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Abstract
Background: Recent years have seen a dramatic increase in the use of mathematical modeling to
gain insight into gene regulatory network behavior across many different organisms. In particular,
there has been considerable interest in using mathematical tools to understand how multistable
regulatory networks may contribute to developmental processes such as cell fate determination.
Indeed, such a network may subserve the formation of unicellular leaf hairs (trichomes) in the
model plant Arabidopsis thaliana.

Results: In order to investigate the capacity of small gene regulatory networks to generate
multiple equilibria, we present a chemical reaction network (CRN)-based modeling formalism and
describe a number of methods for CRN analysis in a parameter-free context. These methods are
compared and applied to a full set of one-component subnetworks, as well as a large random
sample from 40,680 similarly constructed two-component subnetworks. We find that positive
feedback and cooperativity mediated by transcription factor (TF) dimerization is a requirement for
one-component subnetwork bistability. For subnetworks with two components, the presence of
these processes increases the probability that a randomly sampled subnetwork will exhibit multiple
equilibria, although we find several examples of bistable two-component subnetworks that do not
involve cooperative TF-promoter binding. In the specific case of epidermal differentiation in
Arabidopsis, dimerization of the GL3-GL1 complex and cooperative sequential binding of GL3-GL1
to the CPC promoter are each independently sufficient for bistability.

Conclusion: Computational methods utilizing CRN-specific theorems to rule out bistability in
small gene regulatory networks are far superior to techniques generally applicable to deterministic
ODE systems. Using these methods to conduct an unbiased survey of parameter-free deterministic
models of small networks, and the Arabidopsis epidermal cell differentiation subnetwork in
particular, we illustrate how future experimental research may be guided by network structure
analysis.
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Background
The availability of high-throughput techniques for gene
expression analysis and identification of promoter-tran-
scription factor (TF) interactions has led to characteriza-
tion of the intricate gene regulatory networks that govern
organism behavior [1-3]. These networks are composed of
a large number of small and topologically distinct subnet-
works, including the overrepresented 'network motifs' [4-
7]. In recent years, dynamical systems modeling of regula-
tory and signaling pathways has provided insight into the
equilibrium states and transient dynamics of such subnet-
works [8,9]; for example, detailed cellular and subcellular
models demonstrate that interconnected positive and
negative feedback loops may give rise to the phenomena
of oscillations, excitability, and the existence of multiple
stable equilibria (e.g., bistability) [10,11].

Bistability in particular is ubiquitous in biological systems
ranging from biochemical networks to ecosystems [12-
16]. In bistable systems, graded inputs (e.g., the concen-
tration of a specific hormone) are converted into a discon-
tinuous ON/OFF response [17-20]. Switch-like behavior
is also a characteristic of many developmental processes,
and it has been suggested that the maintenance of two dis-
tinct phenotypic states in the absence of genetic or envi-
ronmental differences may sometimes be attributed to
bistability in an underlying gene network [21].

An intriguing system that exhibits phenotypic bistable
behavior, and as such is an excellent candidate for the
study of the potential role of bistability in cell fate deter-
mination, is the formation of unicellular leaf hairs (tri-
chomes) in the model plant Arabidopsis thaliana. In
Arabidopsis, trichomes differentiate from pluripotent epi-
dermal cells by the action of regulatory proteins belong-
ing to the R2R3-MYB (e.g., GL1) and basic helix-loop-
helix (bHLH) (e.g., GL3) classes [22]. These positive regu-
lators directly regulate other TFs (e.g., GL2) that positively
induce trichome initiation, as well as small inhibitory
proteins (e.g., CPC). A simplified version of this network
is shown in Fig. 1. An important aspect of trichome differ-
entiation not indicated in Fig. 1 is the free movement of
inhibitory proteins to adjacent epidermal cells [23] where
they prevent GL3 from interacting with GL1 [24], thus cre-
ating a domain of surrounding cells that will not become
trichomes and resulting in a characteristic spatial pattern.

Previous attempts at modeling this cell fate determination
system have aimed at explaining how trichome patterns
form out of a field of initially equivalent epidermal cells,
but have ignored the question of how the primary identity
decision is made [25,26]. Such models assume an under-
lying mechanism of either the 'activator-inhibitor' or
'trapping/depletion' type, both of which include positive

regulation of GL3 by the GL3-GL1 active complex. Con-
sistent with the activator-inhibitor model [27], it has been
shown experimentally that the activators do positively
control the diffusible inhibitors [3]. However, although
recent work has suggested that a positive feedback loop
may be involved in cell fate specification in the root epi-
dermis [28], no such direct positive feedback has been
found in the leaf. Indeed, the regulators of trichome pat-
terning in the leaf may in fact be involved in a negative
feedback loop, as recently demonstrated for GL3 [29].
This poses the question of whether the regulatory subnet-
works known to be involved in trichome initiation have
the capacity for bistability, or whether this is unlikely
given the absence of experimental evidence for direct pos-
itive autoregulation.

