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Background: Renal cell carcinoma is one of the most chemoresistant cancers, and its metastatic form requires administration of
targeted therapies based on angiogenesis or mTOR inhibitors. Understanding how these treatments impact the human
metabolism is essential to predict the host response and adjust personalised therapies. We present a metabolomic investigation
of serum samples from patients with metastatic RCC (mRCC) to identify metabolic signatures associated with targeted therapies.

Methods: Pre-treatment and serial on-treatment sera were available for 121 patients participating in the French clinical trial
TORAVA, in which 171 randomised patients with mRCC received a bevacizumab and temsirolimus combination (experimental arm
A) or a standard treatment: either sunitinib (B) or interferon-aþbevacizumab (C). Metabolic profiles were obtained using nuclear
magnetic resonance spectroscopy and compared on-treatment or between treatments.

Results: Multivariate statistical modelling discriminates serum profiles before and after several weeks of treatment for arms A and
C. The combination A causes faster changes in patient metabolism than treatment C, detectable after only 2 weeks of treatment.
Metabolites related to the discrimination include lipids and carbohydrates, consistently with the known RCC metabolism and side
effects of the drugs involved. Comparison of the metabolic profiles for the three arms shows that temsirolimus, an mTOR inhibitor,
is responsible for the faster host metabolism modification observed in the experimental arm.

Conclusions: In mRCC, metabolomics shows a faster host metabolism modification induced by a mTOR inhibitor as compared
with standard treatments. These results should be confirmed in larger cohorts and other cancer types.

Owing to limited clinical signs, renal cell carcinoma (RCC) is
diagnosed at advanced stages and with metastases for B15–20% of
patients (Rini et al, 2009). The treatment of metastatic RCC
(mRCC) usually leads to extremely poor results, with response
rates of B15–20% and a 5-year survival rate between 5 and 10%
(Gupta et al, 2008). mRCC is resistant to a broad range of therapies
(Lin et al, 2011), as cytotoxic chemotherapy, radiotherapy, or

cytokine therapy. Although their efficacy in delaying tumour
growth and progression of the disease is controversial, cytokine
therapy drugs have been used as first-line treatment strategy
(Gupta et al, 2008; Rini et al, 2009). The development of targeted
therapies, especially agents directed to the VEGF pathway,
has recently revolutionised the treatment of mRCC, leading
to a median overall survival increasing from 13 to 15 to over
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25 months. Since 2006, the US Food and Drug Administration and
the European Medicines Agency have approved the use of seven
targeted therapies for mRCC, five of them being directed to VEGF
or its receptors (sunitinib, sorafenib, pazopanib, axitinib, bevaci-
zumab) and two corresponding to inhibitors of the mTOR
complex (temsirolimus and everolimus). Numerous clinical trials
have been undertaken to understand their effects on renal cell
cancer (Patard et al, 2008; Rini et al, 2008; van der Veldt et al,
2010; Rini and Powles, 2013). Several types of targeted therapies
acting on different pathways have been proposed (Brekke and
Sandlie, 2003; Gerber, 2008; Zhang et al, 2009), and their
combination could lead to a synergy promoting better response
rate. However, a few clinical trials have demonstrated that the
combination of targeted therapies may cause higher toxicity,
eventually leading to early termination of phase I trials (Feldman
et al, 2009; Patel et al, 2009). The combination of mTOR inhibitors
(temsirolimus or everolimus) with bevacizumab in phase I and II
has yet shown encouraging results with good responses rates (Zafar
et al, 2006; Merchan et al, 2015; Whorf et al, 2008).

In this context, the TORAVA trial was set up to evaluate the
effectiveness of combining bevacizumab and temsirolimus as
first-line treatment of mRCC, as compared with two other
standard therapies based on sunitinib treatment, or a combination
of interferon-a and bevacizumab. The results of this trial showed
an absence of positive outcome, as the combination of
these treatments was responsible for a higher toxicity, and the
response as well as the progression-free survival rates were not
improved (Négrier et al, 2011). During the TORAVA trial,
several translational studies have been set up to highlight
predictive markers of the response and clinical outcome (i.e.,
toxicity).

An increasing number of metabolomic studies in oncology,
carried out on diverse types of biological samples (tumour cells,
blood serum and so on) aim at highlighting biomarkers to
distinguish various cancerous states (Oakman et al, 2011; Jobard
et al, 2014), biomarkers of treatment response and toxicity to probe
the molecular action of drugs, as well as resistance phenomena
(Lodi and Ronen, 2011; Tenori et al, 2012; Weaver et al, 2012;
Borgan et al, 2013; Wei et al, 2013).

As concerns RCC, metabolomics has been primarily used for
diagnosis (RCC vs healthy subjects) and classification using
tumour tissues (Tate et al, 2000), mainly investigating biological
fluids such as urine (Perroud et al, 2006; Kind et al, 2007; Kim et al,
2009; Huang et al, 2013), serum (Gao et al, 2008; Zira et al, 2010)
or plasma (Lin et al, 2011).

