown for sake of completeness. The data set indicates a good
correlation between G4 and OH vibrations.

Given the low concentration of Tel22 in the buffer solution (Tel22 45 µM), to re-
produce the UVRR profile of the solution over zone II, we used the same methodology
adopted for water in diluted solutions [63]. In these cases, the Raman profile can be rep-
resented by means of three distinct contributions, centered at about νOH1 ≈ 3200 cm−1,
νOH2 ≈ 3450 cm−1, and νOH3 ≈ 3600 cm−1 (Figure 3a, right side). The first component
is representative of the so-called connective water, where the OH oscillators are phase-
correlated with oscillators of the closest molecules. This vibration originates from ice-like
tetrahedral water arrangements [64,65]. The middle feature is assigned to close water
structures, where H-bonds are partially distorted and the phase correlation to vibrations of
the nearest OH groups is lost [66]. The bump located at higher wavenumbers is associated
with OH groups weakly stabilized by H-bond interactions. These groups can be regarded
as transient species formed during the H-bond reorganization of the network [66,67]. A
representative comparison between experimental and theoretical curves is provided in
Figure S4 of the Supplementary Materials for both the Tel22 solution spectrum and the
corresponding buffer at ambient temperature. The fitting results show an increasing trend
in the νOH1 and νOH2 frequency bands (Figure S5) that agrees with a weakening of the
hydrogen bonding as the Tel22 structure approached the unfolding.

Altogether, the results of the data analysis performed over zones I and II of the spectra
allowed us to obtain information on the trend as a function of the temperature of a set
of group vibrations that are relevant in the melting process. Interestingly, we identified
two kinks in the temperature behavior of the frequency position, related to both specific
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Tel22 vibrations (ν1482, ν1575 and ν1660) and OH stretching of close water structures (bands
1 and 2, i.e., νOH1 and νOH2). These kinks were fairly in correspondence with the Tm1 and
Tm2 determined through the SVD analysis. Therefore, we investigated whether the changes
in the former (ν1482, ν1575 and ν1660) were followed by a change in the latter (νOH1 and
νOH2). From Figure 3b–d, it is apparent that all the data placed in relation show a linear
dependence when represented as one against the other. In particular, by performing a fit
of ν1482 vs. νOH1 (and vs. νOH2), ν1575 vs. νOH1 (and vs. νOH2), and ν1660 vs. νOH1 (and
vs. νOH2), we obtained Pearson’s r values that were all above 0.75, indicating a quite good
correlation between group vibrations of the G4 bases and OH stretching vibrations. This is
a sign of the intimate correlation between solute and solvent molecular vibrations along
the thermal pathway.

2.3. The OH Stretching Band

A measure of the effect of G4 on the structuring of the hydrogen bonding network
can be also obtained by calculating the relative ratio between the area of the OH stretching
of the connective water component, IνOH1(T), and the total area of the OH stretching
band, IOHtot. This quantity, which we will define from now on as O(T), provides, in
diluted solutions, an estimate of the relative amount of OH groups involved in ordered
tetrahedral structures, and it can be considered as a tester of the structuring/destructuring
effect on water induced by the solute [63]. By calculating the parameter O(T) for both
the Tel22 aqueous solution and the buffer alone (Figure 4a), we found a decreasing linear
trend in agreement with the literature [63] for the latter, and a behavior that deviated
from linearity for the former. The first derivative of O(T) identified two inflection points
for the Tel22 solution at about T’m1 = 44 ◦C and T’m2 = 73 ◦C, which was consistent with
the melting temperatures obtained through SVD (Table S3) in correspondence with the
major conformational changes in the quadruplex. This result strengthens the idea of a
solute–solvent mutual interaction, and also indicates that modifications in G4 topology
had an influence on the tetrahedral water network around the solute as the temperature
increased. The solvent alone indeed showed a linear behavior not modulated by any
structural changes.
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Figure 4. (a) Temperature evolution of the parameter O(T), which is the ratio between the area of the
OH stretching component at a lower wavenumber, IνOH1(T), and the total area of the OH stretching
band, IOHtot(T). Circles are the results for Tel22 solution, squares for the buffer. Two inflection points
were identified for Tel22 data at about T’m1 = 44 ◦C and T’m2 = 73 ◦C; the continuous line is only a
guide for the eye. (b) Van’t Hoff plot for the O↔D equilibrium for the Tel22 water solution at 45 µM
at ambient temperature, and the corresponding buffer. The quantity O/D was defined as the ratio
O/(1-O) as described in the text. Arrows are guides for the eyes, approximatively corresponding to
T’m1 and T’m2.