Arabidopsis trichome differentiation networkFigure 1
Arabidopsis trichome differentiation network. In Ara-
bidopsis the network responsible for the differentiation of tri-
chomes from pluripotent epidermal cells consists of a well-
defined group of regulatory proteins belonging to the R2R3-
MYB (e.g., GL1) and basic helix-loop-helix (bHLH) (e.g., GL3) 
classes. GL1 proteins complex with GL3 proteins to directly 
regulate other transcription factors (e.g., GL2) that positively 
induce trichome initiation, as well as small inhibitory proteins 
(e.g., CPC). The interaction of GL3 with CPC or any of the 
other small MYB proteins such as TRY, ETC1, ETC2 or 
MYBL2 prevent GL3 from interacting with GL1 [24], thus 
creating a non-functional complex. In this simplified diagram, 
CPC represent all of these small MYB proteins which clearly 
show overlapping functions.
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Tools for establishing multistability in ODE models of 
regulatory networks
Determining if a given gene regulatory network has mul-
tiple equilibria first requires the construction of an appro-
priate mathematical model of the system. We consider
deterministic ODE models that take the form [30,31]

where c = (c1,�,cN)T is a vector of concentrations of N spe-
cies and F(c) = (F1(c),�,FN(c))T is a continuous and differ-
entiable matrix function that gives the rate of change of
the concentrations over time. In this context, a biologi-
cally meaningful equilibrium solution of Eq. 1 is a set of
(nonnegative) concentrations leading to dc/dt = 0, that is,
a vector css that satisfies F(css) = 0. Thus, a network with
multiple equilibria is one with two or more distinct vec-
tors c for which Eq. 1 yields dc/dt = 0, A given equilibrium
is stable (i.e., persists after small perturbations) provided
the Jacobian matrix,

has N eigenvalues with negative real part when evaluated
at the equilibrium concentrations. Since in practice there
is poor knowledge of the rate constants and binding affin-
ities that occur in F (c), we are primarily interested in
assessing a network's capacity for multiple equilibria or
bistability without specifying these parameters, though all
rate constants are assumed to be positive. A simple param-
eter-free graphical representation of the system is given in
its interaction graph in which each species is represented as
a graph node. A directed positive edge is drawn from spe-
cies i to j if ∂Fj/∂ci(c) > 0, a directed negative edge is drawn
if ∂Fj/∂ci(c) < 0. No edge is drawn if ∂Fi/∂ci(c) = 0.

As originally conjectured by Thomas [32] and later proven
[33], a necessary condition for multiple equilibria (also
known as multistationarity) in Eq. 1 is the presence of a
positive circuit in the interaction graph (i.e., a circuit for
which the product of the signs of the edges is positive; see
Fig. 2) for at least one set of species concentrations. Thus,
the absence of any positive circuits in a network rules out
the capacity for bistability, regardless of the parameters
chosen for the model. Another necessary condition for
multistationarity proposed by Kaufman [34] concerns the
nuclei of the interaction graph, which are defined as
unions of one or more disjoint circuits involving all the

vertices of the interaction graph. Multistationarity
requires either (i) the presence of a variable nucleus (that
is, a nucleus with at least one edge displaying more than
one sign depending on species concentration), or (ii) the
presence of two nuclei of opposite signs, where the sign of
a nucleus with p positive circuits is (-1)p+1 [35]. Networks
that do not satisfy either of these criteria may also be elim-
inated in a search for bistability.

When deterministic ODE models (Eq. 1) are constructed
from specified elementary processes under the assump-
tion of mass-action kinetics, their governing equations
takes the special form of a chemical reaction network (CRN)
[36],

where S is a stoichiometric matrix indicating the change in
the number of molecules of each species in a particular
reaction, and ϕ(c) is a vector of the reaction rates (written
as polynomial functions of the species concentrations
[37]). While both Eq. 1 and Eq. 3 are nonlinear ODEs, the
specific form of CRNs enables the application of powerful
CRN-specific network analysis techniques. One computa-
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Circuits in interaction graphsFigure 2
Circuits in interaction graphs. A circuit in the interaction 
graph is a closed sequence of oriented edges in which no 
edge is traversed more than once. In the figure shown here, 
there exists a circuit from species X to species Y (along the 
lower edge) and back to X (along the upper edge). The sign 
of the circuit is the product of the signs of the included 
edges, and can be positive (A and B), negative (C), or variable 
(D), in which case the sign changes with the circuit's location 
in phase space. Self-loops, which can also be positive or nega-
tive, are shown in gray.
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tional method can rule out multiple equilibria in a CRN
by determining if the associated polynomial function is
injective, i.e., it maps distinct arguments to distinct values
[37,38]. A related graphical technique involves analysis of
the CRN species-reaction (SR) graph [39,40] (see Addi-
tional file 1 for a description of the SR graph and its asso-
ciated multistationarity theorem). There is also a suite of
computational methods utilizing the so-called deficiency
theorems for CRNs that are implemented in the publicly-
available Chemical Reaction Network Toolbox [41].
These deficiency theorems give conditions for the exist-
ence, multiplicity, and stability of CRN steady-states that
may often be applied in a parameter-free context; for
example, the deficiency zero theorem states that if a CRN
has certain topological properties, then within each com-
patibility class (an invariant manifold in species concentra-
tion space in which solutions are bound and determined
by initial conditions), there is exactly one steady-state
with strictly positive concentrations, and this steady-state
is locally asympotically stable [42]. Interested readers may
refer to refs. [42-48] for details on the full range of theo-
rems implemented in the CRNT.