We report here a 1H nuclear magnetic resonance (NMR)-based
metabolomic study that investigates the effects of combining two
targeted therapies (bevacizumab and temsirolimus) on the serum
metabolic profiles of patients as mRCC first-line treatment,
in comparison with those receiving the two standard therapies.
The objective of this translational study is to explore the action of
targeted agents on the metabolism of the host, and specifically the
consequence of temsirolimus on the serum metabolic profiles of
mRCC patients.

PATIENTS AND METHODS

Patients characteristics. From March 2008 to May 2009, 171
patients with untreated mRCC were enroled in the TORAVA trial.
The trial aimed at determining the efficiency and safety of
temsirolimus and bevacizumab combination as first-line treatment
of mRCC and studying the markers of prognosis. Patients were
randomised (ratio 2:1:1) between three different arms: arm A for
the combination of bevacizumab (10 mg kg� 1 every 2 weeks) and
temsirolimus (25 mg weekly); arm B for sunitinib (50 mg per day
for 4 weeks followed by 2 weeks off); and arm C for interferon-a
(9 mIU three times per week) and bevacizumab (10 mg kg� 1 every
2 weeks). The study design is described in details in Figure 1. The
arm A was the experimental arm and arm B and C were two
standard first-line treatment of mRCC. The study design, patient
recruitment, and data-collection methods of the TORAVA trial
were described more precisely by Négrier et al (2011). The local
ethics committee approved the research protocol. Written informed
consent was obtained from each patient before enrolment.

For each patient, clinicopathological data were recorded
including age, gender, BMI, ECOG performance status (PS)
(Oken et al, 1982), Memorial Sloan-Kettering Cancer Center

Arm A :

Arm B :

Arm C :

Week 0

(W0)

Week 2

(W2)

Week 5 or 6

(W5–6)

Blood sample

NMR analysis

Intraveinous temsirolimus (25 mg weekly)
Intraveinous bevacizumab (10 mg kg–1 every 2 weeks)

Oral sunitinib
(50 mg per day for 4 weeks)

2 weeks off

Intraveinous bevacizumab (10 mg kg–1 every 2 weeks)
Subcateneous interferon α (9 mlU 3 times per week)

Figure 1. Study Design of the TORAVA trial. Patients with untreated mRCC were randomised using a 2:1:1 ratio: arm A was administered a
combination of bevacizumab and temsirolimus; arm B was treated with sunitinib; arm C received a combination of interferon-a and bevacizumab.
Arm A is the experimental arm and the two others arms (B and C) are standard first-line treatments of mRCC. Blood samples were collected at three
different times: at baseline (W0), that is, before the first therapy cure; 2 weeks after the start of treatment (W2); and 5–6 weeks after beginning of
treatment (W5–6). NMR analyses were performed after completion of the clinical trial.
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(MSKCC) classification (Motzer et al, 2002), evaluation of the
response to therapy, tumour type, Fuhrman classification
(Fuhrman et al, 1982), and interval between diagnostic and
metastasis. Tumour assessment (thoracic, abdominal, and pelvic
CT scan, brain MRI or CT scan, and bone scan) was performed at
inclusion and every 12 weeks until disease progression. From these
data, the best objective response to treatment (complete or partial
response) was determined according to the RECIST criteria
(Therasse et al, 2000). To characterise the three arms, a descriptive
statistical analysis was performed using the analysis of variance
for mean and w2 or Fischer exact test for qualitative data.
The significance threshold was set to 0.05 for all tests. Clinico-
pathological parameters were compared in order to exclude biases
related to patient selection, as summarised in Table 1. No
significant differences were observed for all these parameters
between the three different arms of the study.

Sample collection and preparation. Three hundred and twenty-
one serum samples from 121 patients with mRCC were obtained
for our metabolomic study. A series of venous blood samples was
collected for each patient during the TORAVA trial: one before the
first therapy administration (W0), and two on-treatment at
two weeks (W2) and 5–6 weeks after the beginning of treatment
(W5–6). For the experimental arm, we accessed to 171 samples
(W0: 63, W2: 57, W5–6: 51) from 64 patients (52.9% of the total
number of patients). For the two other treatments, arm B and arm
C, we obtained, respectively, 71 samples (W0: 27, W2: 24, W5–6:
20) from 27 patients (22.3%) and 79 samples (W0: 30, W2: 26,
W5–6: 23) from 30 patients (24.6%) (Figure 1). The total number
of samples available for any given patient in the trial varied. The
reasons for incomplete sample collection were multiple, including
inadequate quantity and/or quality of collected serum samples,
withdrawal of patients in the trial (e.g., owing to high toxicity of
treatment, protocol violation, or request from the patient to stop
the trial), or death of patients. Blood samples were recovered from
dry tubes (10 ml) and centrifuged after 30 min of sedimentation
at 800 g for 10 min. After centrifugation, the supernatant was
collected and aliquoted in three cryotubes (1 ml). Cryotubes were
stored at � 80 1C after collection. For NMR analysis, sera were
prepared according to the protocol described by Beckonert et al
(2007). Serum samples were thawed at room temperature before
use. Then, 200 ml of each was diluted with 400 ml of a 0.9% saline
solution (NaCl 0.9% wt/vol, D2O 10% vol/vol) in a microtube, then
centrifuged for 5 min at 4 1C at 12 000 g. At last, 550 ml of
supernatant was transferred into 5 mm NMR tubes. Samples were
kept for o24 h at 4 1C until NMR analysis.

