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Abstract: Resilient planning demands not only resilient actions, but also resilient implementation,
which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the
case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure
planning for the promotion of adaptive capacity, and of top-down approaches for the achievement
of global objectives and the reduction of structural vulnerabilities and imbalances. Though several
authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical
control for better plan implementation, very few methods have yet been developed with this aim,
least of all with a multi-objective perspective. This work addressed this lack by including, for the
first time, the mitigation of urban vulnerability, the improvement of road network condition, and
the minimization of the economic cost as objectives in a resilient planning process in which both
actions and their implementation are planned for a controlled, sustainable development. Building
on Urban planning support system (UPSS), a previously developed planning tool, the improved
planning support system affords a planning alternative over the Spanish road network, with the
best multi-objective balance between optimization, risk, and opportunity. The planning process then
formalizes local adaptive capacity as the capacity to vary the selected planning alternative within
certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by
means of multi-objective optimization, the method reveals the multi-objective trade-offs between local
opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for
better informed decision-making.

Keywords: multi-scale assessment; hierarchical relational modeling; cascading impacts; adaptive
capacity; infrastructure integrated planning; road network; decentralization optimization

1. Introduction

1.1. Implementation Planning as a Part of Resilient Planning

The concept of resilience was first introduced into ecological theory by Holling [1] as a measure of
the capacity of a system to absorb change and external disturbance while maintaining key functions,
and it is rapidly gaining ground in the urban sustainability literature [2]. In the field of urban
infrastructure planning, resilient planning studies can refer to “planning” for a more resilient city, or to
the “resiliency” of an urban planning, and, together, both approaches provide a constructive option for
a controlled sustainable development of social-ecological systems [3]. While the first aspect focuses on
the planning of actions leading to the improvement of a city’s resilience, the second has to do with
the implementation of these actions within an urban framework. Resilient infrastructure planning,
in this context, refers to a more flexible, adaptable approach for dealing with dynamic problems arising
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from the implementation of an infrastructure plan. This means that resilient infrastructure planning
requires not only the design of measures for the improvement of infrastructure resiliency, but also
measures ensuring the best implementation of these actions [3]. However, there are currently few
methods incorporating the design of an implementation strategy as a part of the planning process
across multi-level governmental environments [4,5].

1.2. Implementation Planning and Decentralization

Several authors have pointed out the role of decentralization in providing urban systems with
their required adaptive capacity. Sharifi and Yamagata [6] pointed out that decentralization is essential
for enhancing local adaptive capacity, and that a shift towards bottom-up planning approaches must
be made in order to improve the adaptability and flexibility of urban systems, and therefore contribute
to achieving sustainable urban development. Gonzales and Ajami [7] proposed a methodology for
improving resilience by adding flexibility at a local scale in urban water systems, while Leigh and
Lee [8] showed how decentralization leads to greater adaptability of water systems for specific local
contexts and operational changes. Additionally, Rogers [9] demanded that national policies and actions
should be framed to facilitate local adaptation.

While recognizing the importance of flexibility at the local scale, resilient planning argues for the
need of a regional and national perspective [2,9-11]. In the planning of road networks, this integrated
outlook makes it possible to pursue overall objectives such as overall condition improvement [12-16] or
safety performance [17], as well to contribute to the mitigation of the system’s structural imbalances [18]
and vulnerabilities [4,19]. Given the link between road networks and other essential facilities, such as
hospital or schools, and their role in induced community vulnerability [20], reducing these networks
vulnerabilities and structural imbalances should be a primary objective for infrastructure planning.
These pursuits, however, can be jeopardized by ignoring the negative cascading, cross-scale effects that
actions taken at the local scale can bring to bear on global objectives [9,21-24], such as coordination
problems in decentralized systems [25,26]. In other words, while decentralization contributes to the
adaptive capacity demanded at the local scale, it also poses risks [5] and barriers [27] to the achievement
of objectives at larger scales, which demands a proper balance of decentralization [11] that facilitates
integrated planning formulation and its implementation [28].

7

1.3. Decentralized Systems: Balancing Adaptive Capacity and Hierarchical Control

The search for this balance between flexibility at the local scale and hierarchical control from
central government has caused a debate among practitioners [27] whose ultimate purpose is to improve,
in multi-level systems, the coordination between scales that is required [1,4,25,29,30]. This coordination,
which is critical for implementing adaptation strategies in the transport sector [5] as well as in urban
planning [27], highly depends on the system’s decentralization level [25,26]. Consequently, determining
the proper decentralization level in multi-scale infrastructure networks is a key issue for a system’s
design, implementation, and operation [2,31], and therefore for its resilient planning. However, there
are currently very few studies affording implementation strategies that offer this balance between
local adaptive capacity and the comprehensive perspective demanded for resilient planning. Ganzle
et al. [32] pointed out the need for research specifically aimed at providing strategies for addressing
the coordination problem arising from the implementation of integrated planning within multi-level
governmental frameworks. Newman et al. [31] explored the effect of different decentralization levels
in water systems, finding that a system’s performance may be sensitive to the level of decentralization
adopted, while Roozbahani et al. [33] evaluated the risks of urban water supply systems from bottom
to top by means of hierarchical structure analysis. Gupta et al. [34] pointed out the tension between
top-down (centralized) and bottom-up (decentralized) planning approaches, and they stated the need
to balance them for improved adaptive capacity. Regmi et al. [24] remarked on the convenience of
integrating both planning approaches, the lack of methods addressing this objective, and the need
to bridge the gap between global policies and local strategies. Finally, Salas and Yepes [4] presented
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Multi-scale relational risk and opportunity (Ms-ReRO), a methodology which respectively represents
adaptive capacity at the local scale and hierarchical control at the global scale as “right” and “duty”
rules between hierarchically linked entities [25,26]. This method combines optimization for the design
of plans of action (Figure 1, planning module) with quantitative risk assessment and multi-objective
optimization (Figure 1, Ms-ReRO module) in order to afford decentralization configurations to minimize
overall risks and maximize local adaptive capacity. These decentralization configurations are defined
via the “rights” and “duties” embodied in the relational contracts linking entities of interdependent
scales [25]. Through these contracts, top entities (i.e., countries) transfer some of their “right” to take
decisions to entities below (i.e., regions) which, in exchange, must achieve a given “duty”, or level
of performance. By allowing these “rights” and “duties” to be regulated, the proposed framework
enables the optimization algorithm to identify the trade-offs between risks and opportunities (Figure 1,
Dynamic risk and opportunity simultaneous evaluation (D-ROSE) module), which makes it possible for
the decision-maker to balance adaptive capacity and hierarchical control (Figure 1, Ms-ReRO module).