This section has briefly introduced five tools that can be
used to determine if a given regulatory network has the
capacity for multiple equilibria: the Thomas conjecture
and Kauffman's multistationarity conditions based on
analysis of the network's interaction graph (denoted
below as the IG-T and IG-K methods, respectively), a
multistationarity theorem based on the structure of the
CRN SR graph (denoted by SRG), a computational
method that can establish an injective property for the
CRN's polynomial function (denoted by INJ), and CRN
theory as implemented by the Chemical Reaction Net-
work Toolbox (denoted by CRNT). Below we use these
tools to analyze several small networks consisting of one
gene and one gene product (the one-component subnet-
works), in order to establish both the effectiveness of the
various methods and the subnetworks' capacity for multi-
stability. We then investigate a large set of more complex
two-component subnetworks, including the well-studied
'double negative' feedback system. These small networks
are studied without regard for their frequency of occur-
rence in the larger regulatory machinery of real biological
systems, that is, we do not restrict ourselves to overrepre-
sented network motifs. Lastly, we revisit the epidermal dif-
ferentiation system in Arabidopsis as a real-world example
of the applicability of these techniques.

Results and Discussion
Bistability in two positive autoregulatory subnetworks: a 
comparison of methods
Consider a small regulatory network consisting of a single
TF gene X that is transcribed and translated into protein P,
which in turn positively regulates the production of X by

binding to one or more independent cis-regulatory ele-
ments in its promoter. Such a module, commonly known
as a positive autoregulatory motif and shown schemati-
cally in Fig. 3, is abundant in the transcriptional regula-
tory networks of eukaryotes (e.g., [1]). Simple
representations such as that shown in Fig. 3 hide a signif-
icant amount of detail; for example, experimental and
computational methods commonly used to establish net-
work architecture usually fail to determine whether TFs
bind to DNA as monomers, dimers, or as part of higher
order structures. However, in the case of positive autoreg-
ulation, the actual form in which P binds to the promoter
of X—as a monomer (Fig. 3A) or as a dimer (Fig. 3B)—has
significant implications for the possibility of multistable
behavior.

In Fig. 3A, the motif is specified as a CRN that includes
basal production of P (X → X + P), degradation of P (P →
∅), reversible binding of P to the promoter of X (X + P
&#x21CC; XP), and production of P by the TF-gene com-
plex XP (XP → XP + P). In Fig. 3B there is also basal pro-
duction of P from X and degradation of P, however two
TFs now associate to form a homodimer (P + P &#x21CC;
PP), and it is this PP dimer that binds to the promoter of
X (X + PP &#x21CC; XPP) and produces P via the dimer-
gene complex XPP (XPP → XPP + P). From these sets of
elementary reactions, which following ref. [49] can also
be visualized as wiring diagrams (see second row of Fig.
3), one can write an unambiguous system of ODEs that
take the form of a CRN (Eq. 3). Although it has been
shown that transcription and elements of post-transcrip-
tional control combine to regulate the protein production
rate, and that stochasticity exists at all levels of regulation
[50], for simplicity we model protein production as a sin-
gle deterministic process (cf. [51]). We address the role of
translation and mRNA degradation in determining the
capacity for multiple stable states in the next section.

For both Fig. 3A (the monomer model) and Fig. 3B (the
dimer model), the existence of positive circuits in the
interaction graph (e.g., X-XP-X and P-XP-P in Fig. 3A and
X-XPP-X and P-PP-P in Fig. 3B) means that the IG-T theo-
rem does not preclude multiple equilibria. Neither does
the IG-K theorem preclude multiple equilibria; in Fig. 3A,
there is a variable nucleus that includes the variable circuit
X-P-X, and in Fig. 3B, there are two nuclei of opposite
signs (the positive nuclei composed of circuits P-PP-P, X-
X, and XPP-XPP, and the negative nuclei composed of cir-
cuits P-PP-P and X-XPP-X). (Eliminating one equation
using the conserved quantities [X] + [XP] (Fig. 3A) and [X]
+ [XPP] (Fig. 3B) does not change the results of the IG-T
and IG-K analysis; see Additional file 1.) The SRG method
is also unable to rule out bistability in these motifs, in Fig.
3A due to the splitting of the X + P complex pair (or c-pair)
associated with reaction X → X + P by two even-cycles
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Two specifications of a simple positive autoregulatory subnetworkFigure 3
Two specifications of a simple positive autoregulatory subnetwork. A positive autoregulatory motif consists of a gene 
X that is transcribed and translated into transcription factor P, which in turn positively regulates the transcription of X by bind-
ing to a single cis-regulatory element in its promoter as either (A) a monomer or (B) a dimer. For (A), the motif can be speci-
fied as a CRN that includes basal production of P from X (X → X + P), degradation of P (P → ∅), binding and dissociation of P 
from the promoter of X (X + P &#x21CC; XP), and production of P by the transcription factor-gene complex XP (XP → XP + 
P). For (B), there is also basal production of P from X and degradation of P, however two transcription factors now associate 
to form a homodimer (P + P &#x21CC; PP), and it is this PP dimer that binds to the promoter of X (X + PP &#x21CC; XPP) and 
produces P via the dimer-gene complex XPP (XPP → XPP + P). In both cases the motif can also be visualized as wiring dia-
grams. The corresponding interaction graphs contain positive interactions (blue), negative interactions (red), and a variable 
interaction that can be either positive or negative, depending on the concentration of the transcription factor P (black). In the 
SR graphs for these CRNs, species are indicated by circles and reactions by rectangles, with the participation of a species in a 
reaction denoted by undirected edges labelled with the participating complex. Colored edges indicate a c-pair.
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(one composed of X and X → X + P, and the second com-
posed of X, X → X + P, P, and X + P → XP), and in Fig. 3B
because the cycle containing P and P + P &#x21CC; PP is
not a 1-cycle or an odd-cycle. In addition, an injective
property cannot be established for either model's polyno-
mial function.