NMR spectroscopy. All NMR spectra were recorded on a Bruker
Avance III spectrometer operating at 800.14 MHz for proton,
equipped with a 5 mm TXI probe, and automatic sample changer
with cooling capacity (4 1C). The temperature was then regulated
at 27 1C throughout the NMR experiments. NMR spectral
acquisitions for the 321 TORAVA samples were divided randomly
into two distinct NMR sessions. One hundred and seventy-five
serum samples (W0: 63; W2: 60; W5–6: 52) were analysed in the
first batch and 146 for the second batch (W0: 57; W2: 46; W5–6:
43), 2 months apart. For a given patient, samples from the different
collection points were randomly distributed between the two NMR
sessions. For each session, automatic 3D shimming was performed
once on a test serum sample. A test serum sample is a serum
sample chosen at random in the cohort with enough volume to
prepare an extra tube for NMR calibration purposes. Prior to NMR
data acquisition, automatic tuning, and matching, frequency
locking on D2O and 1D automatic gradient shimming was
performed on each sample. Standard 1H 1D NMR NOESY pulse
sequence with water presaturation was applied on each sample to
obtain the corresponding metabolic profile. A total of 128 transient
free induction decays (FID) were collected for each experiment

into 43 588 points over a spectral width of 20 ppm. The acquisition
time was set to 1.36 s with a relaxation delay of 2 s. The 901 pulse
length was automatically calibrated for each sample at around
10.9 ms. The NOESY mixing time was set to 100 ms. All FIDs were
multiplied by an exponential weighting function corresponding to
a 0.3 Hz line broadening factor, before Fourier transformation.

All spectra were referenced to the a-glucose anomeric proton
signal (d¼ 5.23 ppm). 1H-NMR spectra were phased and baseline
corrected using Topspin 3.1 (Bruker GmbH, Rheinstetten,
Germany). After importing all 1D spectra into the AMIX software
(Bruker GmbH), spectra were divided into 0.001 ppm-wide
buckets to obtain 8500 buckets over the chemical range of 0.5–9
ppm. Residual water signal (4.66–5.05 ppm region) was excluded,
and no further normalisation was applied to the spectra. Prior to

Table 1. Summary of clinicopathological characteristics of
TORAVA trial patients

Characteristics Arm A Arm B Arm C P-valuea

No. of subjects 64 (52.9%) 27 (22.3%) 30(24.6%)

Age (mean/s.d.) 59.5±10.7 60.5±11.2 59.4±8.8 0.90

Samples 0.97

W0 56 (50%) 26 (23.2%) 30 (26.8%)
W2 55 (53.9%) 22 (21.6%) 25 (24.5%)
W5–6 49 (53.8%) 20 (22%) 22 (24.2%)

Gender 0.4

Female 15 (23.4%) 7 (25.9%) 11 (36.7%)
Male 49 (76.6%) 20 (74.1%) 19 (63.3%)

Body mass index 0.34

p 25 31 (48.4%) 15 (55.6%) 11 (33.3%)
4 25 33 (51.6%) 12 (44.4%) 19 (63.3%)

ECOG performance status 0.60

0 or 1 60 (93.8%) 27 (100%) 29 (96.7%)
2 4 (6.3%) 0 (0%) 1 (3.3%)

MSKCC classification 0.62

Unknown 5 (7.8%) 2 (7.4%) 4 (13.3%)
Poor prognosis 9 (14.1%) 1 (3.7%) 4 (13.3%)
Intermediate prognosis 32 (50%) 14 (51.9%) 11 (36.7%)
Favourable prognosis 18 (28.1%) 10 (37%) 11 (36.7%)

Response to treatmentb 0.94

Objective response 17 (26.6%) 7 (28.9%) 9 (30%)
No objective response 46 (71.9%) 20 (74.1%) 20 (66.7%)
No information 1 (1.6%) 0 (0%) 1 (3.3%)

Tumour type 0.64

Conventional renal cell
carcinoma (RCC)

61 (95.3%) 26 (96.3%) 30 (100%)

Collecting duct
carcinoma

0 (0%) 1 (3.7%) 0 (0%)

Chromophobe RCC 2 (3.1%) 0 (0%) 0 (0%)
Unclassifiable RCC 1 (1.6%) 0 (0%) 0 (0%)