Overall process:

’ PROBLEM FORMULATION ‘ RESILIENT PLANNING STAGES
Action planning: selecting a Implementation planning:
. resilient plan Balancing adaptation

Urban vulnerability capacity at local scale and

assessment hierarchical control

‘ Planning module ‘
D-ROSE module Ms-ReRO module
Software VisualUVAM: (single-objective) (single-objective)

Salas and Yepes, 2019b

’ Software UPSS: Salas and Yepes, 2019a

Figure 1. Overall process: vulnerability assessment and resilient planning.

However, in their article, Salas and Yepes [4] studied risks only from the economic cost perspective,
pointing out the need to introduce additional objectives in future work. They also remarked on
the limitations of their methodology in providing criteria for choosing among pareto-optimal
decentralization alternatives, which requires a deeper analysis of the trade-offs between rights,
duties, and global and local risks and provides opportunities for enhanced decision-making.

The aim of this paper was to contribute to the field of resilient planning by enabling, for the first
time, a multi-objective balance of local adaptive capacity and global risk control in net infrastructure
planning, as well as to provide a deep analysis of the trade-offs between decentralization configurations
and the risks and opportunities they bear for multiple objectives. By means of the proposed resilient
planning process, both actions and their implementation were planned, in a decentralized system case
study, in order to mitigate the system’s urban vulnerability, to improve the road network’s current
condition, and to minimize the economic cost.

The remainder of this paper is organized as follows. In the Methods section, each stage
of the three-step process (Figure 1), namely urban vulnerability assessment, action planning,
and implementation planning, is described. In the Case Study section, the whole process is illustrated
through an actual case, the results of which are presented in the Results section. These results are
then analyzed in the Discussion section to show whether the applied method contributed to resilient
planning or not, and, finally, general conclusions are drawn in the closing section.
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2. Methods

2.1. Step 1: Urban Vulnerability Assessment

Broadly, vulnerability can be understood as the susceptibility to suffer from, or the difficulty in
coping with the negative effects of an event, and it has become a major concern for sustainable urban
development [35-38]. In a prior work, Salas and Yepes [39] presented VisualUVAM, a software that
affords the urban vulnerability assessment of cities, provinces, and regions of Spain. This software
extended the scope of possible variables for the characterization of urban vulnerability (UV) from the
three basic criteria adopted by the Spanish Observatory of Urban Vulnerability (OVU) to a wider set
of 36 possible indicators, among which the method selected those most suitable according to several
criteria. Based on this set of the most suitable indicators, the method yields a quantitative assessment
of both the state of vulnerability at the end of a given time period and the risk of becoming more
vulnerable during the next period.

In VisualUVAM,, the selection among the 36 possible indicators for characterizing UV is addressed
via a multi-objective optimization (MOO) problem in which expert judgment, statistical consistency, and
robustness against data uncertainties are used as the criteria for the choosing of indicators (Figure 2).

Urban vulnerability assessment

Set of 36 posible - Sglec_ted set of
indicators: Step 1: Step 2: Reduction of Step 3 indicators :
Optimization results’ dimension Selection T Dwelling P
1. Unemployment (%), density (u/Ha), e
2. Pop. Uneducated (%), 2. Elder 75 years methodo ogy:
3. Dwelling rate (%), Results 1: Results 2: 5 Vulnerability

o
_ 300 possible ‘ representative ‘ g" :Inooursee(h/g)llds o - risk for cities,

36. Buildings older than sets of ) z"j‘s tOf one adult and at PLOVINFES

indi indicators

80 years indicators least one minor, and regions

* Data: Population and l l l

housi 1991, ildi
ousing census + Experts +Goodness + Robustness 25. Buildings older
2001, 2011 of fit than 80 years (u)

Analysis of alternatives and Multi-scale

Curse of dimensionality .
selection assessment results

Decision Support system: VisualUVAM (Salas & Yepes, 2018b; Salas & Yepes, 2019b)

Figure 2. Step 1, urban vulnerability assessment: selection of indicators.

Since MOO usually yields large sets of solutions, giving rise to the so called “curse of
dimensionality” problem [40], the assessment process also implements a cluster-analysis-based
methodology that synthesizes the initial space of 300 solutions into a smaller, manageable one of
5 representative solutions (Figure 2) [39]. This enables the decision-maker to focus the analysis on the
most promising alternatives and to select the most suitable, which affords a multi-scale evaluation of
the risk of urban vulnerability of entities at city, province, region, and country scales [39]. Once the set
of indicators has been selected, the method yields, for each of the cities, provinces, and regions being
assessed, both the state of vulnerability (SV) at a given time and the risk of increasing vulnerability in
the future.

2.2. Step 2: Resilient Planning I—Action Planning

The Urban Planning Support System (UPSS) [4] is a piece of software, programmed in Matlab,
affording both the action planning and the implementation planning demanded by resilient planning.
This software, however, still suffers from the lack of multi-objective capacity that this paper attempted to
overcome. As to the action planning, UPSS includes planning and D-ROSE modules for the generation
of planning alternatives and for evaluating the alternatives’ risks and opportunities, which enables an
informed selection of the most adequate planning alternative.
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2.2.1. Planning Module: Generation of Planning Alternatives

Based on the infrastructure inventory (Figure 3), the planning module sought that combination
of possible maintenance and construction actions [41] that would maximize the performance of
the investment strategy according to three objectives, namely the mitigation of urban vulnerability,
road condition improvement, and economic cost.

Resilient Planning I: Integrated action planning

Infrastructure inventory,
roads by condition:

1. Good

2. Fair

3. Bad

4. Under construction

UV assessment:

Risk of increasing
vulnerability

Regression model:

X: Infrastructure

Possible actions:
1.  Preservation
2. Maintenance
3. Rehabilitation
4 Construction

Optimization

3] © O
+ Mitigation  + Road - Cost
of UV condition
improvement

Multi-objective
D-ROSE:

Risk & opportunity
assessment method

Integrated
plan of actions:

Il

Enhanced multi-

Contribution to the:

* Mitigation of UV

* Improvement of
roads condition

¢ Cost minimization

At province, region

and country scales

objective Scenarios
module

Y: Vulnerability

‘ Enhanced Planning module ‘

Enhanced UPSS, based on UPSS, Salas and Yepes, 2019a

Figure 3. Step 2: planning of actions and action risk analysis.

