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Abstract: Contemporary elite soccer features increased physical demands during match-play,
as well as a larger number of matches per season. Now more than ever, aspects related to performance
optimization are highly regarded by both players and soccer coaches. Here, nutrition takes a
special role as most elite teams try to provide an adequate diet to guarantee maximum performance
while ensuring a faster recovery from matches and training exertions. It is currently known that
manipulation and periodization of macronutrients, as well as sound hydration practices, have the
potential to interfere with training adaptation and recovery. A careful monitoring of micronutrient
status is also relevant to prevent undue fatigue and immune impairment secondary to a deficiency
status. Furthermore, the sensible use of evidence-based dietary supplements may also play a role in
soccer performance optimization. In this sense, several nutritional recommendations have been issued.
This detailed and comprehensive review addresses the most relevant and up-to-date nutritional
recommendations for elite soccer players, covering from macro and micronutrients to hydration and
selected supplements in different contexts (daily requirements, pre, peri and post training/match
and competition).
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1. Introduction

Association Football, more commonly known as “football” or “soccer”, is the world’s most
popular sport [1]. The physical demands of elite match-play have been increasing within the past
few decades [2,3]. The modern match also includes more passes, runs with the ball, dribbles and
crosses, which collectively suggest a significant increase in the “tempo” of matches [4,5]. The number
of matches per season has also increased, with elite clubs frequently playing over 60 competitive
matches over a season [4]. Periods of fixture congestion (i.e., 1–3 matches per week) are common in
elite soccer [6] and may be further complicated by travel issues during European/World competitions
and/or national team fixtures, leading to increased fatigue of soccer players. This, combined with an
inadequate recovery, can potentially lead to underperformance and/or an increased risk of injury [7,8].

Achieving the highest performance during training and competition, improving and accelerating
recovery, achieving and maintaining an optimal body weight and physical condition, and minimizing
the risk of injury and illness are key issues in contemporary elite soccer. Different fields of scientific
knowledge have addressed all these issues, including the field of nutrition [9–13], where specific
recommendations have been developed for soccer players. As the physiological demands of soccer are
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challenging and vary greatly depending on the nature of training, playing schedules and intensity of
play, sound dietary practices should be followed [13,14]. This review gathers the most relevant and
up-to-date nutritional recommendations for elite male soccer, covering from macro and micronutrients
to hydration and selected supplements. Here, readers can find detailed information on the appropriate
intakes for each of these nutrients, in different contexts (daily requirements, pre, peri and post
training/match and competition).

2. Methods

For this review, databases PubMed and Scopus were used and searches were performed
up to December 2016. Combinations of the following keywords were used as search terms:
“nutrition”, “soccer”, “football”, “team sports”, “body composition”, “carbohydrates”, “fat”, “protein”,
“micronutrients”, “iron”, “vitamin D”, “antioxidants”, “hydration”, “supplements”, “creatine”,
“beta-alanine”, “caffeine”, “nitrate”, “sodium bicarbonate”. Manuscripts were individually selected for
their relevance but no specific scientific approach was used in their selection. References of retrieved
articles were used whenever they were considered relevant. Additionally, the books Soccer Science [15],
Clinical Sports Nutrition [16] and Science and Soccer: developing elite performance [17] were used
as complements.

3. Exercise Physiology in Soccer

Soccer is an intermittent team-based sport. Here, elite players perform low-intensity movements
(e.g., walking, jogging, standing) for more than 70% of the match, interspersed with approximately
150–250 intense actions that include maximal sprinting, turning, tackling and jumping, as well as
accelerations and decelerations [18–20]. During a soccer match, fatigue may occur temporarily after
short, intense periods during both halves and progressively towards the end of each half [21]. The total
distance and high-intensity activities have been found to decrease following the most demanding
5-min periods during a match and at the end of the second half compared with the first half [20].
Match analysis also suggests that the distance covered in high-intensity running by elite players in
the last 15 min of a match is 14–45% lower than that observed during the first 15 min [20]. However,
the distance run at high intensities can remain constant throughout the second half, due to pacing
strategies [22], whereby players perform fewer actions at low or moderate intensities to spare their
efforts [23]. Finally, jumping, sprinting and intermittent exercise performance, when evaluated after
a match, seems to be significantly lower, compared to baseline values [24–26]. Collectively, these
findings suggest that, at an elite level of play, players experience fatigue towards the end of the match
and temporarily following intense bursts. Regarding positional differences, a significantly greater
total distance covered during elite soccer match play has been shown in central midfielders and wide
midfielders (both about 12 to 13 km), whereas central defenders have been consistently shown to
complete the least total distance (about 10 km or less). Accordingly, central defenders also cover
the shortest distance at high intensity and combined high-intensity running and sprinting [27,28].
Regarding sprint activities, wide midfielders and attackers are those who cover the greatest distance
during match-play [2]. Mean recovery time between high intensity actions has also shown positional
differences, with central defenders generally having more time to recover than others, as opposed to
wide defenders [29]. In summary, soccer is characterized by the execution of anaerobic actions that are
performed against a backdrop of aerobic energy supply. Nevertheless, and although high-intensity
actions make up for a relatively low percentage of the match, these actions cannot be underestimated
as they can reveal critical to the outcome of a competition [30].

4. Body Composition in Soccer

Athletes who are involved in team sports such as soccer, covering significant distances during
a match, are generally aided by a lighter and leaner physique [31,32]. A lean body, with a greater
muscle-to-fat ratio, is often advantageous in sports where speed is involved [33], as the storage
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component of body fat may act as a dead weight to be lifted against gravity during jumping and
sprinting (e.g.,). In turn, this affects energy expenditure [34] and is inversely related to aerobic capacity,
power-to-weight ratio, and thermoregulation [35]. Nevertheless, the body fat levels of team sport
players are not as low as those typically found in endurance athletes such as runners and cyclists [32].

Some investigations explored the association between body composition (namely body fat or
adiposity) and physical performance in soccer [36–43]. Brocherie and collaborators [41] found that the
sum of six skinfolds associated with adipose mass index was largely correlated with speed decrements
in a repeated-sprint ability (RSA) test in a group of 16 players from senior male Qatar national team.
Furthermore, Silvestre and collaborators [44] showed that reduced body fat levels were associated
with improved sprint performance and jump height in a sample of 27 male collegiate soccer players
at the beginning of the season. When discussing their research in power testing, Nikolaidis and
collaborators [42] found a positive correlation between body fat with mean and 20-m sprint times
of a RSA test, in 36 male semi-professional Greek soccer players. More recently, a similar trend was
seen [43] where the body fat level of 181 adult soccer players from third and fourth Greek national
divisions positively correlated to 20-m sprint times. Together, these data seem to support an association
between body fat levels and sprint performance (i.e., lower body fat associated with better sprint
performance).