Fuhrman classification 0.07

Grade I and II 13 (20.3%) 7 (25.9%) 12 (40%)
Grade III and IV 37 (57.8%) 19 (70.4%) 15 (50%)
Unknown 14 (21.9%) 1 (3.7%) 3 (10%)

Interval between
diagnostic and metastasis

0.54

p12 months 41 (64.1%) 16 (59.3%) 17 (56.7%)
412 months 23 (35.9%) 10 (37%) 13 (43.3%)
Unknown 0 (0%) 1 (3.7%) 0 (0%)

Abbreviations: ECOG¼Eastern Cooperative Oncology Group; RCC¼ renal cell carcinoma.
The outliers are not included in this table.
aP-value calculated using either the w2 and Fisher exact tests for the proportion or an
ANOVA analysis for mean.
bObjective response corresponds to at least one objective response at one of the three
disease assessment points (week 12, 24, and 48).
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statistical analyses, 9 out of 321 serum samples in the translational
study were excluded because of poor spectral quality or improper
collection of the blood in a citrated tube, as detected by NMR.

In addition, 1D 1H-NMR CPMG and 2D NMR experiments
(1H–13C HSQC, 1H–1H TOCSY and 1H J-resolved experiments)
were recorded on a subset of samples to achieve structural
assignment of the metabolite signals. The procedure for metabolite
identification exploited knowledge from academic spectral data-
bases such as MMCD (Cui et al, 2008), HMDB (Wishart, 2007),
and BMRB (Ulrich et al, 2008) as well as proprietary databases
(NMR Suite v. 7.1, Chenomx Inc., Edmonton, Canada;
AMIX SpectraBase v. 1.1.2, Bruker GmbH). From analysis of 1D
and 2D NMR data, identification of full spin systems allowed
unambiguous annotation of 51 metabolites. Corresponding
assignments are provided in Supplementary Table 1, and illustrated
in Supplementary Figure 1.

Statistics. To build models for sample classification and extract
group-specific metabolic signatures, unsupervised and supervised
statistical multivariate analyses were conducted using SIMCA-P 13
(Umetrics, Umea, Sweden). Multivariate models were visualised
using scores and loadings plots. In a score plot, each point
represents a NMR spectrum (i.e., a sample) on the main principal
components, whereas the corresponding loadings plot displays the
contribution of the NMR variables to the principal components.

An initial principal component analysis (PCA) was carried out
to derive the main sources of variance and eventually identify
potential outliers from the 1D 1H-NMR data sets (Wold et al,
1987). PCA detected seven serum samples as severe outliers
(mainly owing to high concentrations of lipids) that were excluded
from further analysis. The final sample set comprised a total of 305
samples.

Orthogonal partial least-squares (O-PLS) analyses were
performed to discriminate serum profiles associated with sampling
time for each arm by exploiting a supplementary data matrix Y,
containing samples class membership (e.g., W0, W2, W5–6 for
sampling time) (Trygg and Wold, 2002). The goodness-of-fit
parameters R2 and Q2, which relate to the explained and predicted
variance, respectively, were used to evaluate the O-PLS model
performance. For each O-PLS model, a model validation in
MATLAB (The MathWorks Inc., Natick, NA, USA), using
homemade O-PLS routines, was carried out by resampling the
model 1000 times under the null hypothesis through random
permutations of the Y matrix. The decrease in goodness-of-fit R2

and Q2 parameters, when correlation between original model
and random models decreased, indicated the good quality of our
models. The statistical significance of the calculated model was also
assessed by Cross-Validation ANOVA (CV-ANOVA) for each
O-PLS model (Eriksson et al, 2008).

In addition, to derive statistically significant associations of
individual metabolites, an univariate methodology previously
described that couples an automatic binning procedure named
statistical recoupling of variables to subsequent ANOVA analysis
(Blaise et al, 2009) was used, implemented with MATLAB
homemade routines.

RESULTS

Longitudinal discrimination of metabolic profiles in the
TORAVA trial. Serum NMR metabolic profiles from mRCC
patients were first analysed within each arm of the TORAVA study
to probe the specific metabolic response associated with the
experimental (A) and reference (B and C) treatments. Supervised
multivariate models (O-PLS) were built for the three arms to derive
robust statistical models discriminating metabolic serum profiles
between W0 and W2 and between W0 and W5–6 (Figure 2).

For the experimental arm A, a clear discrimination between
W0 and W2 (R2X¼ 0.985, R2Y¼ 0.581, Q2¼ 0.376, CV-ANOVA
P-value¼ 1.32� 10� 5), and between W0 and W5–6 (R2X¼ 0.985,
R2Y¼ 0.65, Q2¼ 0.462, CV-ANOVA P-value¼ 1.61� 10� 7) of
the serum metabolic profiles was observed, as illustrated in
Figure 2A. Statistical significance for these two models was
assessed by high values of goodness-of-fit parameters R2 and Q2,
CV-ANOVA P-valueso0.05, and model resampling under the null
hypothesis (Supplementary Figure 2a & b). Regarding arm B,
no significant discrimination was obtained from serum metabolic
profiles between W0 and W2, or between W0 and W5–6
(Figure 2B). Finally, for arm C, multivariate modelling of the
metabolic profiles between W0 and W5–6 only provided a weak
but robust discrimination (R2X¼ 0.935, R2Y¼ 0.319, Q2¼ 0.201,
CV-ANOVA P-value¼ 0.029, Figure 2C, Supplementary
Figure 2c).