Unlike the IG-T, IG-K, SRG, and INJ methods, the CRNT
determined that the monomer model cannot admit mul-
tiple equilibria for any choice of parameters. Conversely,
the CRNT found that the dimer model does admit multi-
ple equilibria and generated a set of parameters for which
the motif is bistable. The dimer model mass-action ODEs
are shown in Fig. 4, along with a bifurcation diagram of
equilibrium species concentrations as a function of the
dimer association rate constant (see caption for parame-
ters). While it has been previously demonstrated through
analysis of a positive autoregulatory motif model with
explicit mRNA concentration that dimerization is neces-
sary for bistability [52], it is significant that modeling
transcription and translation as a single operation leads to
similar results.

The bistability of the dimer version of the autoregulatory
motif, confirmed using CRNT, is consistent with the ina-
bility of the IG-T, IG-K, SRG, and INJ methods to rule it
out. However, these methods are also unable to rule out
bistability in even the simple case of positive autoregula-
tion by a protein monomer, suggesting that they may be
of limited use in the analysis of more complex systems.

Analysis of twelve one-component subnetworks
We extended the preceding analysis to ten additional one-
component subnetworks constructed from various sub-
sets of the elementary reactions listed in Table 1 (see Addi-
tional file 1 for the specification rules). Table 2 shows that
the IG-T, IG-K, and SRG methods give little information
about the capacity for multistability in these twelve sim-
ple subnetworks. Indeed, all that can be determined using
these methods is the trivial result that multiple equilibria
requires the reversible binding of TFs to the promoters of
the component genes; constitutive expression alone is not
sufficient. The IG-T and IG-K methods can only rule out
mutistability for subnetwork ab (a minimal network con-
taining only basal production and degradation of P). The
SRG method only rules out multistability in subnetworks
ab and abe since the SR graphs contain only a single cycle
and thus there are no split c-pairs (see Additional file 1:
Fig. S4).

In contrast to these graphical methods, the INJ ruled out
multistability in six of twelve cases, and the CRNT ruled
out multistability in nine of twelve cases. Furthermore, for
the three subnetworks where multiple equilibria were not

ruled out by the CRNT (abefg, abcdefg, and abcefg), param-
eter sets leading to bistability were provided. In these two
methods we begin to see the strength of the full chemical
reaction network theory: with the assumption of mass-
action kinetics, the underlying structure of CRNs limits
the nonlinearities that appear in the full ODE model [48].
The bifurcation diagram for subnetwork abefg is shown in
Fig. 4. Similar results for subnetworks abcdefg and abcefg
are shown in Additional file 1, Fig. S5.

As previously mentioned, the twelve subnetworks pre-
sented in Table 2 were constructed under the assumption
that, for the purpose of analyzing subnetwork equilibria,
transcription and translation may be combined into a sin-
gle operation. We repeated our analysis using one-compo-
nent subnetworks augmented by elementary reactions
that make these processes explicit. The elementary reac-
tions X → X + P, XP → XP + P, XPP → XPP + P were
replaced by reactions representing transcription (X → X +
R, XP → XP + R, XPP → XPP + R), translation (R → R + P),
and mRNA degradation (R → ∅). Application of the
CRNT to these augmented one-component systems led to
no change in the results of Table 2, and thus we model
protein production as a single one-step process for the
remainder of this paper.

Survey of two-component regulatory subnetworks
Consideration of small networks consisting of two genes
(X1 and X2) and two gene products (P1 and P2) is a natural
extension of the analysis presented above. With a second
component included, the number of relevant subnet-
works increases to 40,680 (Additional file 1, Table S1 lists
the constituent reactions). The subnetworks may be
grouped by their number of dimer/promoter association
reactions; every two-component subnetwork has between
zero and six such reactions (two homodimers and one
heterodimer which can each bind to either promoter). For
bistability analysis, we applied the INJ method in an auto-
mated fashion using Matlab scripts provided by G.
Craciun [37]. No attempt was made to apply the IG-T, IG-
K, and SRG methods that were found to be uninformative
with respect to subnetworks with one-component (Table
2). Approximately 15,000 subnetworks were randomly
selected for study, sampled in a manner that ensured that
subnetworks with zero to six dimer-binding reactions
were represented in the same proportion as in the com-
plete set of subnetworks.

Surprisingly, we found that the percentage of two-compo-
nent subnetworks for which bistability could be ruled out
using the INJ method drops to only 6.71%, with a 95%
bootstrap confidence interval [6.31%, 7.11%], down
from 50% in the one-component systems. As shown in
Table 3, partitioning the results according to the number
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Bistable autoregulatory motifFigure 4
Bistable autoregulatory motif. The autoregulatory motif shown in Fig. 3B admits two stable equilibria, as shown in this 
bifurcation diagram. Stable steady states are denoted with solid lines, and unstable steady states are denoted with dashed lines. 
Equilibrium concentrations for X, P, PP, and XPP are plotted as a function of the association rate constant for dimer formation. 
The mass-action ODEs for this motif are also given. The other parameters obtained from the CRNT are: kX→X+P = 2.81, kP→∅ 
= 1, kPP→P+P = 0.98, kX+PP→XPP = 2.76, kXPP→X+PP = 1.55, and kXPP→XPP+P = 46.9. The unimolecular rate constants and dissocia-
tion rate constants are in units of time-1, while the bimolecular association rate constants are in units of conc-1time-1.
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of dimer-binding reactions reveals the importance of TF
dimerization and feedback to multistability: the group
with no dimers binding has the highest percentage of sub-
networks that cannot be bistable (26.2% with confidence
interval [19.0%, 34.4%]), and as the number of dimer-
binding reactions increases, the percentage of subnet-
works definitively without multiple equilibria decreases.
Multistability could not be ruled out for any of the sam-
pled two-component subnetworks that contain six dimer-
promoter binding reactions.