Objective 1 was the mitigation of urban vulnerability. To evaluate the contribution of infrastructure
to urban vulnerability mitigation, we first built a regression model based on the results of Step 1 and
the road network’s condition as described by the infrastructure inventory [4], which estimated the
evolution of the risk of urban vulnerability in terms of the evolution of the road network’s condition
(Figure 3). This allowed the formulation of the urban vulnerability mitigation objective as follows:

UVMNet = Zi,jUVM(RCV(Planj, Invj), Modi) 1)

where UVMNet is the urban vulnerability mitigation impact of the road network, i is each of the
infrastructure system'’s hierarchical scales, j is each of the entities in the i scale, k is each of the actions
planned for the j entity, and UVM is the evaluation of the RCV(Planj, Invj) road condition variable’s
evolution of the entity under the Modi regression model.

Objective 2 was condition improvement. Building on prior work [4], we linked possible actions
with condition improvement, which enabled us to estimate the condition improvement that a given set
of actions would produce on the infrastructure inventory at the end of the analyzed period (Table 1).
As we were planning for a 10 year period, in the case of actions with a shorter service life increase
(Table 1, SLI) we assumed their repetition until the completion of the planning period [15]. For example,
in the case of preservation, a treatment with a service life of 2.5 years, this action was considered to be
applied four times over the 10 years of the analysis period (Table 1, column “Treatment/Period”).
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Table 1. Infrastructure condition variables and planning actions.

Infrastructure/Explanatory Possible Action Variables:

Variables:
o . Treatment " PCI-CS  Treatment/Period Period
Description Id Unit Type Cost (€/m?) SLI (*) **) (¥*%) Cost
Net
Infrastructures:
Road condition
variables
Road condition: 1 m?  Preservation  1.02 3 85 4 4
Good
Road COl:ldlthl’lZ 2 m? Maintenance  23.24 10 60 1 23
Fair
Road condition: 3 m2  Rehabilitation 66.74 25 25 1 67
Poor
Road ;stl;?ltloni 4 m2  Construction 496 25 95 1 496

(*) Service life increase, based on Torres-Machi et al. (2017); (**) Pavement condition index condition score, based on
Matin et al. (2017) and France-Mensah and O’Brien (2019); (***) Number of treatments required for a 10 year period.

Finally, we formulated the road network’s condition improvement objective as the sum of the
pavement condition index condition score (PCI-CS) improvements of all the entities of the road network
being analyzed (Matin et al., 2017 [12]):

RClnet = (Zi ARC (Plan;, Inv)) X CS)/Zj R (Plan;, Inv;) @)

where RCINet is the road network’s condition improvement of the j entities of the network, ARC is the
transference function that transforms, based on Table 1, the actions of the Planj carried out over its Inv;
inventory into the evolution of the road condition variables, PCI-CS is the condition score attached to
the road condition variables (Table 2), and R(Plan;, Inv;) is the quantity of roads in all conditions after
carrying out the infrastructure plan.

Table 2. Actions included in the selected planning alternative for the region of Comunidad Valenciana.

Initial Road Network . Final Road Network
Actions Planned
Inventory Inventory (*)
Condition Quantity (*) Type Quantity (*) Variation Total
. Good 101.43 Preservation 90.34 14.34 115.78
Region: Fair 14.70 Maintenance 12.77 -3.61 11.09
Comunidad el .
lenciana Poor 2.58 Rehablhta.tlon 2.46 10.56 13.14
va Construction 10.21
Good 40.26 Preservation 36.93 3.49 43.75
Province 1: Fair 2.83 Maintenance 2.68 0.50 3.33
Alicante Poor 0.32 Rehabilitation 0.30 3.18 3.50
Construction 3.83 0.00
Good 20.97 Preservation 16.05 -2.85 18.12
Province 2: Fair 0.29 Maintenance 0.25 4.63 4.92
Castellon Poor 0.09 Rehabilitation 0.07 4.89 4.98
Construction 1.75 0.00
Good 40.20 Preservation 37.35 13.71 53.90
Province 3: Fair 11.58 Maintenance 9.84 -8.73 2.84
Valencia Poor 2.17 Rehabilitation 2.09 2.49 4.67
Construction 4.62 0.00

(*) Surface in km?.
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Objective 3 was economic cost. As to the economic cost objective, the cost of each road network
planning alternative was formulated as the product of the actions included and their unitary costs:

ECNet = zli'jfk Actiong k) X ICost(;; k) X IcostAsymmy; j) 3)

where ECNet is the plan’s cost, and Action(y ;) and ICost(y; k) are, respectively, the quantification of
the actions included in the plan and the unitary costs of each of the k planned actions. IcostAsymm is
a normalized asymmetry index that reflects different investment costs by entities of a given context,
e.g., counties of a given province, provinces of a given region, or regions of a given country [4].
Objective 4 was the performance of the most vulnerable entities group of interest. Finally,
in order to incorporate equity into the planning process and to provide proper visibility to the most
vulnerable [6,42], we introduced as an additional objective the ratio between the most vulnerable
group’s performance [4] and the overall performance in the “Condition improvement” objective:

RClyyy = RCINeyRClgy 4)

where RCIVul is the road condition improvement ratio of the most vulnerable entities, while
RCINet and RCIHv are, respectively, the net and the highly vulnerable entities group’s condition
improvement scores.

2.2.2. Scenario Module: Evaluation of Risk and Opportunities

The planning process implemented D-ROSE (Figure 3), an uncertainty analysis method capable
of identifying a set of relevant scenarios and evaluating the risks and opportunities that these
scenarios entail for each of the possible planning alternatives [4]. This method, however, lacks the
multi-objective capacity required for analyzing planning alternatives against multiple risks [4], as was
the case here. This multi-objective capacity implies that, for a proper selection of the most adequate
planning alternative, the decision-maker should be enabled to simultaneously visualize the risks and
opportunities borne by the set of relevant scenarios from all points of view, i.e., regarding all objectives.
To address this, interactive visual analytics use different data visualization techniques, offering multiple,
linked views of relevant information. Therefore, we implemented in the planning tool the capacity
to simultaneously display risks and opportunities for all the objectives and planning alternatives to
understand the trade-offs between the different risks, opportunities, and possible decisions [43].

2.3. Step 3: Resilient Planning II—Implementation Planning

As a final step, the process of resilient planning required the design of an implementation
mechanism [44] that affords a proper balance between hierarchical control and adaptive capacity at the
local scale across the road network’s decentralization structure (Figure 4).