To ensure that the lack of separation between W0 and W2 for
arm C was not due to an insufficient number of samples for arm C
as compared with arm A that included twice as many patients, a
sensitivity analysis was carried out using 1000 O-PLS models
calculated from randomly selected subgroups (n¼ 56; 28 samples
per class) of metabolic profiles from arm A (Supplementary
Figure 3). The distribution of R2 and Q2 obtained for these models
shows that even when considering half as many samples as
compared with arm C, higher values of R2Y and Q2 were obtained
for arm A, confirming an earlier and stronger modification of the
host metabolism for the experimental arm.

Metabolic fingerprints associated with targeted therapies for
mRCC treatment. Thereafter, individual metabolites significantly
associated with the discrimination of pre-treatment and on-
treatment samples, respectively, for arm A and C, were identified
using univariate analysis of the serum NMR metabolic profiles to
understand the metabolic processes involved in the host response
to mRCC targeted therapies.

For the experimental arm A, lipids (glycerol backbone of
phosphoglycerides and triacylglycerides fatty acids), lipoproteins
mainly very low-density lipoproteins and low-density lipoproteins
(LDL) as well as glucose and N-acetylglycoproteins (NAC1 & 2)
were found in significantly higher concentrations in the serum at
W2 as compared with baseline (Po0.05) (Figure 3A). Correspond-
ing fold-changes and P-values are reported in Table 2. After 5–6
weeks of treatment, the same metabolic signature as observed after
2 weeks is obtained for arm A (Figure 3B). However, a larger
number of metabolites reach individual statistical significance.
Thus, in addition to the metabolites previously identified
as statistically significant after 2 weeks of treatment (lipids,
lipoproteins (VLDL, LDL), glucose and N-acetylglycoproteins),
an increase of the levels of branched chain amino acids (BCAA;
isoleucine, leucine, and valine), alanine, glycine, and glutamine, as
well as end-products of b-oxidation (acetoacetate, acetone), lipid
degradation (glycerol) and cholesterol was observed at W5–6,
whereas acetate and ethanol were more concentrated in serum
metabolic profiles at baseline. The differences in concentrations of
acetoacetate, acetone, glucose, lipids, and lipoproteins remain
significant after Benjamini–Hochberg correction for multiple
testing. Our results show that several metabolites associated with
the combined bevacizumab and temsirolimus treatment are already
detected at W2 with a weak discriminative power and subsequently
provide a stronger discrimination from baseline metabolic profiles
after 5–6 weeks of drug intervention.

The metabolic signature associated with the bevacizumab and
interferon-a combination (arm C) at W5–6 is mainly due to an
increase of lipids and VLDL lipids but also to the relative decrease
of the LDL lipids in serum samples (Figure 3C). Nevertheless,
the observed variations for these metabolites do not remain
significant after correction for multiple testing (Table 2). Thus, the
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discriminatory power of individual metabolite is weak and should
be further confirmed independently.

Further comparison of the obtained metabolic signatures for
arm A and C shows that changes in the metabolic profiles after
several weeks of therapy for both arms are quite similar and mainly
due to alterations of lipids and carbohydrate metabolism.

To ensure that observed discrimination is due solely to the
presence of the treatment, the influence of tumour’s characteristics
(PS, MSKCC classification, tumour type, Fuhrman classification
and interval between diagnostic and metastasis) was analysed for
each arm over time. No significant differences were observed
for these parameters (Supplementary Table 2), which shows that
the impact of tumour characteristics on the serum metabolome of
mRCC patients is negligible.

Metabolic changes between the experimental arm and two
standard therapies. To compare the metabolic fingerprint of the
experimental arm with those of the two standard arms at any given
time in the study, further supervised analyses were carried out
independently on the serum NMR profiles recorded for the three
sampling times (Supplementary Table 3).

As anticipated, no discrimination was observed between the
experimental arm and the two other therapies when comparing
serum samples collected at baseline (W0), before initiation of the
treatments. This lack of separation at inclusion between the three
arms emphasises the similarity of the three groups of patients at
baseline and confirms the absence of selection biases. After 2 weeks
of treatment, a separation trend was observed between arms but
is not statistically significant. At W5–6, a weak yet significant
discrimination between arm A and B was obtained, validated by a
CV-ANOVA P-value of 0.038 and O-PLS model resampling with
1000 iterations (data not shown). Corresponding O-PLS model
comparing arms A and C at W5–6 is not validated by the
CV-ANOVA P-value and resampling procedure. Similarly,
the metabolic profiles of the two standard arms B and C were
compared at each sampling time (Supplementary Table 3), and no
discrimination was observed, either at baseline or after two and 5–6
weeks of treatment.