In the preceding analysis, we did not distinguish between
productive and unproductive TF binding reactions. We
define a productive reaction as one in which expression of
the corresponding gene is activated. Similarly, an unpro-
ductive reaction is one in which gene expression is
repressed. When the analysis is applied to subsets of sys-
tems lacking either productive or unproductive TF bind-
ing, the percentage of sampled subnetworks for which INJ

could note rule out bistability increases as the number of
binding reactions increases (see Additional file 1, Tables
S3 and S4). Note that the INJ method is more successful
at ruling out bistability for subnetworks lacking produc-
tive TF binding than it is for subnetworks lacking unpro-
ductive TF binding, perhaps because bistable networks are
enriched in productive TF-promoter interactions.

The CRNT was found to be the most effective method for
establishing and ruling out bistability in the one-compo-
nent subnetworks. However, the current release of the
CRNT cannot be automated, and is thus difficult to apply
to a large set of two-component systems. For this reason
we randomly selected 25 two-component subnetworks
and applied the INJ and CRNT methods to compare their
effectiveness. The CRNT found 19 subnetworks that do
not support multiple equilibria (76% with confidence
interval [52%, 88%]), and it generated parameter sets that
lead to bistability for 5 of the remaining 6 subnetworks
(20% of total with confidence interval [4%, 36%]). This is
quite similar to the fraction of one-component subnet-
works that were found by the CRNT to be bistable (25%)
and well within the confidence interval. Conversely, the
INJ method was only able to rule out bistability for 3 of
the 19 subnetworks ruled out by the CRNT (Additional
file 1, Table S2). Although derived from a small sample,
taken together these results suggest that the INJ method is
debilitated by network size to a larger degree than the
CRNT method.

The five two-component subnetworks that CRNT estab-
lished can support bistability (abcdfhjk, abcdehjk, abcejk,
adijkqw, and abefjk) are compared in Fig. 5. It can be seen

Table 1: Construction of one-component regulatory 
subnetworks

Reaction label Reaction

a X → X + P
b P → ∅
c X + P        XP
d XP → XP + P
e P + P       PP
f X + PP       XPP
g XPP → XPP + P

Seven reactions that are combined to generate twelve subnetworks 
with one gene and one gene product.

Table 2: Survey of one-component regulatory subnetworks

Subnetwork Dimer formation Monomer binding Dimer binding Multiple equilibria ruled out?

IG-T IG-K SRG INJ CRNT

ab no no no yes yes yes yes yes
abcd no yes+ no no no no no yes
abc no yes- no no no no yes yes
abe yes no no no no yes yes yes

abefg yes no yes+ no no no no no
abef yes no yes- no no no yes yes

abcde yes yes+ no no no no no yes
abcdefg yes yes+ yes+ no no no no no
abcdef yes yes+ yes- no no no no yes
abce yes yes- no no no no yes yes
abcef yes yes- yes- no no no yes yes
abcefg yes yes- yes+ no no no no no

Analysis of twelve gene regulatory subnetworks that consist of one gene and one gene product. The letters that make up the Subnetwork names 
refer to the constituent reactions listed in Table 1. The entries yes+/- indicate productive/unproductive binding to the gene promoter. The five 
analytical tools IG-T, IG-K, SRG, INJ, and CRNT are described in the text. In the three cases where multiple equilibria were not ruled out 
(subnetworks abefg, abcdefg, and abcefg), the CRNT provided example sets of rate constants leading to bistability.

⇋

⇋

        ⇋     
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that all five subnetworks contain binding of the X1 gene by
P1 and dimerization of P2 by both P1 and P2. The basal
production and degradation reactions are also common
to all but are not shown for clarity. A number of other
reactions are common to various subnetworks. It would
appear that one common feature between all of these bist-
able systems is sequestration of the productive TF(s) into
inactive complexes. In subnetwork abcejk for example, P1
binds productively to X1, but it also complexes with itself,
with P2, and it binds unproductively to X2. P2 also binds
unproductively to X1, competing with P1. Interestingly,
only adijkqw includes a TF dimer-promoter binding reac-
tion, shown to be essential for bistability in the one-com-
ponent systems. Though not comprehensive, this analysis
does suggest the existence of a large number of different
network architectures capable of supporting bistability.