Ms-ReRO [4] is an uncertainty analysis method specifically designed for this purpose, based on
hierarchical probabilistic relational modeling (HPRM) [45] and MOO, which affords an assessment
of the global risks and opportunities at the central government (top) scale triggered by a plan’s
implementation at the municipal (local) scale. In this methodology, integrated planning implementation
is represented as a hierarchical system of systems that are connected by relational contracts, and risks
and opportunities are derived as the bottom-up cascading impacts produced by the actions performed
at a local scale. In decentralized infrastructure systems, contracts between parties are key elements in
the implementation scheme [23,25]. Contractual arrangements prescribing very precise actions work
well at a tactical scale but not at a strategic, long-term scale [23]. Instead, Ms-ReRO includes a more
flexible contractual framework based on the concept of relational contract [25], which defines “right”
and “duty” [25,26] rules across contracting parties. By means of this, the proposed framework allows
top entities to transfer the “right” to vary the initial plan to the entity below, which, in exchange, is
obliged to achieve a given outcome, i.e., to perform a “duty”.
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Resilient Planning 11: Balance between bottom-up adaptation capacity and top-down
hierarchical control

‘ MsI-ReRIO,f(l)’ptlmltzatI!ont.of the ‘ Improves overall plan’s
evel of decentralization resilience by:

Integrated plan of ——) |
actions adaptation capacity,

+ and minimizing global
risks for all objectives
analyzed

+ Adaptation capacity: Subnational - Global
rights & local opportunity Risk

Enhanced Multi-level & Multi-
objective Implementation module

Based on UPSS, Salas & Yepes, 2019a
Figure 4. Step 3: implementation planning and risk analysis.

In HPRM, actions are performed at the bottom scale and their consequences are then bottom-up
propagated, therefore impacting at the top scale; the aim is to regulate these actions and impacts by
means of the relational contract’s rules. In consequence, we first allowed variation the quantities
specified in the baseline plan within certain limits (rights), which were modeled as the lower and the
higher bounds for each action. We then imposed, as a restriction of the choice between the right’s
bounds for each action, that their joint effect had to fall within a given performance range, which
we called “duty” and which represented the maximum possible deviation from the performance
expected to be accomplished by each entity in the integrated plan. In consequence, in terms of the
generation of simulations at the bottom scale, which will subsequently be bottom-up propagated
through the relational system, we only admitted those meeting the conditions specified by the relational
contracts at the bottom scale, i.e., we eliminated failing simulations from the set of possible realizations
generated by the Monte Carlo simulation method. Finally, the choosing of actions between the rights’
bounds by local entities is affected by their behavioral preferences, which we formalized by means
of triangular probability distribution functions (PDF) functions. For this purpose, we employed a
stochastic approach since it allowed integration into a single object of the rights” upper and lower
bounds and the local preferences as the lower, central, and upper points of a triangular PDF function [4].

This relational framework enabled, through MOO, the balancing of hierarchical control and
adaptive capacity by simultaneously minimizing the risk of failure at the top scale (global) while
maximizing the opportunity to achieve better performance at the local scale.

Decentralization Objective 1 was global risk minimization:

RGlobal(APIP) = P(FAPIPT) x I(FAPIP,T) (5)

where RGlobal (APIP) is the risk, for the implementation plan IP of the action plan AP, of achieving a

result worse than that of the failure condition F; P(FAPIPT) is the probability of achieving anF failure

condition at the system’s T top scale; and I(FAP,IP,T) is the impact of this failure. In Ms-ReRO, the F

failure condition consists of a performance worse than the previously set up pessimistic threshold.
The probability of failure, in turn, was defined as

P(Fapipt) = N(SimsF op1p1)/N(SimsapipT) (6)

where N(SimsF APIPT) is the number of simulations achieving failure, while N(Simsapp) is the total
number of simulations performed following the method described by Salas and Yepes (2019a).
Finally, failure’s impact was formulated as

I(Fapp) = mean(f(Sims* app)) — f(BLAPIP) ()
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where mean(f(Sims® Apip)) is the mean of the performances achieved by failing simulations,
and f(BLpyp) is the value achieved in the realization of the baseline plan of actions.

Decentralization Objective 2 was local opportunity maximization. Conversely to the risk,
we modeled opportunity based on the simulations improving a given level of performance. Therefore,
opportunity at local scale was formulated as

OLocal(APIP) = P(Wapipg) X W apipB) (8)

where P(wapipB) is the probability of achieving a “W” windfall condition at the system’s “B” bottom
scale, I(wappp) is the impact of the windfall condition, and B is each of the entities at bottom scale.

Decentralization Objectives 3 and 4 were related to the relational framework’s flexibility
maximization. As to the improvement of entities’ capacity of varying the plan, we implemented this by
maximizing the sum of the means of the rights bestowed by scale across the whole relational system.
This flexibility was also improved via maximization of the range within which each entity was allowed
to deviate from their duties, i.e., from their intended result.

In sum, decentralization Objectives 2—4 represented the maximization of the system’s adaptive
capacity at local scale, while decentralization Objective 1 accounted for the minimization of the system’s
risk of failing in the attainment of the required global performance. In seeking to achieve these goals,
the MOO problem operated over the “rights” and “duties”, which therefore became the MOO’s decision
variables, and were formulated as the percentage in which entities are allowed to deviate from the
baseline plan, in the case of rights, or from the expected performance in the case of duties [4].

3. Case Study: Resilient Road Network Planning in Provinces of Spain
3.1. Information Collection Process

3.1.1. Information Required for Urban Vulnerability Assessment

Following prior work, the compilation of the quantitative information was downloaded from
the website of the National Institute of Statistics, comprising 36 indicators for each of the 403 cities
(264 of which are from the province of Valencia), 52 provinces (including Ceuta and Melilla), and 19
regions (including the autonomous cities of Ceuta and Melilla as regions) that composed the elaborated
database [39]. This information was collected for the years 1991, 2001, and 2011, allowing analysis of
the evolution of urban vulnerability in the periods 1991-2001 and 2001-2011.

Along with the quantitative information, we also gathered the qualitative information regarding
experts’ preferences for the indicators best representing urban vulnerability, required by the assessment
process [39]. Based on the analytic hierarchy process (AHP) multi-criteria technique [46], we asked the
experts to pairwise compare the 36 indicators of the quantitative database, which were structured in
three levels so that only in one case was the number of indicators to be compared greater than five.
Basically, this structuring of indicators was a transposition of the conceptual framework adopted by
the Spanish OUYV, to which some indicators were added.

Further, to avoid the problem of inconsistent judgment elicitation [47], we developed a software
application, programmed in Matlab, that provided experts with real-time feedback on their judgments’
consistency, enabling them to interactively revise their judgements until they became acceptable [39].
As an outcome, we obtained the experts’ relative preferences for indicators as weights, which were
incorporated into the experts’ preferences objective in the optimization process (Figure 2).