Currently, there are no defined optimal overall body composition values for soccer players [45],
although several investigations have reported on the body composition of professional adult male
players [45–54]. Overall, these studies showed that the percentage of body fat ranged from
6% to 20% and that for elite soccer players from the English Premier League—one of the most
representative/competitive soccer leagues—values of 10.6% [52], 11.2% [45] and 10.0% [54] were
found. Normative data regarding the sum of eight skinfolds through the standardized ISAK protocol
is scarce. Hencken and White [49] evaluated the sum of skinfolds of 24 professional soccer players
from an English Premier League club and reported a range between 57.9 and 62.5 mm. Positional
differences were reported in some studies, with the main difference being goalkeepers evidencing
higher body fat values compared to field players [47,53,55,56]. However, this is not always the
case [54,57]. Very limited information is available on seasonal differences in body composition changes
among playing positions [52] but in a recent study [57] the players of a professional soccer team were
evaluated at multiple times across the season and the changes found were similar for all playing
positions. The authors concluded that players undergo changes in their fat mass, fat-free soft tissue
mass and mineral mass across the season, irrespective of the playing position. Seasonal trends reflect
an increase in body fat levels during the offseason, which are then reduced during the preseason,
when training volume is highest [53,57]. Another study also found that body composition of elite
soccer players changed throughout the competitive season. Specifically, fat mass decreased from the
start of preseason to the start of the competitive season. Nevertheless, by the end of the competitive
season, it had returned to start of preseason values. Fat-free mass significantly increased from start of
preseason until the start of the season and these changes were maintained over the entire competitive
season [58]. Age, sex, genetics, and the requirements of the sport are factors that impact the individual
athlete’s body composition [33]. Thus, it may be useful for practitioners to provide individualized
target zones for players. These targets must then be prospectively fine-tuned according to feedback of
a player’s performance, health and well-being.

Techniques commonly used to evaluate an athlete’s body composition include dual energy
X-ray absorptiometry (DXA), air displacement plethysmography, hydrodensitometry, skinfold
measurements and single and multi-frequency bioelectrical impedance analysis (BIA) [12].
For a detailed comparison between each of these methods, the reader is referred to the review by
Ackland et al. (2012) [59].
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5. Energy Requirements in Soccer

For an elite soccer player, it is very important to provide adequate energy to meet the challenges
of high-intensity, intermittent exercise. Several studies have estimated and measured total energy
expenditure in soccer players using doubly labeled water, heart rate, video match analysis and
activity record monitoring [60–62]. Mean energy expenditure (above rest) for a match has been
estimated to be approximately 1107 Kcal [62], whereas 3442 to 3824 kcal per day were estimated for
daily training [60]. More recently, Anderson et al (2017) reported that mean energy expenditure of
elite soccer players was approximately 3,566 kcal during a seven-day period including five training
days and two matches [63]. However, besides the impact of individual factors (i.e., body size and
composition), there are large differences in energy expenditure depending on training load, player
position, environmental conditions and tactics [6,13,64]. The use of heart rate monitors and GPS
systems might be useful as they can provide some estimation of individual energy expenditures (based
on algorithms) during training, but accuracy can vary greatly among systems, and values should be
interpreted with caution [13].

To date, to the authors’ knowledge, only one study directly assessed whether elite adult
soccer players could maintain energy balance throughout training and competition [63]. In this
investigation, energy intake measured through analysis of dietary records and 24 h recall (~3186 kcal)
was not statistically different from energy expenditure measured by doubly labeled water method
(~3566 kcal) [63]. In another study, from Bettonviel et al. (2016), although mean energy intake
(~2988 kcal) was lower, the lack of changes in body weight during the study period also suggests that
players were able to maintain energy balance [65]. These two investigations also showed evidence of
energy intake periodization, that is, players adjusted their intake according to the different training
and match demands [63,65].

Players must therefore balance overall energy intake per training and competition demands as well
as individual body composition goals, while reaching key macronutrient targets, as discussed below.

6. Nutritional Strategies to Promote Optimal Performance

In this section, we review the most up-to-date nutritional strategies to promote optimal
performance in soccer, covering macronutrients and hydration, micronutrients and supplementation.

6.1. Carbohydrates

Carbohydrates (CHO) are considered of vital importance in sports in general and in soccer in
particular, as muscle glycogen is the predominant substrate for energy production during a match.
After this type of effort, nearly half of vastus lateralis muscle fibers have been classified as empty or
near empty in relation to their glycogen content [26]. As such, glycogen depletion is commonly cited as
a contributing factor for the progressive fatigue observed towards the end of a match [6,66]. Therefore,
athletes should adopt specific nutritional strategies to maximize muscle glycogen content and exercise
performance at critical moments such as match play, by manipulation of CHO daily needs and before,
during and after exercise/match play. The following position is summarized in Table 1.
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Table 1. Recommended intakes for selected macronutrients in different situations (includes hydration).

Situation Recommendations Practical Considerations Reference

Daily requirements

CHO: 5–10 g/kg/day

Adjust to the individual nutritional goals
and periodize according to the needs of
daily training sessions; consider low
CHO availability in lower intensity
training sessions to improve the
metabolic effects of exercise.

[67]

Protein: 1.2–2.0 g/kg/day
Choose higher range in pre-season, after
injury, after high intensity training
and/or when in a low energy budget.

[12]

Hydration: consume sufficient fluids before, during, and after exercise to sustain health and
performance; daily monitoring of first-voiding urine color is a practical hydration status
assessment tool.

[68]

Fat: an intake of at least 20% of total energy intake from fat is advised. [12]

Pre-training and
matches

CHO: 1–4 g/kg
Adjust according to the session needs and
individual tolerance; Choose lower range
if restricting calories.

[69,70]

Protein: 0.25–0.4 g/kg
Choose an amount near the higher range
when in a low energy budget and/or
before resistance training.

[71]

Hydration:
~5–7 mL/kg—at least 4 h before the exercise task.
If urine is not produced, or urine is dark or highly
concentrated: ~3–5 mL/kg—about 2 h before the event.

Enhancing palatability of the ingested
fluid will help to promote fluid
consumption. The preferred water
temperature is often between 15 and
21 ◦C.

[72]

During training

CHO

Light training: no need, provided
sufficient pre-training HCO was
consumed. [70,73]

Hard training/Two sessions a day:
30–60 g/kg

Provide the highest amount when
performing an afternoon session <8 h
after hard morning session; consider the
addition of a small amount of protein to
the CHO solution.

Hydration: sufficient fluids must be consumed to avoid
(a) losing more than 2% of initial BW and (b) weight gain.

Athletes must be aware their sweat rates.
The addition of small amounts of salt
must be considered during prolonged
training sessions in the heat.

[72]

After training CHO

Light training: follow food plan to
ensure daily needs are met [16,73,74]

Hard training/Two sessions a day:
1.0–1.2 g CHO/kg/h

Start refueling immediately after training;
check for individual glycemic response to
ensure high CHO availability.