The canonical reciprocal repression subnetwork
We turn our attention to the 'double-negative' feedback
system (also known as a reciprocal repression system) first
described by Monod and Jacob [53]: a small network con-
sisting of pair of genes (X1 and X2) in which each gene's
product inhibits transcription of the other gene (Fig. 6). It
has been shown both theoretically [54] and experimen-
tally [55] that cooperativity in TF binding is required for
this subnetwork to exhibit bistable behavior. An analysis
of CRN specifications of this small network is thus an
excellent test of the techniques discussed herein. We con-
structed two representatives of this subnetwork: one with
regulation via TF monomers (Xi + Pj &#x21CC; Xi Pj for i ≠
j) and the other with TF dimerization and regulation via
TF dimer-promoter interactions (Pi + Pi &#x21CC; PiPi and
Xi + Pj Pj &#x21CC; XiPj Pj for i ≠ j). Both models also con-
tained basal production (Xi → Xi + Pi) and degradation (Pi
→ ∅) of TFs. CRNT analysis confirmed that the subnet-
work containing TF dimerization exhibits bistability for a
suitable set of parameters, while the subnetwork with
double-negative feedback via TF monomers does not have
this capacity.

Revisiting the trichome differentiation subnetwork with 
the CRNT
As described above and shown in Fig. 1, the trichome dif-
ferentiation subnetwork consists of regulators belonging
to the R2R3-MYB (e.g., GL1) and bHLH (e.g., GL3) classes
that directly regulate GL2 and CPC among several other
targets [3]. As there is no experimental evidence for the
direct positive feedback that has been posited in current
models of trichome initiation, the question of whether
the system can support bistability without it is one of great
interest.

We specify the core trichome differentiation subnetwork
as a CRN that contains reaction equations for basal
expression and degradation of CPC, formation of the
GL3-GL1 and GL3-CPC complexes, and binding of a sin-
gle GL3-GL1 complex to the promoter of CPC to posi-
tively regulate its production. The constituent equations
are given in Table 4 (Model 1). On application of the
CRNT, we found that this subnetwork specification can-
not support bistability. However, we have shown that
details of TF-promoter interactions can be a critical deter-
minant for a regulatory network to exhibit multiple stable
equilibria. We thus constructed three additional CRN
specifications of the trichome differentiation subnetwork
that allow for the possibility of dimerization of the GL3-
GL1 active complex. As with the monomer-binding
model described above, each of these models contains
basal expression and degradation of CPC, and GL3-GL1
and GL3-CPC complex formation. In Model 2, GL3-GL1
can only bind to the promoter of CPC and activate its
transcription as a complex dimer (heterotetramer) that
forms prior to TF-promoter interaction. Model 3 contains
sequential binding of two GL3-GL1 complexes to the sep-
arate sites in the CPC promoter, with CPC protein being
produced only when both complexes are bound. Model 4
is a hybrid of Model 1 and Model 2, where the GL3-GL1
can bind to the CPC promoter as a monomer or a dimer,
and both can activate transcription of CPC. The constitu-
ent equations for these models are also given in Table 4.

Table 3: Bootstrap analysis results for two-component regulatory subnetworks

# dimers binding % of total models % with multiple equilibria ruled out

0 0.8 26.2 [19.0, 34.4]
1 4.8 19.8 [17.1, 22.9]
2 14.5 12.6 [11.3, 14.1]
3 25.5 8.9 [8.1, 9.9]
4 28.8 4.1 [3.5, 4.7]
5 19.1 1.4 [1.0, 1.9]
6 6.5 0.0

The percentage of two-component subnetworks for which multiple equilibria can be ruled out, based on INJ analysis of ~15,000 randomly selected 
subnetworks (see text). Results are grouped according to the number of dimer-binding reactions in each subnetwork. Brackets indicate bootstrap 
95% confidence intervals calculated by sampling with replacement 10,000 times. Overall, the capacity for multiple equilibria is ruled out by the INJ 
method for 6.71% [6.31%, 7.11%] of sampled subnetworks.
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In contrast to the monomer-binding case, we found Mod-
els 2-4 are all capable of exhibiting bistability, even in the
absence of direct positive autoregulation.

Conclusion
We have used a modeling framework in which small gene
regulatory networks are specified as chemical reaction net-
works (CRNs), with reactions describing transcription fac-
tor (TF) production, degradation, dimerization, and
association of both monomer and dimer TFs with pro-
moters in a productive or unproductive fashion. We used
these methods to survey twelve subnetworks consisting of
one TF gene and gene product (the one-component sub-
networks) and found that bistability is only exhibited by
those that include positive feedback with cooperative TF
binding (Table 2). This is not unexpected, as direct posi-
tive feedback and non-linearity are often prerequisites for
bistability in simple systems [15,20]. When the analysis
tools were applied to a large random sample of two-com-
ponent subnetworks (from a total of 40,680 consistent
with our CRN specification rules; see Additional file 1),

we found that the presence of cooperative TF binding
makes it more difficult to rule out bistability (Table 3),
although it is ruled out more often in subnetworks lacking
direct positive feedback than it is for those lacking direct
negative feedback (Additional file 1, Tables S3 and S4).
Interestingly, we found several examples of bistable two-
component subnetworks that do not include promotor-
TF dimer interactions at all (Fig. 5 and Additional file 1,
Table S2), consistent with prior work demonstrating that
sequestration and titration of active TFs into inactive com-
plexes can give rise to non-linearity and bistable behavior
[51,56].