3.1.2. Information Required for Urban Infrastructure Planning

As to the gathering of quantitative information on road conditions, we resorted to the data
available from the Local Infrastructure and Equipment Survey (EIEL), which included a wide range of
infrastructures present in municipalities of 50,000 habitants or fewer in all Spanish regions, with the
exception, due to their specific organizational regimes, of the Basque Country and Navarra [4].
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Since the planning process required a regression model correlating the evolution of urban
vulnerability and that of the condition of urban infrastructure (Section 2.2.1), we retrieved from the
EIEL the data corresponding to those employed for the assessment of UV in Step 1 (Section 2.1),
i.e., between the years 2000 and 2010, and structured it based on the city, province, and region
(autonomous communities) scales. However, since in Spain, road network planning is under the
jurisdiction of the state, regions, and provinces, but not of cities, we excluded the latter scale from our
database and settled on provinces as the bottom scale. We then sought to achieve objectives at the
national (top) scale by building planning alternatives from a provincial scale, which is an approach
more akin to actual road network decision-making than doing it from a municipal perspective.

3.2. Running of the Process

3.2.1. Step 1: Urban Vulnerability Assessment

The assessment of urban vulnerability was performed via VisualUVAM, a software that covered
all the steps of the urban vulnerability assessment process described in the methodology (Section 2.1).
Following the guidance afforded by the software, we first generated a set of 300 pareto-optimal
combinations of indicators which, by means of the visual analytics and cluster analysis techniques
implemented in the tool, were synthesized into a more manageable set of nine possible combinations.
We then undertook a process of analysis that culminated in the selection of the combination of indicators
deemed most appropriate [39].

3.2.2. Step 2: Action Planning

Based on the results of the urban vulnerability assessment carried out in the previous step, and on
the gathered information of the road network’s condition, the UPSS planning module (Section 2.2.1)
provided an initial set of 300 pareto-optimal planning alternatives (Figure 3). The planning alternatives
were then filtered by means of the implemented cluster analysis method [39], reducing the initial set of
300 possible solutions to a set of 11 representative, relevant alternatives, which were further analyzed by
the scenario module (Section 2.2.2). By means of D-ROSE, we generated random scenarios and evaluated
the risks and opportunities that these scenarios bore for each relevant planning alternative. In this
case, we employed the scenario module to swap the range of possible decentralization combinations
and therefore represent the impacts that different levels of decentralization had on each possible plan.
Subsequently, trade-offs between risks, opportunities, and planning alternatives were evaluated and,
after the analysis of these results, the most adequate plan was chosen for implementation.

3.2.3. Step 3: Implementation Planning

Based on the planning alternative selected in Step 2, the UPSS implementation module (Section 2.3)
simultaneously sought, through the optimization of the system’s level of decentralization, the
minimization of global risks and the maximization of local adaptation (Figure 4). This afforded
a set of optimal configurations of the relational contract’s rights and opportunities, from which it
was possible to draw out the trade-offs between global risk and local adaptive capacity for each
objective. These trade-offs were then analyzed from a multi-objective perspective, which enabled
us to balance different risks, opportunities, and possible decisions and accordingly choose the most
adequate implementation plan.

4. Results

4.1. Step 1: Urban Vulnerability Assessment

Figure 5 shows the results of the state of UV, the evolution of UV state, and the risk of increasing
UV for provinces of Spain, which revealed how urban vulnerability is, in general, more present in
coastal and highly populated provinces [39]. Based on this information, the 30% most vulnerable
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entities were identified and grouped for the incorporation of their specific interest in the search, in Step
2, for optimal infrastructure plans.

State Evolution Risk

' " ' "
2 <

min

min max max min max

Figure 5. Results by province of the urban vulnerability assessment process: UV State in 2011, evolution
of UV state between 2001 and 2011, and risk of increasing UV from 2011 onwards.

4.2. Step 2: Planning of Actions

The trade-offs between planning objectives (Figure 6) showed that the overall urban vulnerability
mitigation (UVM (Net)) and road network condition improvement (RCI (Net)) objectives were aligned,
which was consistent with the idea of the contribution of net infrastructures to the mitigation of
urban vulnerability [4,19]. These objectives were also aligned with the maximization of the RCI(Vuln),
which expressed the ratio of road condition improvement of the most vulnerable entities within
the total, showing how, in some cases, it was possible to reconcile particular interests with general
interests. As expected, all these objectives were in conflict with the network economic cost (EC (Net))
minimization which, since the results were pareto-optimal, could be used as an ex-post budgetary
restriction by setting up the maximum economic cost allowed in the implemented selection controls.
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Figure 6. Trade-offs between objectives.

Figure 7 presents, for each objective, the results of the Monte Carlo simulation carried out over
each of the planning alternatives, and also reflects the direct correlation between closeness to ideal and
worst risk and opportunity performance. Relevant solutions performing well at the UVM objective
did so at the RCI, while they performed badly at the EC objective. In effect, as we moved toward the
right (ideal) in planning alternatives for the UVM and RCI objectives, the simulations’ results passed
from above the optimistic threshold to below the pessimistic threshold, which indicated movement
from opportunity to risk. Conversely, at the EC objective, which was opposite to UVM and RCI,
better (cheaper) solutions were placed at the left and worse (expensive) at the right, and, consequently,
simulations improving the expected performance are on the right, while those worsening it are on the
left side.
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Figure 7. Results of the Monte Carlo simulation for each planning alternative. Simulation results
exceeding pessimistic or optimistic bounds bear, respectively, risks or opportunities. The order of the
planning alternatives in the horizontal axis indicates lower to higher UVM performance.

As to the multi-objective analysis of the results, Figure 8 portrays the risks and opportunities of
each planning alternatives for the set of 100 scenarios generated. The analysis of these results showed
that planning alternatives 7, 8, and 9 were the most relevant for our decision, since in all objectives they
represented the turning point from opportunity to risk or vice versa. Finally, we selected alternative
9 due to our bias toward solutions improving especially the condition index of the most vulnerable
entities, which in Figure 8 were to the right.
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Figure 8. Normalized risks (Risk-Norm) and opportunities (Opp-Norm) of planning alternatives by
objectives in terms of distance, in standard deviations, from the lowest risk/opportunity.