From the analysis of the temperature dependence of the OH stretching band, it is also
possible to obtain the thermodynamic parameters related to the shift from an ordered (O) to
a disordered (D) water structure in the presence of G4s. Specifically, the enthalpy variation
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∆HO↔D of the process can be evaluated from the temperature dependence of the O↔D
equilibrium, by means of a van’t Hoff treatment in which O(T) and 1-O(T) are the fraction
of OH oscillators belonging to the O and D water species, respectively [68]. An example of
the van’t Hoff plot is given in Figure 4b. Linear regression fitting ln([O]/[D]) vs. inverse
temperature allowed for the calculation of the buffer enthalpy, ∆H =−1.10± 0.02 kcal/mol,
which was in reasonable agreement with the value determined for pure water by means
of UVRR (λexc 266 nm [63]). Conversely, for the Tel22 water solution, we observed a
not-continuous trend as a function of temperature, characterized by a change in slope
corresponding to an enthalpy variation from 1.07 ± 0.02 kcal/mol to 1.55 ± 0.06 kcal/mol
in the pre-melting region. The visible variation at T’m1 (violet arrow) further testifies that
the O↔D equilibrium was extremely sensitive to the intermediate conformational changes
induced by temperature on the quadruplex secondary structure before complete unfolding.

2.4. The Link with the Secondary Structure

To investigate these conformational changes, we deployed the circular dichroism (CD)
technique, which is a powerful method to investigate different G4 topologies. Anti–anti,
syn–anti or anti–syn conformations, in diagonal or lateral loops and in other external
moieties, can be derived by applying an open-source tool, based on an archive of circular
dichroism spectra of 23 G-quadruplexes of known structure, defined either by X-ray crys-
tallography or by NMR [14,69]. This algorithm was used to analyze the CD profiles of our
Tel22 solutions (Figure S6 in the Supplementary Materials). The spectra were deconvoluted
in terms of fold recognition in the 30–58 ◦C temperature range; above this temperature, the
decrease in the dichroic signal associated with progressive unfolding made it impossible to
apply the fitting procedure. The excellent agreement between the fit curves and experimen-
tal CD profiles can be appreciated in Figure 5a, where the spectrum at T = 30 ◦C is reported
as an example.
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Figure 5. (a) Experimental CD profile for the Tel22 K+ water solution at 45 µM and ambient tempera-
ture, shown together with the fitted curve (solid line) obtained by using the algorithm presented in
Ref. [14]. (b,c) Percentages of syn–anti and anti–syn populations as a function of temperature (dotted
line approximatively corresponds to T’m1). (d) Correlation plot between syn–anti and anti–syn
populations and the quantity ln([O]/[D]).

We found that, despite the fact that the percentages of all populations needed to
reconstruct the total CD spectrum displayed a kink in correspondence with T’m1 (Figure S6),
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as in the ln ([O]/[D]) behavior, the anti–syn and syn–anti populations were still strongly
correlated with the ln ([O]/[D]) values (Figure 4b–d). We could therefore argue that the
more G4 constituents are correlated with OH stretching vibration changes, the more they
are involved in a mutual interaction with the solvent (Figure 5d).

3. Discussion

The correlation between the Tel22 secondary structure traits and the OH stretching
modifications (Figure 5d) provides experimental evidence that the destructuring of the OH
signal is linked not only to a temperature effect but also to a topological modulation, and in
particular to a decrease in the anti-parallel population. It is worth mentioning that at room
temperature, our telomeric sequence appeared to be consistent with a mixture of hybrid
and antiparallel folds, while with increasing temperature, there was a progressive shift from
the antiparallel [14,53] to the parallel population. This change at the secondary structure
level could be responsible for a different interaction of the nucleosides with the solvent.
In fact, the decrease (increase) with temperature of anti-parallel (parallel) units, involved
a rearrangement of diagonal and lateral loops, and thus a different interaction of water
with G4s’ loops and grooves. Although obtained in very diluted conditions and probably
linked to a long-range effect, these findings are in agreement with the recent observation,
obtained by examining high-resolution X-ray crystallography, that anti-parallel and hybrid
quadruplex structures are able to host stable extended ordered water spines into the DNA
grooves, contrary to what happens in the parallel ones [30]. To investigate this point further,
it would be extremely interesting to design combined UVRR and NMR experiments, since
NMR has proven particularly useful for characterizing the anti or syn conformation of dG
in G4 structures in several environmental conditions [7,70,71].

Overall, we showed that in G4 aqueous solutions, as in canonical DNA helices [21,30],
the solute–solvent interactions detected by Raman spectroscopy were mutual, and intrigu-
ingly, water molecular vibrations were further associated to thermally induced topological
changes at the secondary structure level. Due to the enormous importance of G4s for a
variety of biological functions, we believe that the unique results presented here could
be a starting point for further investigations that could be carried out by varying DNA
concentration, buffer ionic strength, and/or any other control parameter. Moreover, exam-
ining different G4s that are able to adopt a well-established and single topology in solution
will make it possible to investigate the close relationship between the G4 conformation
and the features of the extended hydrogen-bond network involving the biomolecule and
its hydration water. Finally, the method described here can also be relevant for studying
the importance of hydration water in the interaction of G4s with other molecules, such as
ligands for therapeutical purposes, which are able to induce topological changes [72].