Protein: 0.25–0.4 g/kg
Choose an amount near the higher range
after high intensity and/or resistance
training.

[71]

Hydration: ingest 125–150% of
fluids lost.

Salty foods and drinks may help
retaining ingested water. Drink regularly
rather than one large bolus.

[12]

During
competition

CHO: 30–60 g/h or small amounts or mouth rinsing if
the athlete is going to compete for a short amount of time
(30 min–1 h).

Small sips or rinsing of sports drinks. Test
in training before practicing in matches. [16,73]

Hydration: ad libitum Especially relevant when pre-match
hydration status is inadequate. [72]

After competition

CHO

72 h or less until next match:
1–1.2 g CHO/kg/h OR
0.8 g CHO/kg plus
0.4 g protein/kg/h [16,70]

More than 72 h until next match: ad
libitum, provided daily needs are met

Private events, single matches: ad libitum Eat and drink taking into account
individual nutrition and body
composition goals and the next
competitive commitments.

Protein: similar to post-training [71]

Hydration: ad libitum [12]

Abbreviations: CHO, carbohydrates.
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6.1.1. Daily Requirements

General nutritional recommendations for peak performance promote strategies to achieve optimal
muscle glycogen concentrations through means of high CHO availability. In sports where physical
activity duration ranges between 1 h and 2 h, it is believed that athletes should consume 5 to
10 g/kg/day [12]. However, recent research has provided new insights into the interactions of
exercise with low CHO availability, whereby the acute and chronic adaptive responses to training
or recovery are enhanced in an environment of low exogenous and endogenous CHO stores, since
consistently high levels of muscle glycogen seem to attenuate training adaptations [75]. Therefore,
researchers are now exploring if a low CHO availability at less relevant moments (such as some
training sessions) can potentiate the exercise effects, while maintaining high CHO availability at critical
moments (match-play), thereby improving soccer athletes’ performance.

Anderson and colleagues [6] quantified the daily training and accumulative weekly load (reflective
of both training and match play) in professional soccer players during a one, two and three match
per week schedule and found evidences of training periodization. Specifically, results showed that
training load was progressively reduced in the three days prior to match day (one match per week);
that daily training load and periodization was similar in a one and two match per week schedule
(although total accumulative distance was higher in a two-match week); and that daily training total
distance was lower in a three-match week (although accumulative weekly distance was highest and
more time was spent in high speed zones). As such, these authors suggested that CHO intake should
also be periodized according to training periodization, suggesting high CHO availability on the day
before match, on the day of the match and on the day after match on both one match and two match
per week schedule, and a reduced CHO availability on the other days. Given the extreme frequency of
match play on a three match per week schedule, these researchers do not advise adopting a low CHO
availability in these conditions.

CHO periodization has already been implemented to assess its effects on athletes’ performance,
although in other sports than soccer. One practical example cycle consists of (1) late-afternoon
scheduling of a high-intensity training session undertaken with high glycogen stores; (2) withholding
the ingestion of CHO after the session to maintain glycogen depletion during the overnight recovery
period; and (3) at low–moderate intensity steady-state exercise session the following morning
completed after an overnight fast [76], or in other words, “train high, sleep low, train low”, or more
simply, “sleep low”. Marquet and colleagues [77] performed a three-week training-diet intervention
comparing the effects of the “sleep low” method to a standard high CHO availability every day
(6 g CHO/kg) and found that the short-term periodization of dietary CHO availability around
selected training sessions promoted significant improvements in submaximal cycling economy,
as well as supramaximal cycling capacity and 10-km running time in trained endurance athletes.
The authors proceeded to see if a shorter exposure to this CHO periodization strategy would be
successful in inducing metabolic adaptations and performance improvement and concluded that
implementing the “sleep-low” strategy for one week improved performance by the same magnitude
previously seen in a three-week intervention, without any significant changes in selected markers of
metabolism [76]. The effects of CHO periodization in soccer are still unknown but one can expect
future developments on the subject, to detect if and which type of periodization can be most successful
for soccer athletes’ performance.

6.1.2. Pre-Exercise/Match

Given the relevance of muscle carbohydrate content for exercise performance, every feeding
opportunity may matter for achieving the highest values. A pre-exercise/match diet rich in CHO
augments muscle glycogen content as previously observed on a 90 min (four-a-side) soccer play
study [69]. Here, six male football players competed on two occasions following an exercise and
diet with either high or low CHO regimen (65% vs. 30% of total daily energy intake), designed to
manipulate muscle glycogen concentrations. Researchers found that pre-match muscle glycogen
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concentrations following the high CHO diet were significantly higher than following the low CHO diet.
Most importantly, players performed significantly more high-intensity exercise in the match played
following the high CHO diet, without any observed differences on the evaluated technical variables.

Regarding the pre-event meal, a study [78] evaluated the effects of ingesting a CHO meal
(2.5 g CHO/kg) after an overnight fast. Vastus lateralis muscle biopsies were obtained before and 3 h
after the meal and revealed that the CHO meal resulted in an approximate 10% increase in muscle
glycogen concentration [78]. Furthermore, it was shown that the intake of a substantial amount of
CHO (~200–300g) in the 2–4 h before exercise could prolong endurance performance [79–81]. As such,
the ingestion of 1–4 g/kg of CHO in the last 4h before match may be recommended, depending on
players’ tolerance and individual preferences. The last meal should ideally take place 3–4 h before
match and include easy-to-digest foods. The meals 4 h before the start of competition (main meals,
e.g., lunch) can contain more carbohydrates, with smaller meals (intermediate meals, e.g., afternoon
snack) being targeted for occasions when less time is available prior to the start of competition. Within
60 min before the match, usually until warm-up, light snacks containing high CHO (25–30 g) may
further increase the availability of CHO before match, thus sparing liver glycogen. However, there are
still some concerns about reactive hypoglycemia (due to increases in insulin production) when CHO are
consumed within the last hour prior to exercise [82]. Although it is reasonable to consider that higher
pre-exercise insulin concentrations may affect exercise performance by glycemic disposal at the start
of the exercise, studies have shown that this does not seem to compromise exercise performance [83].
To this respect, we believe that the precise timing and quantity of feeding within 1 h prior to match
should be based on individual preference. It is also important to ensure that the pre-event meal
is composed of familiar foods to avoid gastrointestinal issues that many athletes experience before
big events. Nervousness and unfamiliar food can sometimes lead to stomach cramps, nausea and
diarrhea. Keeping meal choices simple and familiar may be the most important concept for successful
pre-event fuelling.