Each of the generated planning alternatives is a baseline plan specifying the quantity of each
possible action that should be carried out at the bottom (provincial) scale to bring about the planned
performance at the top (country) scale. Table 2 shows the specific results of the selected plan for the
region of Comunidad Valenciana and its provinces.
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4.3. Step 3 Implementation Planning

The implementation planning module (Section 3.2.3) afforded a set of pareto-optimal solutions for
the configuration of the rights and duties which made up the system of relational contracts. As shown
in Figure 9, economic risk reduction at the top scale was inversely correlated with opportunity increase
at the local scale, which, on the other hand, had a clear inverse correlation with increase in the
relaxing of duties. Finally, Figure 9 also shows a strong inverse correlation between increasing rights at
subnational scales and reducing economic risks at the national scale, which, on the other hand, was
directly correlated with increasing flexibility in duties. Altogether, the set of solutions showed that
increasing local opportunity was in opposition to global risk reduction, and that increasing rights
led to increased global economic risks but not to increased economic opportunity, thus producing an
asymmetry in the share of risks and opportunities. By increasing rights, we increase global risk, but
we do not necessarily increase local opportunity. As to the relaxing of duties at the bottom scale, its
increase was slightly associated with reductions of both risks and opportunities. However, when this
increase came together with that of the rights, it played against risk reduction at the top (national)
scale (Figure 9).
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Figure 9. Results of the generation of decentralization solutions, trade-offs between global risk,
opportunity at local scale, summation of sub-national rights, and flexibility in duties for the economic
cost objective.

For a better understanding of how the decentralization model works, we resorted to global
sensitivity analysis to evaluate the decision model in terms of output uncertainty and factor importance
in order to gain a better understanding of how the model parameters affected the final outputs [48].
Regression-based and variance-based methods are two of the most commonly used approaches for
global sensitivity analysis, and they perform almost equally well for quantifying output variance
and contribution to variance of the input parameters, especially in the case of relatively small input
uncertainties [49]. By incorporating the Matlab code [50] developed by Groen et al., [49] into our
own Matlab software, we performed a global sensitivity analysis based on the squared standardized
regression coefficients method. The results of the global sensitivity analysis showed that rights and
duties at the province (bottom) scale were the driving factors in all objectives, but they were unequally
distributed along objectives (Table 3). While duties at the province scale was the factor with the highest
impact on global risk in the economic cost and mitigation of UV objectives, it had little impact on the
road condition improvement global objective. Conversely, rights at the province (bottom) scale was
the driving factor for opportunity at the bottom scale for all objectives, but also posed global risks for
the road condition improvement objective.
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Table 3. Results of the global sensitivity analysis of the decentralization model parameters.

PDF Sensitivity Index

(*) Economic Cost Road Condition Improv. Mitigation of UV
1 (*9(-) 2 (**) 3 (*9(-) 1 (**) 2 (**) 3 (*9(-) 1 (*9(-) 2 (**) 3 (*9(-)

Parameter

Rights:
Regions (***) 5,5,21 850% 0.58% 13.67% 5.71% 0.12%  13.67% 10.88% 2.03% 13.67%
Provinces 4,4,14 134% 87.61% 86.33% 74.64% 99.34% 86.33% 1.73% 96.82% 86.33%

Duties:
National 1,1,3  051% 0.01% 0.00% 0.11%  0.00% 0.00%  0.12% 0.00%  0.00%
Region 1,1,3 1.80% 0.01% 0.00% 0.47%  0.01% 0.00%  0.01% 0.00% 0.00%

Provinces 1,2,6 87.85% 11.79% 0.00% 19.07%  0.53% 0.00%  87.26% 1.15%  0.00%

(*) All parameters’ uncertainties defined by triangular PDF (Min, Peak, Max) points; (**) 1: global risk; 2: bottom
opportunity; 3: sum of subnational rights; (***) Summation of the sensitivy index of all spanish regions.

As to the selection of the proper decentralization configuration of the relational model, we resorted
to cluster analysis to synthesis the initial set of solutions into another more manageable set, which we
analyzed from the perspectives of all the objectives involved in the planning process (Figure 10).
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Figure 10. Implementation risks and opportunities borne by the representative

decentralization solutions.

Decentralization alternatives 115, 66, and 18 achieved the lowest risks in terms of the economic
cost, urban vulnerability mitigation, and road condition improvement, respectively, showing that
there was not a unique best solution for all objectives and that some qualitative analysis is required to
perform such selections. Alternative 115 also had the fewest opportunities of all, while alternatives
66 and 18 were the only alternatives with greater opportunity than risks in all objectives. Of these,
alternative 18 presented a slightly better balance between risk and opportunity.

On the other hand, the performed global uncertainty analysis allowed some management
implications to be drawn out [51]. On one hand, the focus should be put on the rights and duties
bestowed at the bottom rather than at the top scale. On the other hand, there is no formula for
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balancing rights and duties that can be indiscriminately applied to all objectives, since relaxing duties,
for example, would be risky at the global scale in terms of the economic cost and the mitigation of
urban vulnerability points of view, but not much from a road condition improvement outlook, which
would be highly affected, instead, by increased rights. Therefore, it is necessary to balance not only
risk and opportunity, but also the objectives, selecting planning alternatives with better balance in
those objectives prioritized by the decision-maker. In consequence, despite alternative 18 having an
overall risk and opportunity balance slightly better than alternative 66, we selected the latter due to its
lowest risk in the urban vulnerability mitigation objective, which we prioritized over the road network
condition improvement. We therefore selected alternative 66, which enabled us to set up the relational
contracts required for the implementation of the planning alternative (Table 4).

Table 4. Guidelines for decentralization alternative 66 for the issuing of relational contracts between
central government and the region of Comunidad Valenciana, and between this region and its provinces.

Rights: Region Provinces Duties: Region Provinces
Range 14% 5% Range 3% 5%
Actions Lb (*) Ub (*) Objectives (**) Lb Ub
Country Preservation 77.69 101.43 UVM(Net) (-) -8.77 x 103 -9.31x 10°
and Region: ~Maintenance 10.98 14.49 RCI(Net) (+) 9.73x10° 1.03 x 10*
Comunidad  Rehabilitation 2.12 2.56 EC(Net) (-) 5.59 x 10° 5.94 x 10°
Valenciana  Construction 8.78 8.25
) Preservation 35.09 40.26 UVM(Net) (-) -249x10%  -2.75x 103
Region and . 3 3
Province 1: Maintenance 2.55 2.63 RCI(Net) (+) 3.10x 10 342 x 10
. " Rehabilitation 0.29 0.32 EC(Net) (-) 1.98 x 10° 2.19 x 10°
Alicante .
Construction 3.64 1.41
Reei d Preservation 15.25 20.97 UVM(Net) (-) 3.13 3.46
P‘jg;‘;ﬁcznz. Maintenance 0.24 0.29 RCI(Net) (+) 338x102  3.74x 107
-~ Rehabilitation  0.06 0.07 EC(Net) (-) 8.79 x 108 9.71 x 10%
Castellon )
Construction 1.67 2.07
. Preservation 35.48 40.20 UVM(Net) (-) —6.10 x 103 —-6.74 x 10°
Region and . 3 3
Province 3: Maintenance 9.35 11.58 RCI(Net) (+) 6.09 x 10 6.73x 10
Valencia  Rehabilitation 1.98 2.17 EC(Net) (-) 2.62 x 10° 2.89 x 10°
Construction 4.39 4.77

(*) Surface in km?; (**) Negative and positive signs respectively indicate minimization and maximization.

