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A B S T R A C T

The mandatory use of facemasks is a public health measure implemented by various countries in response to the novel coronavirus disease 19 (COVID-19) pandemic.
However, there have been case reports of sudden cardiac death (SCD) with the wearing of facemasks during exercise. In this paper, we hypothesize that exercise with
facemasks may increase the risk of ventricular tachycardia/ventricular fibrillation (VT/VF) leading to SCD via the development of acute and/or intermittent hypoxia
and hypercapnia. We discuss the potential underlying mechanisms including increases in adrenergic stimulation and oxidative stress leading to electrophysiological
abnormalities that promote arrhythmias via non-reentrant and reentrant mechanisms. Given the interplay of multiple variables contributing to the increased ar-
rhythmic risk, we advise avoidance of a facemask during high intensity exercise, or if wearing of a mask is mandatory, exercise intensity should remain low to avoid
precipitation of lethal arrhythmias. However, we cannot exclude the possibility of an arrhythmic substrate even with low intensity exercise especially in those with
established chronic cardiovascular disease in whom baseline electrophysiological abnormalities may be found.

Introduction

In response to the novel coronavirus disease 19 (COVID-19) pan-
demic, different countries have implemented public health measures,
such as the mandatory use of facemasks. Recently, in this Journal,
Chandrasekaran and Fernandes have provided an excellent account in
which they discussed potential pathophysiological mechanisms that
underlie dysfunction of different organs due to wearing of facemasks
during exercise [1]. They discussed metabolic alterations, impairment
in immune response, cardio-metabolic stress, abnormal renal function,
and altered brain metabolism as well as mental health. Recently, there
have been case reports of sudden cardiac death (SCD) occurring during
exercise with facemasks. The aim of this article is to supplement their
hypotheses in discussing potential physiological mechanisms of ven-
tricular tachycardia/ventricular fibrillation (VT/VF) leading to SCD.

The hypothesis

In this paper, we hypothesize that exercise with facemasks may
increase the risk of ventricular tachycardia/ventricular fibrillation (VT/
VF) leading to SCD via the development of acute and/or intermittent
hypoxia and hypercapnia.

Whilst the prolonged use of face mask may not lead to significant
hypoxia and hypercapnia under normal use at rest, but can do so during

stress [2] or exercise [3], and is associated with increased respiratory
efforts, reduced work performance [4], adverse effects such as dis-
comfort [5] and headaches [6], especially in individuals with increased
basal metabolic demands such as pregnancy [7]. Such physiological
changes can be observed with simple surgical masks [2] but is ex-
acerbated with N95 [8] or full-face respirators [9]. Indeed, computa-
tional modelling studies report an increase in carbon dioxide level and a
decrease in oxygen level with respiratory use due to rebreathed air
[10]. Under such conditions, sympathetic stimulation and enhanced
chemoreflex hypoxia can lead to tachycardia and hypertension, which
can increase myocardial oxygen demand [11,12]. Whilst this may be
tolerated in healthy individuals, where the flexible arteries are able to
blunt the hypoxia-induced increased cardiac preload, arrhythmia may
be aggravated in those with underlying pathology [13]. The mechan-
isms of arrhythmias can be divided into non-reentrant and reentrant
activity [14]. This article discusses the electrophysiological abnormal-
ities that can be induced by hypoxia and hypercapnia, with a summary
provided in Fig. 1.

Arrhythmia initiation

Arrhythmia initiation requires premature ventricular beats, which
can be generated by enhanced automaticity, parasystole, triggered ac-
tivity (early afterdepolarizations (EADs) and delayed
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afterdepolarizations (DADs)) or reentry. Some of these mechanisms
may play a role in the initiation of arrhythmia during hypoxia. Firstly,
during hypoxia-induced adrenergic stimulation, increased phosphor-
ylation of L-type calcium channel increases Ca2+ influx into cardiac
myocytes during the plateau phase of the cardiac action potential,
leading to prolonged action potential duration (APD), induction of
EADs and triggered activity [15]. Secondly, there is accumulation of
cyclic AMP during ischaemia [16], which can generate DADs [17].
Indeed, studies on isolated canine ventricular tissues reported oscilla-
tory afterpotentials which initiated extrasystoles during the reperfusion
phase of ischemia–reperfusion injury [18]. Hypoxia alone is also suf-
ficient to generate ectopic foci through micro-reentry in a human
ventricular model, suggesting that hypoxic episodes can led to lethal
ventricular tachyarrhythmia in those with underlying myocardial fi-
brosis [19].