Through the univariate analysis used on metabolic serum
profiles, statistically significant metabolites for the discrimination
of arms A and B after 5–6 weeks of treatment have been identified
(Supplementary Figure 4). Lipids, lipoproteins (VLDL and LDL),
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Figure 2. Discrimination between pre-treatment and on-treatment serum samples. (A) O-PLS models for arm A, discriminating samples at W0 vs
W2 (1þ 6 components, R2X¼ 0.985, R2Y¼0.581, Q2¼0.376, CV-ANOVA P-value¼1.32�10� 5) and W0 vs W5–6 (1þ 6 components,
R2X¼0.985, R2Y¼ 0.65, Q2¼ 0.462, CV-ANOVA P-value¼ 1.61� 10� 7). (B) O-PLS models for arm B, discriminating samples at W0 vs W2 (1þ 1
components, R2X¼ 0.816, R2Y¼0.147, Q2¼ �0.188, CV-ANOVA P-value¼1) and W0 vs W5–6 (1þ1 components, R2X¼0.847, R2Y¼ 0.149,
Q2¼ 0.058, CV-ANOVA P-value¼ 0.64). (C) O-PLS models for arm C, discriminating samples at W0 vs W2 (1þ 1 component, R2X¼0.919,
R2Y¼ 0.124, Q2¼0.055, e CV-ANOVA P-value¼0.57) and W0 vs W5–6 (1þ1 components, R2X¼0.935, R2Y¼ 0.319, Q2¼0.201, CV-ANOVA
P-value¼0.029).
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cholesterol, glucose, the end-products of b-oxidation (acetone,
acetoacetate and 3-hydroxybutyrate), N-acetylglycoproteins
(NAC1 & 2), BCAA (Valine, Leucine, Isoleucine), alanine and
acetate were found in lower concentrations in the serum of patients
given sunitinib (arm B) as compared with subjects treated with the
experimental arm. None of these differences was yet validated after
Benjamini–Hochberg correction for multiple testing. However, the
metabolic pattern is very similar to the one established for
the longitudinal evolution within arm A (W0 vs W2 or W5–6) in
the previous section (Figure 3A and B). This confirms the
similarity of the serum metabolic profiles from patients in arm
B, at any given time point in the study, with profiles recorded at
baseline.

DISCUSSION

During the TORAVA trial, continued treatment over time was
limited by the toxicity of the Bevacizumab and Temsirolimus
combination that was higher than expected. Thus, the evaluation of
this new combination of targeted therapies as first-line treatment
for mRCC has failed to demonstrate any benefits for the patients
(Négrier et al, 2011).

For several years, a number of studies based on NMR or MS
metabolomics approached have focused on the identification of
biomarkers of renal cell cancer from biological fluids mainly with
urine samples (Perroud et al, 2006; Kind et al, 2007; Kim et al,
2009; Huang et al, 2013) or blood samples (serum/plasma)
(Süllentrop et al, 2002; Gao et al, 2008; Zira et al, 2010; Lin
et al, 2011). According to these studies, lipoproteins and choline
derivatives are major biomarkers correlated with renal cell cancer
(Duarte and Gil, 2012). However, no study has focused on the
effect of targeted therapy on the metabolic profiles of mRCC
patients. The present analysis evaluates the global impact of
targeted therapies on the metabolism of these patients.

Our results highlight a significant metabolic signature associated
with the experimental combination of bevacizumab and temsir-
olimus, together with an earlier modification of the metabolism
than for patients treated with the two standard therapies. Unlike
for the two standard treatment groups, significant metabolites
(glucose, N-acetylglycoproteins, lipids, lipoproteins (LDL and
VLDL)) were identified in the experimental arm, in which the
lipids have only a high discriminatory power, after 2 weeks of
therapy. After 5–6 weeks of treatment, a large number of
significant metabolites were identified in the experimental arm
and some metabolites showed strong discriminatory power. On-
treatment samples display higher concentrations of acetoacetate,
acetone, alanine, cholesterol, glucose, glutamine, glycerol, glycine,
N-acetylglycoproteins, isoleucine, leucine, lipids, LDL and VLDL
lipoproteins and valine, and lower concentration of ethanol and
acetate, when compared with pre-treatment specimens.