Another strategy used in endurance sports to maximize muscle glucose content before an
exercise event is glycogen supercompensation. This can be interesting in isolated events, occurring
from time to time, but its effects are less known in intermittent high-intensity sports like soccer,
where maximum performance is needed frequently, often more than once a week. McInerney and
colleagues [84] tested six trained athletes on three exercise trials, with each exercise bout separated
by 48 h. Twenty-four hours before day one, subjects consumed a moderate (6 g/kg) CHO diet,
followed by five days of a high (12 g/kg) CHO diet. After each exercise session, subjects were fed
a high-CHO meal and monitored during the subsequent 3 h of recovery. Before and immediately
upon completion of each of these three exercise bouts, a muscle biopsy was taken. As a result of
this protocol, researchers found that well-trained men cannot repeatedly supercompensate muscle
glycogen content after a glycogen-depleting exercise and two days of a high-CHO diet, suggesting that
the mechanisms responsible for glycogen accumulation are attenuated as a consequence of successive
days of glycogen-depleting exercise. Furthermore, exercise performance was similar on days three and
five despite the lack of glycogen accumulation on day five. Therefore, the intake of extremely high
doses of CHO (i.e., 12 g/kg) may not be a useful nutritional strategy for soccer players. The intake of
6–10 g CHO/kg is generally recommended during the 24 h period before a match [6].

6.1.3. During Exercise/Match

The benefits of ingesting CHO during endurance exercise are well established, and general
recommendations for sports where exercise duration ranges from 1 to 2.5 h advocate an ingestion
of 30–60 g/h [12]. It is known that athletes’ performance tends to drop over the course of a soccer
match [85] and thus, an adequate CHO supply during exercise may attenuate the progression of
players’ fatigue. In fact, CHO intake at a rate of 30–60 g/h has been associated with a consistent
beneficial effect on performance in soccer [73]. Nicholas and colleagues [86] undertook a study in
which they provided soccer players with either a 6.5% CHO solution or a taste- and color-matched
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placebo solution between the 15-min activity blocks of the Loughborough Intermittent Shuttle Running
Test (LIST—designed to simulate the activity pattern characteristic of soccer and other stop-start
sports). After performing 75 min of the LIST, players performed alternated 20-m sprints with jogging
recoveries to fatigue. Researchers found that intake of the CHO solution allowed athletes a 33% greater
running time, than when they ingested the placebo [87]. More recently, others [86] found that when
adjusting for body mass, ingesting a 7% CHO intake (49 g) was associated with improved time to
fatigue during a simulated soccer match.

Overall performance in soccer is not only dependent on physical power. Motor skills and cognitive
performance also play a crucial role on the performance of soccer players and there is a tendency for
players’ skills and cognitive performance to decline during the latter stages of a match. CHO has
been shown to attenuate or even eliminate this detrimental effect over the course of a match [88–90].
As Russell and Kingsley [70] recently reported in a systematic review, six out of eight studies found
that the ingestion of 30–60 g CHO/h (via a 6–8% solution of glucose, sucrose, or maltodextrin) was
associated with an enhancement of at least one aspect of soccer skill performance.

Adding a small amount of protein to a CHO supplement may further enhance performance as
found by Alghannam [91]. In this case, a beverage containing 4.8% CHO plus 2.1% protein ingested
prior to and during a 75-min football-specific intermittent exercise, allowed for a post-exercise longer
run time to fatigue and lower ratings of perceived exertion than an isolated 6.9% CHO supplement.

Finally, a simple carbohydrate mouth rinse has also shown to be able to produce similar effects,
with improvements typically between 2% and 3% during exercise lasting approximately 1 h [92,93].
The mechanisms associated with this phenomenon are yet to be perfectly understood but it is already
known that they are specific to carbohydrates and independent of taste [94]. These results suggest
that it may not be necessary to ingest large amounts of carbohydrate when an athlete is going to
exercise/play for approximately 30 min to 1 h. It is also noteworthy to mention that most studies
have been conducted on a cycle ergometer and that some did not produce beneficial results [95].
Nevertheless, an actual CHO ingestion is recommended in most situations, except when an eventual
gastrointestinal discomfort is suspected to outweigh the potential performance benefits.

6.1.4. Post-Exercise/Match

Muscle glycogen depletion induces muscle glycogen resynthesis, even in the absence of
post-exercise CHO intake [96]. Nevertheless, ingestion of post-exercise CHO further stimulates muscle
and liver glycogen synthesis, up to a 10-fold increased rate, in comparison to a post exercise non-fed
state [74]. Considering a typical mean glycogen storage rate of 5–6 mmol/kg wet weight/h, roughly
24 h of recovery may be needed to normalize muscle glycogen levels. During periods of high frequency
of competitive matches and/or training, athletes may see their optimal muscle glycogen recovery
compromised, which can ultimately lead to lower overall individual performances. Most importantly,
and since higher muscle glycogen synthesis rates occur immediately after the exercise bout, special
attention must be placed in this early-phase of recovery. Since the interval between training sessions
can be shorter than 8 h, CHO intake, in the form of solids or liquids, should start as soon as possible
after the first session to maximize the effective recovery time [97]. In these scenarios, recommendations
estimate an ingestion of ≥1 g/kg/h [74], during the first few hours after exercise. The type of CHO
that is consumed seems to be of lesser relevance, provided it produces a large glycemic and insulinemic
response [74], although it should be considered that lower glycemic index CHO generally have higher
fiber content and result in higher levels of satiation, so more food has to actively be consumed to match
the amount of CHO generally found in higher glycemic index foods. Nevertheless, research has shown
that individuals may respond to the glycemic index of foods in many different ways. In one interesting
paper, researchers continuously monitored week-long glucose levels in an 800-person cohort, measured
responses to 46,898 meals, and found high variability in the response to identical meals [98]. In response
to the ingestion of a given food, some participants could see a significant elevation on their glycemic
levels, while others saw only a slight increase or even none at all, suggesting that universal dietary
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recommendations may have limited utility. To optimize recovery, athletes’ reaction to different foods
or CHO should be tested in order to select the ones that guarantee a rapid and large glycemic and
insulinemic response. Nonetheless, athletes should also select foods (or drinks) based on their personal
preference and experience.

When CHO intake is adequate (e.g., >1 g/kg/h), the co-ingestion of protein seems to provide
no further effect on glycogen synthesis [99]. Nevertheless, in specific circumstances such as low daily
energy intake or when the amount of carbohydrates is insufficient (especially in the first 4 h after
exercise), the addition of ≥0.3 g/kg/h of protein to a carbohydrate supplement may accelerate muscle
glycogen resynthesis via a synergistic increase in insulin secretion and muscle glucose uptake [74].
In soccer, the combination of glycogen and protein in a post-exercise meal may be especially relevant
during pre-season, where weight management is generally regarded as a critical goal. Finally, we recall
that a reduced total energy intake (below requirements) may affect CHO kinetics and compromise an
adequate muscle glycogen repletion [100].