4. Materials and Methods

The oligonucleotide sequence AG3(TTAG3)3 was purchased from Eurogentec (Bel-
gium) and used without further purification. The lyophilized powder was dissolved in
a 50 mM phosphate buffer at pH = 7, 0.3 mM EDTA, and 150 mM KCl. This solution
was heated to 95 ◦C for 5 min and then slowly cooled down to room temperature in ~4 h.
After this procedure, the samples were left at room temperature overnight. DNA con-
centration was determined from UV absorption measurements at 260 nm, using a molar
extinction coefficient of 228 500 M−1 cm−1 (data provided by Eurogentec). Samples for
UVRR measurements were prepared at 45 µM and checked through CD measurements [73].

4.1. UVRR Experiments

UVRR measurements were carried out at the IUVS beamline at Elettra Sincrotrone
Trieste by exploiting a properly optimized synchrotron-based experimental setup [74]. All
of the samples were placed into a 10 mm path quartz cuvette for UVRR measurements.
The spectra were excited at 220 nm and collected in a backscattered geometry by using a
triple-stage spectrometer with a spectral resolution of about ~2.6 cm−1/pixel. Beam power
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measured on the samples was about 4 µW. For each sample, UVRR spectra were recorded
in the temperature range from 26 ◦C to 90 ◦C, with steps of 4 ◦C.

4.2. CD Experiments

Circular dichroism experiments were done using Jasco J-810 spectropolarimeter on
the Tel22 at 45 µM, using a 1 mm path-length quartz cuvette. Spectra were recorded in the
range from 220 to 325 nm, with a scan speed of 50 nm/min, by changing the temperature
from 30 to 82 ◦C, with steps of 2 ◦C via a thermal bath.

4.3. SVD Details

The Singular Value Decomposition (SVD) is a method to factorize a matrix, D, into the
product of three matrices, U, S and V, i.e., D = U S VT, where VT is the transpose of V.

The D matrix has as columns the UVRR experimental spectra at each temperature; the
U matrix consists of the basis spectra, which combined are able to form the whole experi-
mental dataset; S is a diagonal matrix, where the numbers on the diagonal, the singular
value, represent the weights of each component. The V matrix is made up of the amplitude
vectors as a function of the temperature. The method of identifying the minimum number
of spectral components able to reproduce the dataset is described in [55,56]. Basically,
the magnitude and the relative variance of the singular values and the autocorrelation
coefficients of the vectors of the U and the V matrices must be screened according to a
certain acceptance/rejection criterion. In the case of UVRR data, the SVD analysis was per-
formed over two distinct spectral regions, namely 1390–1800 (cm−1) and 2700–3900 (cm−1),
respectively called I and II. For both datasets, a cutoff of 0.65 for the autocorrelation coeffi-
cient was found to be statistically meaningful, providing the results reported in Table S1.
Given this constraint, three significant V vectors were identified and associated with a
folded-intermediate-unfolded (F�I�U) melting pathway [56]. Accordingly, V1–V3 were
globally fitted to analytical expressions suitable for studying the thermodynamics of ther-
mal unfolding (Figure S2, Table S2). By analogy with proteins, changes in state functions
were described in terms of the van’t Hoff equations [75] briefly mentioned below.

Let us recall that for a reversible process where a biomolecule passes from a native
(F) to an unfolded (U) state (e.g., F�U) under the action of temperature, the following
equation holds to good approximation:

[ϕ] =
[ϕ]F + K [ϕ]U

1 + K
(1)

where [ϕ]F and [ϕ]U are the variations in the physical observable for native (F) and unfolded
(U) states, respectively, and [ϕ] is that which is detected in the transition region. The
unfolding equilibrium constant K changes with temperature according to the van’t Hoff
equation:

[K(T)] = exp
[
−∆H

R

(
1
T
− 1

Tm

)]
(2)

where ∆H is the van’t Hoff unfolding enthalpy and Tm the denaturation temperature. As
G-quadruplexes are generally characterized by multistep thermal paths, Equation (1) needs
to be adapted on a case-by-case basis: in Ref. [56], several mechanisms were proposed that
have to be tested on experimental datasets. For the F�I�U mechanism, which was proved
to be valid for our data, it is possible to write:

s(T) =
SU e−

dH1
R ( 1

Tm1
− 1

T )−
dH2

R ( 1
Tm2
− 1

T ) + SI e
dH1

R ( 1
Tm2
− 1

T ) + SF

e−
dH1

R ( 1
Tm1
− 1

T )−
dH2

R ( 1
Tm2
− 1

T ) + e
dH1

R ( 1
Tm2
− 1

T ) + 1
(3)

where dHi = dH(folding) for step I; Tmi = mid-point temperature for step I (with I = 1 cor-
responding to the F 7→I step and I = 2 to the I 7→U step); SF = optical signal for folded



Int. J. Mol. Sci. 2022, 23, 5123 10 of 13

conformers; SI = optical signal for the intermediate species; SU = optical signal of the
unfolded ensemble; R = 1.987 cal K−1 mol−1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095123/s1.
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