Side effects associated with bevacizumab exposure on the global
metabolism have been little described so far in the literature,
whereas temsirolimus treatment was already shown to induce
hyperglycaemia and hyperlipidemia (hypercholesteremia and
hypertriglyceridemia) in RCC patients (Bellmunt et al, 2008). In
our study, the available clinical data document at least one of the
side effects mentioned above for 59% of the patients in arm A, and
the metabolic signature highlighted in this work seems to mainly
reflect the effects of mTOR inhibition by the temsirolimus
treatment. Indeed, these side effects of temsirolimus correspond
to metabolites with the highest discriminatory power in our
metabolic signature between samples before and after treatment,
that is, lipids, LDL, and VLDL lipoproteins, which allow the
transport of cholesterol and endogenous lipids, respectively, end-
products of b-oxidation (acetoacetate and acetone), glucose, and

glutamine (Table 2). The surplus of lipids due to hyperlipidemia
correlates with an excess of ketone bodies (acetoacetate and
acetone), which are the end-products of lipid metabolism in the
blood (Berg et al, 2002). Likewise, hypercholesterolaemia and
hyperlipidemia increase the need of LDL and VLDL for cholesterol
and endogenous lipids transport. In addition, the hypertriglycer-
idemia and hyperglycaemia result in high levels of glucose and
glutamine in the serum.

Metabolic abnormalities are to be expected with administration
of temsirolimus as the mammalian target of rapamycin (mTOR)
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Figure 3. Metabolic fingerprints associated with mRCC targeted
therapies. O-PLS loadings plots are represented for arm A: (A) W0 vs
W2, and (B) W0 vs W5–6, and for arm C: (C) W0 vs W5–6. Statistically
significant individual signals correspond to the coloured spectral
regions. Highlighted candidate markers are: (1) acetate, (2)
acetoacetate, (3) acetone, (4) alanine, (5) cholesterol (C18, C26, C27),
(6) ethanol, (7) glucose, (8) glutamine, (9) glycerol, (10) glycerol
backbone of pglys and tags, (11) glycine, (12) N-acetylglycoprotein
(NAC1), (13) NAC2, (14) isoleucine, (15) leucine, (16) fatty acids (mainly
LDL), (17) fatty acids (mainly VLDL), (18) fatty acids and (19) valine.
LDL¼ low-density lipoprotein; VLDL¼ very low-density lipoprotein;
PGLYs¼phosphoglycerides; TAGs¼ triglycerides.
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regulates a number of metabolic processes including glucose and
lipid metabolism (Advani, 2010; Alayev and Holz, 2013). Indeed,
mTOR is a central regulator of intracellular pathways involved in
tumour cell growth, proliferation, and response to hypoxic stress
(Wullschleger et al, 2006; Bellmunt et al, 2008; Alayev and Holz,
2013). As illustrated in Figure 4, Temsirolimus inhibits down-
stream mTOR signalling by binding to an intracellular protein
FKBP-12. The resulting complex arrests the growth of tumour cells
and also inhibits angiogenesis (Rini and Atkins, 2009; Advani,
2010; Alayev and Holz, 2013). Meanwhile, bevacizumab, a
therapeutic antibody, is designed to directly bind to extracellular
VEGF to prevent interaction with VEGF receptor on the
surface of endothelial cells, and thereby inhibits VEGF’s angiogenic
activity, reducing cell growth and metastasis (Hicklin, 2004)
(Figure 4).

Similarly, a metabolic signature for the arm C is obtained after
several weeks of treatment (5–6 weeks) with interferon-a and
bevacizumab combination. It is characterised mainly by a change
in lipid concentrations (lipids, LDL, and VLDL lipids) between the
two groups. Metabolites identified for this therapy are consistent
with side effect that can result from taking interferon-a, mainly
hypertriglyceridemia (Sleijfer et al, 2005; Hauschild et al, 2008).
Interferon-a, which belongs to a group of cytokines, does not
directly kill cancerous cells. Indeed, it boosts the immune system
response and reduces growth of cancer cells by regulating the
action of several genes that control the secretion of numerous
cellular proteins that affect growth (Platanias, 2005) (Figure 4). The
broadness of its biological activity often leads to metabolic
abnormalities such as alterations of serum lipids and lipoproteins.
Thus, it may contribute to hypertriglyceridemia by the increase in
lipogenesis and VLDL secretion in the liver (Shinohara et al, 1997).

Based on comparison of the metabolic profiles for the three
arms of the TORAVA trial, a significant discrimination is only

observed between the experimental arm and arm B (sunitinib) after
several weeks of treatment. Interestingly, these two therapies are
very different regarding the type of molecules used and their action
mechanisms, as illustrated in Figure 4, which can justify this
discrimination. As bevacizumab, sunitinib, a small molecule that
inhibits the tyrosine kinases of various receptors, is an angiogenesis
inhibitor and because of its nature is not associated with metabolic
side effects (Coppin, 2008). The observed metabolic fingerprint
here is mainly due to the presence of temsirolimus in the
experimental arm. Meanwhile, we do not observe any significant
separation between the experimental arm (bevacizumab and
temsirolimus) and arm C (bevacizumab and interferon-a). As
discussed above, the longitudinal metabolic signatures of these two
treatment combinations were quite similar after several weeks of
treatment and characterised mainly by lipids and lipoproteins.
These metabolite variations associated with hyperlipidemia are
related to the respective presence of interferon-a (arm C) and
temsirolimus (arm A). The lack of separation between the two
combinations is therefore not due to the common presence of
bevacizumab in the A and C treatments, but rather to the
respective presence of temsirolimus and interferon-a that coin-
cidentally produce similar side effects. The absence of discrimina-
tion between the two standard arms (B and C) reflects a similar
evolution of the metabolic profiles for arms B and C over time
(Supplementary Table 3), which confirms the absence of a strong
effect associated with VEGF inhibitor treatment in arm C.