6.2. Proteins

An adequate amount of protein should be ingested daily to guarantee an adequate protein
synthesis and recovery [15]. Recently, the Academy of Nutrition and Dietetics, Dietitians of
Canada, and the American College of Sports Medicine suggested that athletes’ protein needs range
from 1.2 to 2.0 g/kg/day and that higher intakes may be indicated for short periods of intensive
training or when energy intake is reduced [12]. In general, soccer players seem to accomplish these
guidelines [65,101–103]. However, more important than the total amount is the intake profile, which
includes characteristics as the amount of protein at each meal, the timing of intake, and the source
of protein.

For young adults, it has been suggested that the dose of 20–25 g is sufficient, and optimal,
to maximally stimulate muscle protein synthesis (MPS) after strength exercises [104]. Taking into
account the player body size, the protein amount per meal corresponds to 0.25–0.4 g/kg [71,105].
However, a recent study from Macnaughton and collaborators [106] suggested that ingesting 40 g of
high-quality protein following a whole body resistance (instead of targeting just the legs) exercise bout
was superior in stimulating muscle growth response compared to 20 g. Additionally, for the purpose of
enhancement of MPS, the use of intact proteins is advised as opposed to a combination of branch chain
amino acids (BCAAs) [71]. Specific studies on soccer players are needed in order to understand which
dosage is more appropriated and if specific and different strategies are needed throughout the season.

Regarding the moment of ingestion, it seems that eating protein immediately after exercise is
important when the goal is to stimulate MPS [107]. Moreover, in an elegantly conducted study,
Areta et al. [108] demonstrated that MPS is greater when 4 × 20 g of protein is ingested every 3 h after
exercise, compared to 2 × 40 g every 6 h or 8 × 10 g each 1.5 h. Therefore, the recommendations are
towards the ingestion of 0.4 g/kg/meal, 4 meals/day, instead of the typically skewed pattern of protein
intake favoring the evening meal [109] that has been observed in soccer players [102]. Additionally,
some studies have shown that ingesting protein before exercise may also be beneficial, probably due
to a more rapid availability of amino acids in the acute phase after exercise [110]. Finally, there is
evidence that supports the ingestion of 30–40 g casein before sleep for maximal stimulation of MPS at
night after a strength exercise session [111,112].

6.2.1. Pre-Exercise/Match

For the purpose of maximal enhancement of MPS, players should ingest 0.25–0.4 g/kg of intact
proteins in the meal before exercise [71]. As stated above, special attention should be given to CHO
before matches, and protein may not be the primary nutritional concern. Nevertheless, protein
ingestion before exercise allows post-exercise MPS rates to be elevated more rapidly during the early
stages of recovery due to a greater amino acid availability [113]. Since a soccer match leads to extended
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muscle damage [114], pre-match protein ingestion should also be a priority, especially on a multiple
match per week schedule.

6.2.2. During Exercise/Match

Although there are some studies [115,116] showing positive effects of ingesting protein during
exercise, its benefits are not yet consensual [113,117]. Given the duration of a typical exercise training
and match (<3 h), football might not be the modality that most benefits from protein ingestion during
exercise [113].

6.2.3. After Exercise/Match

In order to enhance protein synthesis and to allow repair, remodeling and adaptation, players
should ingest 0.25–0.4 g/kg in the early recovery period [71,105,118]. Moreover, there is evidence
that supports ingestion of 30–40 g casein before sleep for maximal stimulation of MPS at night after a
strength exercise session [111,112].

6.3. Fats

Fat is a source of energy, fat-soluble vitamins (A, D, E, K), and essential fatty acids. Although
the benefits of fat for exercise performance are equivocal [119], fat intake is essential for health and
a diet too low on fat has the potential to compromise it, as it reduces the absorption of fat-soluble
vitamins and glycogen storage in the muscle [12,13]. The amount of required fat depends largely on
the training status and the athlete’s goals [120,121]. Three of the most accredited associations related
to sports nutrition (American College of Sports Nutrition (ACSN), International Olympic Committee
(IOC) and International Society for Sports Nutrition (ISSN)) [120] recommend a daily fat intake for
athletes between 20% and 35% of total energy intake, adding that fat intake should not decrease below
15%–20%. It is suggested that athletes should be cautious of high-fat diets (>30% of total energy intake),
as favoring this nutrient can be at the expense of a lower CHO intake and have negative effects on
training performance [120].

Alongside with the amount, the type of dietary fat intake should also be considered.
Polyunsaturated n-3 fatty acids are essential for overall health of the athlete [122]. Some evidence
suggests that in today’s diet, the ratio of n-6 to n-3 fatty acids ranges from 10:1 to 20:1 [13,122], which
can result in excessive inflammation and detrimental post-exercise recovery. Therefore, a regular
supply of foods rich in n-3 should be part of the daily menu plan [13] to increase the production of
endogenous antioxidant enzymes [122] and increase oxygen delivery to the heart muscle [123]. Finally,
fish oil concentrates rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been
used to counteract the effects of the inflammatory state [124] and dietary fish oil supplementation has
a marked protective effect in suppressing exercise-induced bronchoconstriction in elite athletes [122].

6.3.1. Pre-Exercise/Match

Fat is generally recommended to remain at low levels in the pre-exercise meals, to avoid interfering
with gastric emptying or causing gastrointestinal problems [12].

6.3.2. During Exercise/Match

The use of medium chain triglycerides (MCTs) has been hypothesized to benefit sport performance
due to their enhanced digestibility and metabolization when compared to other fats [125]; however, it is
unlikely that the provision of MCTs during exercise can promote a sufficiently large increase in rates of
fat oxidation to support glycogen sparing and performance benefits, and there is a substantial risk that
gastrointestinal disturbances may actually impair performance [16]. Therefore, the consumption of
fats during training sessions and matches is not advised for soccer players.
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6.3.3. After Exercise/Match

The minimal available evidence suggests that the ingestion of low to moderate amounts of
fat do not impair glycogen [126,127] nor muscle protein resynthesis [128], if adequate amounts of
carbohydrates and protein are consumed. Excessive fat may, however, displace carbohydrate foods
within the athlete’s energy requirements and gastric comfort, thereby indirectly interfering with
glycogen storage.

6.4. Hydration

During sports events, when the internal body temperature rises, the main mechanism contributing
for increasing heat losses is the activation of sweat glands. Indeed, the evaporation of water through
sweat on the skin surface is a very efficient mechanism for removing heat from the body [129,130]. Losses
through sweat vary greatly between individuals and depend upon environmental conditions [131,132]
as well as other individual characteristics such as body weight [133], genetic predisposition, heat
acclimatization state [134], and metabolic efficiency (economy at undertaking a specific exercise task).
In a soccer match, sweat rates will vary between players according to their position and playing style
as well as the total time spent on the field [135].

There are several studies that evaluated sweat losses and sweat rates in soccer (see Table 2):

Table 2. Sweat losses, sweat rates and intake recommendations for an adequate hydration in soccer.