Arrhythmia persistence

Following initiation, the trigger must persist or mechanisms such as
reentry are needed to sustain the arrhythmia. Reentry may occur in the
presence of an obstacle around which an action potential can circulate,
or without such obstacles. The commonest form of reentry requires an
obstacle. The obstacle in reentry may be an anatomical abnormality,
such as an area of fibrosis, or can be generated functionally such as an
area of refractoriness. Mines proposed three criteria for this type of
reentry [20]: (a) an area of unidirectional block must be present; (b) the
excitation wave propagates along a distinct pathway, returns to its
point of origin, and starts again; and (c) interruption of the circuit at
any point would terminate this circus movement. In this circus-type
reentry, the conduction velocity (CV) of the cardiac action potential
must be reduced or the effective refractory period (ERP) must be re-
duced, such that the activation wavefront can activate the tissue ahead
of it. This can be summarized in excitation wavelength (λ) given by
CV × ERP.

The roles of increased oxidative stress

During acute hypoxia, action potential duration is shortened, which
is expected to be associated with a reduction in the ventricular ERP
with more rapid recovery of the membrane potential to baseline [21]. If
hypoxia becomes more sustained or intermittent, results in the un-
coupling of endothelial nitic oxide synthase, thereby increasing the
production of reactive oxygen species (ROS). The resulting increase in
oxidative stress was found to be associated with the initiation and
perpetuation of ventricular arrhythmias [22,23], which can be ex-
plained by abnormalities in the activity or expression of cardiac ion
channels [24]. These in turn lead to alterations in CV, APD or ERP,
which serve as the substrate for arrhythmogenesis. CV is determined by
sodium channel activation and gap junction conduction. Action po-
tential duration (APD) is determined by a balance of inward and out-
ward currents, and ERP is determined by a combination of membrane
potential recovery and sodium channel reactivation.

Hypoxia leads to reduced function of the voltage-gated sodium
channel Nav1.5, leading to smaller INa, or to altered function of gap
junctions that mediate electrical coupling between adjacent cardio-
myocytes [25]. Moreover, acidosis from hypercapnia can lead to both
persistent membrane depolarization and reduced phase 0 slope of the
cardiac action potential [26]. Together, these abnormalities can lead to
reduced CV and smaller λ, and/or increased heterogeneity in conduc-
tion. Moreover, hypoxia can increase the late component of INa through
SUMOlysation [27], leading to prolonged APDs that can predispose to
reentry.

The uptake and release of calcium ions are also interfered by in-
creased oxidative stress [28]. Reduction of oxidation-sensitive cysteine
residues in sarcoplasmic reticulum Ca2+-ATPase (SERCA), responsible
for releasing intracytoplasmic Ca2+ back to the sarcoplasmic reticulum,
results in cytosolic Ca2+ accumulation and calcium-mediated ar-
rhythmias [29,30]. Furthermore, increased cytosolic Ca2+ level pro-
motes Na+-Ca2+ exchanger (NCX) activity, which can generate late
EADs [31,32]. Increased oxidative stress also acts on the activity of NCX
directly through the activation of TRP channels and epigenetic altera-
tions [33,34].

Fig. 1. Electrophysiological mechanisms underlying ventricular arrhythmogenesis during exercise with facemasks.
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Acute hypoxia can also induce prolonged APDs by reducing outward
K+ currents. The activity of hERG1 potassium channels, which con-
tributes to the outward K+ currents and underlies the long QT syn-
drome when mutated, was found to be significantly inhibited during
mild oxidative stress [35], as is the transient outward potassium current
[36]. The high sensitivity and complex interplay of different ion
channels under increased oxidative stress explains the electrocardio-
graphic QTc and Tpeak-Tend interval prolongation under intermittent
hypoxia, reflecting prolonged repolarization and increased dispersion
of repolarization, leading to increased reentry risk [37–40].

Conclusion

In conclusion, exercise with facemasks may increase the risk of SCD
via the development of acute and/or intermittent hypoxia and hy-
percapnia. The hypothesized mechanisms include increased adrenergic
stimulation, increased oxidative stress leading to electrophysiological
abnormalities that promote arrhythmias via non-reentrant and re-
entrant mechanisms. Given the interplay of multiple variables con-
tributing to the increased arrhythmic risk, we advise avoidance of a
facemask during high intensity exercise, or if wearing of a mask is
mandatory, exercise intensity should remain low to avoid precipitation
of lethal arrhythmias. However, we cannot exclude the possibility of an
arrhythmic substrate even with low intensity exercise especially in
those with established chronic cardiovascular disease in whom baseline
electrophysiological abnormalities may be found [41,42].
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