We note that access to patients treated with a single drug could
ensure that the observed side effects are not associated with
synergetic effects from treatment combinations. Unfortunately,
these subgroups were not included in the TORAVA clinical trial
design. Investigation of additional controls, including treated
healthy patients, or individual with untreated mRCC could also
provide complementary assessment of our findings. Yet, these type

Table 2. Metabolites identified as significant for arm A and arm C

Arm A Arm C

W0 vs W2 W0 vs W5–6 W0 vs W5–6

ID Name P-valuea Fold Change P-valuea Fold Change Variation P-valuea Variation
1 Acetate 0.7 / 0.033 / � 0.6 �

2 Acetoacetate 0.58 / 0.0013b 1.18 þ 0.69 þ

3 Acetone 0.23 / 0.0013b 1.18 þ 0.23 þ

4 Alanine 0.69 / 0.023 / þ 0.95 þ

5 Cholesterol 0.98 / 0.006 / þ 0.47 þ

6 Ethanol 0.73 / 0.044 / - 0.9 -

7 Glucose 0.02 / 0.022b 1.12 þ 0.27 þ

8 Glutamine 0.47 / 0.039b 1.11 þ 0.95 þ

9 Glycerol 0.3 / 0.029 / þ 0.42 þ

10 Glycerol backbone of PGLYs and TAGs 0.0003b 1.22 0.018b 1.15 þ 0.07 þ

11 Glycine 0.36 / 0.017 / þ 0.60 þ

12 NAC1 0.047 / 0.0003 / þ 0.25 þ

13 NAC2 0.047 / 0.014 / þ 0.19 þ

14 Isoleucine 0.65 / 0.019 / þ 0.78 þ

15 Leucine 0.11 / 0.012 / þ 0.88 þ

16 Fatty acids (mainly LDL) 0.0075 / 0.003b 1.24 þ 0.018 -

17 Fatty acids (mainly VLDL) 0.0075 / 0.009b 1.19 þ 0.018 þ

18 Fatty acids 0.0001b 1.17 0.0000002b 1.29 þ 0.018 þ

19 Valine 0.71 / 0.045 / þ 0.67 þ
Abbreviations: LDL¼ low-density lipoprotein; NAC¼N-acetylglycoprotein; PGLYs¼Phosphoglycerides; TAGs¼Triacylglycerides; VLDL¼ very low-density lipoprotein. Variation:þ
corresponds to higher concentration in W5–6 serum metabolic profiles than at baseline;–to lower concentration in W5–6 serum metabolic profiles than at baseline.
aP-value without multiple testing correction.
bSignificant after Benjamini–Hochberg false discovery rate multiple testing correction (q-value o0.05).
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of data are unlikely accessible within a clinical setting, and would
rather require in vitro evaluation on a model system.

We also note that most of the observed metabolites, which are
mainly associated with side effects of the treatments on the host
metabolism, have been identified in previous metabolomic studies
describing RCC effects on the metabolism (Gao et al, 2008; Zira
et al, 2010). Furthermore, abnormalities in mTOR signalling
pathway have been implicated in various pathologies including
renal cancer (Wullschleger et al, 2006; Advani, 2010). Temsir-
olimus-related side effects may probably exacerbate existing
metabolic abnormalities common in patient with RCC (Bellmunt
et al, 2008). Finally, as metabolic fingerprints obtained in this study
are mainly associated to metabolic side effects on the host, the
potential to exploit them as treatment response predictors for
mRCC seems altogether limited. The analysis of peripheral blood
provides a snapshot of the patients overall physiological state that
integrates the metabolic composition of several tissues and organs.
Here, we focused on the complex interaction between the host and
the tumour as well as the global impact of the treatments, which
notably reflect direct effects of the drugs on the liver, rather than
the tumour metabolism directly.

Our work proposes a metabolic signature for the temsirolimus
and bevacizumab combination treatment for patient with mRCC
in the first-line setting. Our findings highlight the potential
of metabolomic approaches to study treatment effects that are, to
better understand their mechanisms of action, predict associated
metabolic side effects or toxicity, and potentially predict the
clinical response. Bevacizumab and temsirolimus combination
caused a strong and rapid modification of the patients metabolism
as compared with two conventional treatments. The observed
metabolic pattern is conceivably the result of metabolic
side effects related to the imbibition of the mTOR protein
complex (mTORC1). These results have to be confirmed in
larger cohorts with other types of cancer to better understand
the effect of mTORC1 signalling inhibitors on the human
metabolism.
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