N Environmental
Conditions Duration Mean Sweat

Losses (mL)
Sweat Rates

(mL/h) Fluid Intake (mL) Dehydration
(% BML) Reference

Training sessions

24 PP T: 24–49 ◦C
RL: 46–64% 90 min 2033 ± 413 1355 ± 275 971 ± 303 1.37 ± 0,54 [136]

26 PP T: 32 ± 3 ◦C
RL: 20 ± 5% 90 min 2193 ± 365 Not reported 972 ± 335 1.59 ± 0.61 [135]

17 PP T: 5 ± 0.7 ◦C
RL: 81 ± 6% 100 min 1690 ± 450 1130 + 300 423 ± 215 1.62 ± 0.55 [137]

Match play (including simulation)

17 PP T: 35 ± 1 ◦C
RH: 35 ± 4 90 min 4448 ± 1216 1483 + 362 1948 ± 954 3.4 ± 1.1 [132]

13 PP T: 27 ± 0.1 ◦C
R: 65 ± 7% 100 min 2600 ± 600 Not reported 1666 ± 333 3.4 ± 0.7 [138]

20 PP T: 6–8 ◦C
RL: 50–60% 90 min 1680 ± 400 Not reported 840 ± 470 1.1 ± 0.6 [129]

20 PP T: 29 ± 1.1 ◦C
RH: 64 ± 4.2%. 90 min 2360 ± 530 866 ± 319 1265.00 ± 505.45 1.35 ± 0.87 [139]

PP: professional players; T: environmental temperature; RL: Relative humidity.

By analyzing Table 2, it is possible to conclude that some percentage of dehydration commonly
occurs in soccer players, and a significant amount of fluid can be lost through sweating even when
the match is played in a cold weather environment. Equally important but often neglected is the
observation that a hypohydrated player at the beginning of a sport event has already a hydration
deficit, which can more easily compromise sports performance. A study conducted by Maughan et
al (2004) found high levels of urine osmolality in some players, suggesting that they began training
sessions already in a hypohydrated state [136]. Opportunities for fluid intake during match period
are limited, and the ability to empty ingested fluid from the stomach may be compromised, so it is
of great importance for players to ensure they are fully hydrated before beginning either training or
match-play [136].

Dehydration predominantly presents a thermoregulatory challenge since skin blood flow is
reduced during exercise and plasma volume is depleted due to sweating; this reduces heat dissipation
and results in elevated core temperature [140]. Dehydration can develop when body fluid losses exceed
fluid intake, and it often occurs during exercise, heat stress, restricted fluid intake, or any combination
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of these [33,72,141]. It is often described in terms of changes in body mass during acute exercise
(2% dehydration is defined as a water deficit equal to 2% of body mass). Usually, only about half of
sweat losses are voluntarily replaced during exercise [142,143] which generally results in moderate
acute water deficits in team sports (1%–2%) [142]. This information is based on data reported in
different soccer studies, shown in Table 2. It is also important to mention that some studies in more
extreme conditions such as 27 ± 1 ◦C; RH = 65 ± 7% [138] and 35 ± 1 ◦C; RH = 35 ± 4% [132] show
dehydration percentages considerably higher (3.4 ± 0.7% and 3.4 ± 1.1%, respectively). Dehydration
percentages of 1% or 2% of body water can already have detrimental consequences such as impaired
cognitive functions, alertness and physical performance. [130,135,144–146]. A dehydration of >2%
body mass deficit has been shown to impair football-specific performance, including intermittent
high-intensity sprinting and dribbling skills [135,146–148] and it is also known that greater levels
of dehydration will further degrade aerobic exercise performance [149]. Physiologic factors that
contribute to dehydration-mediated aerobic exercise performance decrements include increased body
core temperature, increased cardiovascular strain, increased glycogen utilization, altered metabolic
function, and altered central nervous system function [150,151].

A good baseline is typically determined via consecutive daily measures of first morning, post
void and nude body mass, usually after providing fluid (1–2 L) the evening prior [152–154]. If a
well-hydrated baseline body mass is not established, it is unclear what degree of dehydration has
been achieved by any acute perturbation. Nevertheless, the 2% body mass is a consensus in the
literature representing a threshold at which aerobic exercise performance or endurance becomes
impaired [72,155], but it is worth noting that exercise-induced dehydration up to 4% of body weight
loss may not alter exercise performance, at least while cycling exercise mode [156]. On the other hand,
impairments on anaerobic performance and muscular strength remain unclear [155,157]. The signs
of mild-to-moderate dehydration include dry, sticky mouth, sleepiness or tiredness, thirst, decreased
urine output, muscle weakness, headache, dizziness or light-headedness [130]. It is important to
mention that thirst is triggered by increases in plasma and extra cellular fluid osmolarity and by
reductions in plasma volume at water deficits that correspond to a body weight loss of 1–3%. This
means that, in the rehydration process, thirst can disappear before water balance is reached [130].

Besides water, electrolytes, particularly sodium and chloride in smaller amounts, are also lost
with sweat. The other electrolytes present (e.g., potassium, calcium, magnesium) are at vastly lower
concentrations [158]. In studies where sweat electrolyte composition is determined, absorbent sweat
patches are attached to various anatomical sites after the skin is thoroughly cleaned with deionized
water and dried [136]. This procedure helps to identify those players with high sweat sodium
losses who may need to pay particular attention to sodium replacement [159]. In soccer there are
several studies that report sodium losses from 30 ± 19 mmol/L [159] to 62 ± 13 mmol/L [129],
which is equivalent to “salt” losses from 3.9 to 6.1 g. Regarding chloride and potassium, a study of
24 professional male players reported losses of 43 ± 10 mmol/L and 6 ± 1.3 mmol/L, respectively [136].
Although there is a limited number of studies regarding chloride losses in soccer, in what concerns
potassium, a study [159] reported slightly different values of 4.2 ± 1 mmol/L. It is clear that high salt
losses are a factor in the etiology of muscle cramps and heat illness in industrial settings and that these
can be alleviated by the ingestion of salt-containing drinks but it is less clear whether this applies to
the generally smaller losses [159]. However, some studies report that people susceptible to muscle
cramps are believed to be often profuse sweaters with large sweat sodium losses [160–162].

The commonly used technique to measure changes in hydration status is the measurement of body
weight changes that occur during short periods of time [163], which is because when an individual
is in an energetic balance, a body weight loss essentially equals water loss. Measurements of body
weight must be carried out under standard conditions, preferably in the morning in the fasted state
and after micturition and defecation [130]. There are, however other options to evaluate changes in
hydration status such as the BIA technique [164], although it remains inappropriate for measuring
small changes in total body water in the range of 1 L [165–167]. Urinary indices of hydration, such
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as urine osmolarity [168], urine-specific gravity or 24-h urine volume, may also be used, but urine
variables often mirror the recent volume of fluid consumed rather than the state of hydration [169].
For example, the intake of a large volume of water rapidly dilutes the plasma and the kidneys excrete
diluted urine even if dehydration exists. A number of studies have shown the urine osmolality,
measured on samples collected at rest prior to exercise, can be used in athletes as an index of hydration
status, being urine osmolality normally less than about 600–900 mosmol/kg in individuals who are
well hydrated [136,170]. Even if there is no real consensus with regard to the method by which to
measure hydration status, for clinicians and general practitioners, the urine color chart is normally
used as an indicator [171]. Finally, an approximation of hydration status can be obtained by measuring
the sensation of thirst with a simple numerical scale [130].