5. Discussion

5.1. Action Planning

The MOO approach yielded trade-offs between the objectives involved in the planning process,
i.e., maximization of urban vulnerability mitigation and road network condition improvement and
minimization of economic cost. Additionally, it provided valuable information on the specific effects
of the planning alternatives over the most vulnerable entities which, together with the analysis of
the results of the risk and opportunity assessment, enabled us to select the most suitable planning
alternative for its further implementation.

From a strategic point of view, each planning alternative represented a baseline plan containing
the basic determinations required for the road network’s maintenance and construction integrated
planning, comprising regions and provinces of Spain. The solutions provided, based on the road
network’s current condition, the quantity of each action that should be performed for each entity at the
bottom scale to attain a given performance at global scale, enabling their further development at the
tactical level via relational contracts.
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5.2. Implementation Planning

The results yielded by Step 3 showed how different decentralization solutions led to different risks
and opportunities in the implementation of the selected planning alternative, and how the proposed
methodology can be employed to find the most convenient decentralization solution. By means of
this, the method afforded proper balance between risks at the top (national) level, opportunities at the
bottom (provincial) scale, and rights bestowed through relational contracts. These rights represent the
capacity to select actions other than those of the baseline plan, and, in consequence, are a way in which
local entities can adapt the integrated planning to their circumstances and specific needs. Opportunity
at the local scale, on the other hand, represents the potential positive effect that rights might have
on local entities” performance, which is strongly correlated with subnational rights. Together, rights
and local opportunity account for the demanded planning system’s local adaptive capacity [7,9].
This plan’s flexibility, as shown in Section 4.3, was in conflict with the reduction of risks at top scale,
which reinforced the idea that, in infrastructure hierarchical systems, resilience at local scale does not
necessarily lead to resilience at the global scale [9,23], and that some balance between global objectives
and local adaptation is required [11,28,29]. Ms-ReRO addresses this issue by means of multi-objective
optimization, which in our case afforded a set of optimal decentralization solutions from which it was
possible to select an implementation plan achieving the demanded balance between global risk and
local adaptive capacity.

Based on the trade-off between top-risk minimization and local adaptive capacity maximization,
it was possible to select the proper action implementation plan, which included the guidelines required
for issuing a system of relational contracts (Table 4). Contracts play a key role regarding the level
of resilience level in a fragmented or decentralized infrastructure system [23], and should afford the
means for dealing with the uncertainty always present in any infrastructure system’s integrated plan’s
implementation and operation [25]. Relational contracts are a kind of contract specifically designed to
alleviate relational problems between hierarchically dependent entities of decentralized systems [25],
allowing the incorporation of both rights and duties, and they therefore provide the best framework
for materializing the method’s results. This approach, also allows multiple objectives to be taken
into account by specifying in the relational contracts multiple duties to be carried out, which in our
case were the expected performance of each entity in urban vulnerability mitigation, road network
condition improvement, and economic cost.

As to the relationship between planning alternatives and implementation risks and opportunities,
the results showed that, for each objective, planning solutions close to the ideal were prone to risk.
In our case, this was due to the fact that in planning alternatives already close to the maximum or
minimum possible quantity of a given action, transferring rights beyond this limit will be ineffective,
thus producing an asymmetry in the PDF describing each entity’s possible actions. For example, in a
planning alternative preserving 97% of the roads in a good state, i.e., close to the maximum possible
preservation quantity, bestowing rights of 15% means that the theoretical upper bound will exceed
the real one, rendering ineffective 80% of the theoretical potential increase of actions. On the other
hand, for the same example, its lower bound will fall from 95% down to 82.45%, thus producing an
asymmetry that will be reflected in the behavior of the simulations generated (Figure 11), and therefore
in the risks and opportunities attached to this decentralization configuration. This phenomenon has
important implications for the issue of relational contracts, since their actions” upper and lower bounds
will not necessarily match the range expressed by the rights embodied in the contract. In consequence,
it is necessary to explicitly define, for every relational contract, the rights as the action’s lower and
upper bounds instead of only as a range (Table 4).
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Figure 11. Example of simulations generated at provincial (bottom) and regional scales for different
planning alternatives. Contractual simulations at the bottom scale were propagated to top scales.
The decentralization configuration in both cases was the same.

As to how the plan’s adaptive capacity, which is an abstract concept, can be materialized by local
entities, Figure 11 plots, labeled as “contract sims”, examples of possible variations over the baseline
plan that could be carried out by local entities (provinces) without violating the relational contract, i.e.,
fulfilling the assigned “duties”. These variations at the local scale will then combine with those of other
provinces of the same region to determine the joint effect on the region’s duties and so on, thus enabling
the evaluation of the cascading impact of variations at a local scale over the objectives at the global
scale. However, the presence of multiple duties—objectives embodied in the relational contract rules
requires an additional control mechanism to simultaneously achieve them. In effect, this multi-objective
dimension in the system of relational contracts means that variations at a local scale being acceptable
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from an economic point of view would not be acceptable from a road condition improvement outlook
(planning alternative 114, Figure 10), and would therefore be rejected. Since there is not any one best
solution for all objectives, a second-order analysis balancing not only risks and opportunities, but
also the objectives themselves is necessary. In our case, we prioritized the minimization of risk for
urban vulnerability mitigation and the balance between risk and opportunity, and therefore selected
alternative 66; had we preferred risk minimization for road condition improvement, the best alternative
would have been alternative 18.

The system of relational contracts helps in dealing with some kinds of uncertainty arising from
the implementation of integrated plans across a territory, such as uncertainties related to the financial
capacity of entities along the planning period. The proposed contractual framework enables local
entities to adapt the baseline plan to their specific financial contexts by, for example, moving quantities
from actions demanding heavy initial outlays, such as rehabilitation, to those requiring payments
distributed over time, such as preservation. In contrast, it would be possible at some point that local
entities have enough financial resources to undertake more demanding actions and are therefore
willing to move quantities from preservation to rehabilitation, which they can do without trespassing
upon the economic duty for the whole period. Another source of uncertainty would be the entities’
capacity to bring about the baseline plan, which may contain actions that are difficult for them to
perform due to, for example, human resource limitations. In this case, entities can ask the upper scale
to partially assume the implementation of the baseline plan or to adapt it by increasing those activities
for which they have enough resources. Local entities may also have a better knowledge on which
roads have strategic importance for them that, within the system of relational contracts, can be used to
improve the baseline plan. In the hypothetical case of a province with roads in a good state that are
not completely preserved but are more important than any of the roads in bad states that are planned
to be rehabilitated, local entities can automatically move economic resources from rehabilitation to
preservation according to their aim, provided they still achieve their duties.