Our application of the various equilibria analysis tools
suggests that the interaction graph-based techniques (IG-
T and IG-K) that are generally applicable to deterministic
ODE systems are rarely informative with respect to small
gene regulatory networks. We also found that the defi-
ciency theorems implemented in the Chemical Reaction
Network Toolbox (CRNT) are generally more informative
than computational (INJ) and graphical (SRG) methods
that attempt to rule out multiple equilibria by establish-
ing injectivity of the reaction network polynomial func-
tion. We emphasize that the success of the CRNT is partly
due to the special form of chemical reaction networks that
assume kinetics of the mass-action form. However, this
assumption would appear to be a valid one under many
working conditions. That the CRNT accurately deter-
mined the stability properties of the well-studied positive
autoregulatory and reciprocal repression systems (Fig. 3
and Fig. 6, respectively), and that one-component systems
found by CRNT to be bistable were confirmed as such
with bifurcation diagrams (Fig. 4 and Additional file 1,
Fig. S5), is further validation of the CRNT's usefulness.

It is important to note that the analytical methods
described herein are not the only ones available for prob-
ing the stability properties of a dynamical system. One
additional method involves evaluation of the Jacobian
matrix (Eq. 2), because the existence of a saddle-node
bifurcation leading to stable and unstable equilibria
requires the Jacobian to be singular at the critical point css
(i.e., det{J(css)} = 0) [57]. We do not use continuation
methods to directly rule out saddle-node bifurcations in
this work, as our attempts at such analysis have not
yielded results, and to our knowledge it would be difficult
to explore large numbers of regulatory networks in this
fashion. Furthermore, deterministic ODEs are only one of
several mathematical structures used to model gene regu-
latory networks; other possibilities include boolean net-
works, Petri nets, Markov chains, stochastic ODEs, and so
on. Still, the parameter-free approach to modeling that we
have emphasized here is an attractive one for at least two
reasons: (1) there are often multiple assumptions made
(such as the validity of Michaelis-Menten or Hill-type

Bistable two-component subnetwork reactionsFigure 5
Bistable two-component subnetwork reactions. The 5 
two-component subnetworks that CRNT established can 
support bistability (abcdfhjk, abcdehjk, abcejk, adijkqw, and 
abefjk) are compared. All 5 subnetworks contain binding of 
the X1 gene by P1 and dimerization of P2 by both P1 and P2. 
(The basal production and degradation reactions are also 
common to all but are not shown explicitly.) A number of 
other reactions are common to various subnetworks.

X2 + P2 X2P2

X1P1 → X1P1 + P1

X1P2 X1P2 + P1→
X2P2 → X2P2 + P2

P1 + P1 P1P1

P1 + P2 P1P2

P2 + P2 P2P2

X2 + P2P2 X2P2P2

X2P2P2 → X2P2P2 + P2

ab
cd
fh
jk

ad
ijk

qw

ab
cd
eh
jk

ab
ce
jk

ab
ef
jk

X1 + P1 X1P1

X1 + P2 X1P2

X2 + P1 X2P1

reaction present reaction absent 
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expressions) when complex network models are con-
structed as a generic system of ODEs, and these assump-
tions may result in inconsistencies [49], and (2) as we
have shown, CRN theory facilitates analysis that is usually
more fruitful than techniques available for generic ODEs.

The current state of CRN-based modeling and analysis
does not include stochastic effects, despite the fact that
there is both experimental and theoretical evidence that
low concentrations of TFs or binding sites can lead to fluc-
tuations (i.e, noise) that may sometimes be an essential
aspect of network function [50,58-60]. The CRN approach
thus represents a first step towards generating mixed mod-
els of biological systems that incorporate stochastic
effects. Future work could extend CRN-based techniques
to include stochastic dynamics consistent with the ele-
mentary processes that compose gene regulatory networks
[61]. We further anticipate that new releases of the CRNT
software package will also be amenable to automation
and will allow for CRNs of unlimited size.

Although the modeling formalism used here is a simple
one, it is not clear that an increase in complexity would
lead to different conclusions; for example, we have
already demonstrated that excluding mRNA does not
influence the one-component subnetwork results. Two
other simplifications made find significant experimental
support: (i) that TF dimers are stable to proteolytic degra-
dation (cf. [51,56]), a reasonable assumption given that
protein dimerization typically provides protection against
proteolysis by enhancing thermal stability or through
blocking access to monomer degradation tags [52], and
(ii) the exclusion of higher-order oligomeric TF complexes
(such as trimers or tetramers), an assumption appropriate
for many eukaryotic TF gene families where dimerization
is sufficient for functionality [62]. On the other hand, TF
activation can occur by posttranslational modification
(e.g., phosphorylation [51]), a situation analogous to cell
signaling pathways in which dual phosphorylation/
dephosphorylation cycles confer bistability [63]. While it
is possible to extend the modeling formalism illustrated
here in these and other directions, the additional combi-
natorial complexity would make surveys of multi-compo-
nent networks computationally challenging.

Applying the CRNT to the real-world example of Arabidop-
sis epidermal cell differentiation, we have shown that gene
regulatory subnetworks consistent with established com-
ponents and interactions may have the capacity for bista-
bility. This capacity of course depends on the specific
details of the network architecture. In particular, we found
that dimerization of the active GL3-GL1 complex and
cooperative sequential binding of GL3-GL1 to the CPC
promoter are each independently sufficient to generate a
bistable subnetwork, even in the absence of direct positive
autoregulation. Both of these alternatives have some
experimental support. Sequential binding of GL3-GL1 to
the CPC promoter is plausible, as multiple TF binding
sites in gene promoters are a general characteristic of

Two-component reciprocal repressionFigure 6
Two-component reciprocal repression. A reciprocal 
repression subnetwork consists of pair of genes (X1 and X2) 
in which each gene's product blocks transcription of the 
other gene, either as a monomer (Xi + Pj &#x21CC; XjPj for i 
≠ j) or a dimer (Pi + PI &#x21CC; Pi Pi and Xi + Pj Pj &#x21CC; 
Xi Pj Pj for i ≠ j). Basal protein production (Xi → Xi + Pi) and 
protein degradation (Pi → ∅) are also included in specifica-
tion of the subnetwork.