In terms of recommendations for adults performing modest physical activity, the daily water
needs of men increase from 2–2.5 L (if sedentary) [172] to about 3.2 L, while more active adults living
in a warm environment can have daily water needs of about 6 L [173]. Thus, it is certain that physical
activity results in increased water requirements [134].

6.4.1. Pre-Exercise/Match

Before exercise, the goal is to start the physical activity euhydrated and with normal plasma
electrolyte levels [149]. The prehydration program will help ensure that any previously incurred fluid
electrolyte deficit is corrected prior to initiating the exercise task. When hydrating prior to exercise
the individual should slowly drink beverages (for example, ~5–7 mL·kg−1 per body weight) at least
4 h before the exercise task. If the individual does not produce urine, or the urine is dark or highly
concentrated, he should slowly drink more (for example, another ~3–5 mL·kg−1) about 2 h before
the event. By hydrating several hours prior to exercise there is sufficient time for urine output to
return towards normal before starting the event [174]. Another small bolus in the end of warm-up is
recommended to replenish sweat losses during this period [174].

Consuming beverages with sodium (20–50 mEq·L−1) and/or small amounts of salted snacks or
sodium containing foods at meals will help to stimulate thirst and retain the consumed fluids [175,176].

Enhancing palatability of the ingested fluid is one way to help promote fluid consumption, before,
during, or after exercise. The preferred water temperature is often between 15 and 21 ◦C, but this
factor, as well as flavor preference varies greatly between individuals and cultures [72].

6.4.2. During Exercise/Match

The amount and rate of fluid replacement depends upon the individual sweating rate, exercise
duration, and opportunities to drink. Individuals should periodically drink (as opportunities allow)
during exercise whenever possible, if it is expected they will become excessively dehydrated [72]. It is
recommended that individuals should monitor body weight changes during training/competition to
estimate their sweat lost during a particular exercise task with respect to the weather conditions. This
allows customized fluid replacement programs to be developed for each person’s particular needs [72].

Both soccer rules and gastric tolerance do not allow suitable hydration for soccer players [177].
During the match, it is difficult to ingest fluids because there are no breaks for this specific purpose,
hence the player’s fluid intake has to be a priority during half-time [136]. Its ingestion should be
enough to replace loss from sweat, with volume and contents known by players and based in individual
requirements and preferences [178]. These beverages should have a carbohydrate concentration of 6%
to 8%, and should be provided at a temperature of 15 to 20 ◦C at every 15–20 min, in a volume of 150
to 300 mL, to provide substratum, but not to limit rate of gastric emptying [72,136].

During training sessions, the need to include carbohydrates and electrolytes will depend on the
specific exercise task (e.g., intensity and duration) and weather conditions. The sodium and potassium
help to replace sweat electrolyte losses, while sodium also helps to stimulate thirst, and carbohydrate
provides energy. These components also can be consumed by non-fluid sources such as gels, energy
bars, gums and other foods.
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6.4.3. After Exercise/Match

After exercise, the goal is to fully replace any fluid and electrolyte deficit [72]. If players have
accrued a body mass deficit, they should aim to completely replace fluid and electrolyte losses prior
to the start of the next training session or match. If dehydration is severe (>5% of body mass) or
rapid rehydration is needed (e.g., <24 h before next training session or match) the recommendation
is to drink ~1.5 L of fluid for each 1 kg of body mass deficit [179]. The additional volume is needed
to compensate for the increased urine production accompanying the rapid consumption of large
volumes of fluid [176]. Therefore, when possible, fluids should be consumed over time (and with
sufficient electrolytes) rather than being ingested in large boluses to maximize fluid retention [180,181].
If recovery time and opportunities permit, consumption of normal meals and snacks with a sufficient
volume of plain water and sodium will restore euhydration [149,182].

Dehydration is not the only problem caused by inadequate intake of fluids, because
hyperhydration can also occur. Hyperhydration can be achieved by overdrinking combined with
an agent that “binds” water within the body, such as glycerol [183,184]. Simple overdrinking will
usually stimulate urine production [149,185] and body water will rapidly return to euhydration within
hours, [182,186], however, this compensatory mechanism (urine production) is less effective during
exercise and there is a risk of dilutional hyponatremia [185].

6.5. Micronutrients

Micronutrients (i.e., vitamins and minerals) play an important role in the body because many
are precursors for various important physiological processes. Exercise stresses many of the metabolic
pathways in which micronutrients are required, and training may result in muscle biochemical
adaptations that increase the need for some micronutrients [12].

To ensure sufficient intake, soccer players are encouraged to consume nutrient-dense foods [187].
In special circumstances, such as for players who are following a negative energy balance for weight
management purposes or for players who avoid or eliminate large food groups, or consume poorly
chosen diets, micronutrient intake may be sub-optimal and thus supplementation may be beneficial [12].
In these situations, the use of a standard multivitamin supplement that is batch tested under the
guidance of a qualified sports nutritionist or dietitian may be appropriate to ensure that 100% of
the recommended dietary allowance (RDA) for all micronutrients is met [13]. However, as with all
nutrients, the focus should first be on nutrient-rich foods, and then a supplement if indicated.

In soccer, special consideration must be given to iron, vitamin D and antioxidants (see below).
Vitamins B (B1, B2, niacin, B6, B12, biotin, folic acid and pantothenic acid), which have crucial functions
in energy metabolism, tend to be consumed at sufficient quantities in soccer players who meet their
increased energy requirements through an adequate and balanced dietary intake [188].

6.5.1. Iron

Iron deficiency, with or without anemia, can impair muscle function and limit work capacity,
leading to compromised training adaptation and athletic performance [12]. This is especially important
for soccer, due to its heavy reliance in aerobic metabolism [189].

Reinke and colleagues [190] observed a significant proportion (approximately 30%) of absolute
(serum ferritin <30 µg/L) and functional (normal ferritin with transferrin saturation <20%) iron
deficiency in professional soccer players (n = 10) at the end of season. Although holiday period
led to increased ferritin levels in these players, this was not sufficient to fully restore an optimal
iron status [190]. Other observations [191,192] also support a tendency for iron status disturbances
during a soccer season. It was speculated that accumulated fatigue and inadequate recovery time
during a competitive in-season period may predispose football athletes to iron status disturbances [190].
Others [193], albeit detecting a significant (approximately 31%) prevalence of iron deficiency/depletion
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(serum ferritin <30 µg/L) in professional soccer athletes, did not observe significant changes in the
iron status during a competitive season.