Finally, in governmental contexts, there are always institutional disputes surrounding any
integrated, long-term planning that can prevent its implementation. By changing the triangular PDF
modeling the behavior of the actions affected by the dispute [52], the method allows assessment of the
impact on the local and the global objectives resulting from this change, which could be of help in
promoting agreement between parties.

6. Conclusions

Resilient planning demands not only resilient actions but also resilient implementation [53].
Despite the vast amount of research devoted to developing methods for the planning of resilient
actions, there have been very few studies investigating plans” implementation [4], which, in the case
of net infrastructure planning, requires a proper balance between global risk minimization and local
adaptive capacity maximization [9,11,28,29]. This paper contributes to resilient planning by, on one
hand, extending the initial capacities of UPSS [4] to the search for road network investment plans
and decentralization alternatives that are optimal from the perspectives of the network’s condition
improvement [54], contribution to urban vulnerability mitigation, and minimization of the economic
cost. By integrating social sustainability aspects as a relevant criterion for the decision-making process,
the method facilitates the adoption of a resilient plan of action, contributing to more sustainable
development. On the other hand, this paper provides planners with a novel way of materializing a
plan’s adaptive capacity at the local (bottom) scale and risk control at the global (top) scale. By means
of the rights and duties included in the provided decentralization solution, it is possible to set up a
system of relational contracts in which the integrated plan is transferred from national to provincial
entities, where it is finally executed according to the relational contract specifications.

Along the process, the improved planning support system afforded a plan of action for the Spanish
road network with the best balance between closeness to ideal and risks entailed from a multi-objective
perspective (Section 4.2). Additionally, the planning process provided a decentralization solution for
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the best implementation of the plan of actions across the Spanish governmental structure, consisting of
the country, regional, and provincial levels (Section 4.3). This decentralization solution was then used
in a novel way to shape a system of relational contracts between hierarchically dependent entities in
which local adaptive capacity was formalized as the right to vary, within certain limits, the plan of
action being implemented, and global risk control was materialized by means of the duties that should
be achieved in exchange of the rights conferred. Overall, the presented method integrates, for the
first time, the planning of resilient actions with the planning of their resilient implementation from a
multi-objective point of view, thus contributing to the field of resilient planning.

In the selection of the most adequate planning alternative, the multi-objective capacity allowed
the identification of key planning alternatives from the risk and opportunity points of view and, based
on the alternatives’ impact on the most vulnerable entities, the selection of the most appropriate one,
contributing to the incorporation of equity into the planning process [42]. The results showed, on
the other hand, that there was a clear relationship between closeness of the planning alternatives to
the ideal and increased risks and, vice versa, alternatives farther from the ideal point were prone to
opportunity, i.e., they had more chances of improving their expected performance. Regarding the
selection of the proper implementation plan, the method’s multi-objective capacity revealed that there
were no clear trade-offs between the objectives’ global risks and local opportunities. Instead, it was
necessary to separately evaluate decentralization alternatives and select the most adequate according
to the balance between risks and opportunities and the decision-maker’s preferences for objectives.
This evaluation prevents alternatives being chosen that perform well in a less important objective and
badly in those more relevant to the decision-maker, as it affords improved global risk control in which
adaptive capacity at the local scale is bound to the simultaneous accomplishment of a given level of
performance for each objective. This paper also presents a novel approach for materializing a plan’s
adaptive capacity into actions. The use of relational contracts allows the contractual formulation of
adaptive capacity as the rights bestowed to local entities, which enables them to vary the baseline plan
to adapt it to their local circumstances and needs, in exchange for carrying out the duties assigned.

Additionally, the paper provides valuable insights into the relationships between planning
objectives, planning alternatives, and their implementation’s global risks and local adaptive capacity.
As to the planning objectives, the results showed that the mitigation of urban vulnerability and
road condition were aligned objectives, which was consistent with the idea of the net infrastructure
contributing to the mitigation of urban vulnerability [4,11]. These objectives were also aligned with
improving the road condition of the most vulnerable entities in particular, showing that, in some cases,
it is possible to reconcile particular with general interest. On the other hand, the risk assessment of
the planning alternatives revealed that the closer the alternatives were to the ideal in each objective,
the riskier they were. Additionally, the comparison between closeness to ideal and risks showed the
existence of turning points in the change of the trend from risk to opportunity that were especially
relevant for multi-objective decision-making in the case of conflicting objectives. Regarding the
implementation planning, it was possible to find a solution with the best balance between global
risk and local opportunity for each objective. However, there was no decentralization solution
that performed best for all objectives, which made it necessary to prioritize between objectives and
choose accordingly.

Despite the remarkable outcomes, there were still limitations to this study. On one hand, there is
still a need for a more systematic approach in the joint analysis of risks of different nature, as is the case.
Multi-criteria methods such as AHP [55], Delphi [56], or Bayesian networks [57] can be used to build,
based on experts’ or decision-makers’ preferences, a composite implementation risk index that would
be of help in the selection of infrastructure planning alternatives. On the other hand, the proposed
system of relational contracts may produce legal difficulties requiring specific research to overcome.
For example, in Spanish legislation, maintenance and construction activities have different nature
and are allocated in separated budget chapters, which requires specific contracts. Breaking down
rights and opportunities by provinces in the decentralization framework, and conducting specific
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research on the interactions between these factors, would also be of use for territorial decision-making.
This capacity, which is lacking in the proposed software, could be addressed by programming and
incorporating variance-based global sensitivity methods such as Global sensitivity and uncertainty
analysis GSUA [49] into the UPSS planning tool code. Finally, this paper studied the relationship
between local adaptive capacity and global risks when actions were implemented at a local scale,
which in our case was the provincial scale. However, the implementation of actions at this scale
is still fragmented, since in provinces there are infrastructures of national, regional, and provincial
ownership which are separately operated. In consequence, the framework of relational contracts is
directly applicable only to road networks belonging to the same type of ownership, i.e., the networks
of the national, regional, or provincial roads. This suggests the need for additional research supporting
the development of a system of relational contracts in which the transference of actions between
infrastructures of different owners could be regulated in order to achieve duties at the local scale.
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