X1

P1

X2

P2

Table 4: CRNs consistent with the core trichome differentiation network

Reactions Model 1 Model 2 Model 3 Model 4

X → X + CPC ✔ ✔ ✔ ✔

CPC → ∅ ✔ ✔ ✔ ✔

GL3 + GL1 &#x21CC; GL3-GL1 ✔ ✔ ✔ ✔

GL3 + CPC &#x21CC; GL3-CPC ✔ ✔ ✔ ✔

GL3-GL1 + GL3-GL1 &#x21CC; GL3-GL1-GL3-GL1 ✔ ✔

GL3-GL1 + X &#x21CC; GL3-GL1-X ✔ ✔ ✔

GL3-GL1 + GL3-GL1-X &#x21CC; GL3-GL1-GL3-GL1-X ✔

GL3-GL1-X → GL3-GL1-X + CPC ✔ ✔

GL3-GL1-GL3-GL1 + X &#x21CC; GL3-GL1-GL3-GL1-X ✔ ✔

GL3-GL1-GL3-GL1-X → GL3-GL1-GL3-GL1-X + CPC ✔ ✔ ✔

Result of CRNT analysis: not bistable bistable bistable bistable

Constituent reactions for four specifications of the trichome differentiation network (Fig. 1).
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eukaryotic gene expression [64]. And while dimerization
of GL3-GL1 has not been experimentally demonstrated,
GL3 can dimerize [65] either through the conserved
bHLH domain, as is the case for other bHLH factors [66],
or through the conserved C-terminal ACT domain [67].
Bistability may also be achieved if the GL3-GL1 complex
is not stable against proteolysis (not shown).

If it can be determined that GL3-GL1 does not in fact
dimerize or bind to two separate binding sites in the CPC
promoter, and that it is in fact a stable complex, then the
current view of the core trichome differentiation network
(Fig. 1) must be incomplete. In that case, there are several
intriguing possibilities. It may be that one or more of the
many additional trichome-related genes that have been
recently identified [3] are as central to trichome differen-
tiation as GL3, GL1, and CPC. It is possible that epidermal
cell differentiation in Arabidopsis is not in fact subserved
by a bistable gene regulatory network. It may also be that
some unknown extrinsic mechanism plays a role in Arabi-
dopsis epidermal cell fate determination. A mechanism of
this kind may render a bistable network irreversible by
causing one equilibrium state to be inaccessible [21], or it
may fix a transient activated state before the system can
return to a basal equilibrium [68]. There is some evidence
for these two latter possibilities, as a differentiated tri-
chome cell is unlikely to revert back to an undifferentiated
state. In particular, a recent study has shown that the
induction of GL3 function for 4 hrs is sufficient to trigger
trichome initiation, with development continuing even
after GL3 function is completely removed [29]. Clearly
there are a number of possibilities that we have only
begun to investigate. Future experiments will be required
to distinguish between them and may yet provide insights
into this interesting developmental model system.

Methods
Analyzing bistability with the CRNT
The Chemical Reaction Network Toolbox (CRNT) is a
stand-alone DOS program that uses CRN theory [42,44-
47] to to determine if a given CRN has the capacity for
multiple equilibria; if so, it will often provide example
parameter values (see ref. [41]). In Additional file 1 we
detail rules designed to specify families of a gene regula-
tory networks of interest (e.g., the one-component sub-
networks shown in Tables 1 and 2, each of which is a
CRN). To analyze a subnetwork using CRNT, we list the
species, complexes (including the null complex ∅), and
reactions, and enter them manually into the CRNT Net-
work Analyst. With the currently available implementa-
tion of the CRNT we were restricted to the analysis of
subnetworks containing twenty complexes or less. For
most subnetworks discussed here, the CRNT Advanced
Deficiency Theory option is needed following the initial
analysis.

Generation of one- and two-component regulatory 
subnetworks
One- and two-component subnetworks were generated in
the Matlab programming environment (The MathWorks,
Inc.). One-component networks are distinguished by
whether TF monomer can bind the promoter and, if mon-
omer binding does occur, whether the monomer-promo-
tor complex results in transcription; thus there are three
options with respect to monomer binding (no, yes-, yes+;
see Table 2). One-component networks are further distin-
guished by whether or not dimers can form (no, yes) and,
if so, whether the dimer-promoter complex is productive
(no, yes+, yes-). Because this latter question is only relevant
when dimer can form, there are 3 + 3.3 = 12 distinct one-
component networks.

The generation of two-component networks involves enu-
merating all possibilities with regard to homodimer and
heterodimer formation, being careful to avoid double
counting of networks that are equivalent via symmetry,
i.e., when all species (X1, X2, P1, P2, etc.) are relabeled by
exchanging the subscripts 1 and 2. The heterodimers P1P2
and P2P1 were assumed to be equivalent. These distinct
possibilities for homodimer and heterodimer formation
were subsequently instantiated multiple times to account
for each possible pattern of monomer and dimer binding,
resulting in 40,680 two-component networks.
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