Soccer players, especially those at higher risk for deficiency, should aim for an iron intake equal or
greater than their RDA (i.e., >8 mg/day for men) [12]. When iron deficiency anemia (IDA) is detected,
clinical follow must ensue. For those who have iron deficiency (e.g., low ferritin) without anemia,
eating strategies that promote an increased intake of food sources of well-absorbed iron (e.g., heme
iron from animal sources, non-heme iron from vegetables plus vitamin C foods) should be promoted
as the first line intervention [12]. Oral supplementation with iron tablets (i.e., ferrous sulfate providing
80 mg of elemental iron) may also be useful to correct low ferritin levels [194]. Of note, the intake of
iron supplements in the period immediately after strenuous exercise is contraindicated since there is
the potential for elevated hepcidin levels to interfere with iron absorption [195].

6.5.2. Vitamin D

It is long recognized that vitamin D regulates calcium and phosphorus absorption and metabolism,
and plays a key role in maintaining bone health. Emerging research, however, also highlights the
important role of vitamin D for non-skeletal functions including skeletal muscle growth, immune
function, inflammatory modulation and athletic performance [196].

Soccer players with low levels of 25(OH)D (<30 ng/mL or <75 nmol/L) may be more likely to have
musculoskeletal injuries and stress fractures [197]. While it has also been suggested that lower levels
of vitamin D may lead to reduced muscle strength [198,199], two studies performed in professional
soccer have failed to find a consistent association between vitamin D status and muscle strength
variables [200,201]. Several studies assessed vitamin D status in soccer players living in different
regions and at different time of the year [200,202–205]. Vitamin D insufficiency (25(OH)D < 30 ng/mL
or 75 nmol/L) was relatively common in players living in countries at higher latitudes (>35th parallel),
especially in winter months [202–204]. However, insufficient vitamin D levels were also detected in a
large proportion (84%) of players living in Qatar (latitude < 35th) during summer, highlighting the
relevance of other factors such as exposure practices, clothing, sunscreen use, skin pigmentation and
timing of training sessions (e.g., after sunset) [200].

Although the human requirement can be met entirely through synthesis in the skin upon exposure
to sunlight [206], dietary vitamin D may also contribute to promote an adequate status. Vitamin D
is found in the diet from foods such as fatty fish and egg yolks but also fortified foods (e.g., milk,
yogurt, ready-to-eat cereal), and is well absorbed in association with dietary lipids [196]. The RDA
for vitamin D varies according to region, with recommendations ranging from 200 IU in Australia
and New Zealand to 600 IU in USA and Canada [207]. Where sensible sun exposure is not possible
or desired, athletes with insufficient status require supplementation with at least 1500–2000 IU/day
vitamin D to keep blood vitamin D concentration in the sufficient range [208].

Routine screening of vitamin D status may be useful in the athlete [196]. If routine screening is not
possible, athletes with low exposure to UVB, history of stress fracture, frequent illness, bone and joint
injury, skeletal pain or weakness, or signs of overtraining should be prioritized for assessment [12].
Vitamin D blood levels from 30–32 ng/mL (80 nmol/L) and up to 40 ng/mL (100 nmol/L) to 50 ng/L
(125 nmol/mL) have been recognized as prudent goals for optimal training induced adaptation [12].

6.5.3. Antioxidants

Several studies to date have shown inconsistent results indicating either positive or negative
effects of antioxidant supplementation combined with training [209–213]. Briefly, the most commonly
used arguments to support antioxidant supplementation are: (i) the fact that exercise leads to an
increase in ROS production and that increased levels of antioxidants could counteract the ROS,
preventing or reducing damage and, therefore, muscle pain [214], (ii) that some antioxidants
shown to improve endurance performance [215] and to delay fatigue, and (iii) that some athletes
may not achieve the nutritional recommendations for antioxidant intake just with food [216–218].
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On the other hand, some arguments have been used against antioxidant supplementation, namely:
(i) the fact that regular exercise leads to an increase in enzymatic and non-enzymatic antioxidants
in muscle fibers [219]; (ii) that antioxidant supplementation may impair muscle function or delay
some adaptations induced by exercise [220,221], by interfering with cell signaling functions of ROS,
affecting muscular performance [222]; (iii) that antioxidant supplementation does not seem to lead to
better outcomes, compared with placebo, regarding muscle function, inflammation [223] and redox
status [224] after eccentric exercise; (iv) that antioxidant supplementation may contribute to increase
muscle damage and oxidative stress [225], and (v) that some studies do not support the concept that
antioxidant supplementation is beneficial to human health [226] and doubts have been placed about
the chronic intake effects on performance of antioxidant supplementation in high doses [222,227].
Moreover, it has been reported that the protective effect of a diet, with natural sources of antioxidants,
is not equivalent to the protective effect of supplementation [228]. Given these facts, it is currently
suggested [209,229] that due to the limited evidence to recommend antioxidant supplements, athletes
should rather focus on consuming a well-balanced and energetically adequate diet, which can provide
antioxidant-rich foods. For detailed information regarding the impact of natural-present antioxidants
on exercise, other review paper is recommended [118]. Nevertheless, new approaches regarding the
acutely intake of some antioxidants such as vitamin E and N-acetylcysteine seem promising and are
pointing towards an acute performance benefit, but further research is needed [227].

6.6. Supplementation

It is well known that supplementation is a common practice among soccer players [230]. Despite
the large prevalence of use, athletes not always fully understand the possible risks that may arise
from dietary supplements (DS) consumption [231,232]. The same supplement may be of use in some
circumstances but detrimental to performance in others [233]. Of more concern is the poor quality
insurance of DS. Regulation of DS varies between countries, and the increasing market of online sales
allows a tremendous offer of different products, sometimes with uncertain origin [233]. In US [234],
the country that probably represents the larger DS market, and in Europe [235] DS, independently
of their form, are considered to belong to a special category under the general “umbrella” of foods,
not drugs. This means that DS are not under the same regulations nor are subject to the strict
control that is applied to the pharmaceutical industry. The poor quality of DS is a concern for sports
community. There are reports of contamination with impurities [233] and reports of undeclared
allergens or microbiological contamination [236]. This scenario may cause acute health consequences
and jeopardize a crucial period of training or competition [233]. However, more worrisome is the
possible contamination of DS with prohibitive substances in sports [237]. Although there are some
products that deliberately contain substances prohibited by the World Anti-Doping Agency [238],
others—15% [239] to 25% [240]—are contaminated with them, i.e., these substances are not declared in
the label. Some of these cases may result from inadvertent cross-contamination due to poor quality
control but others seem to involve deliberate adulteration [236]. Therefore, there is a high and real
risk for athletes consuming contaminated supplements to inadvertently fail a doping test [241]. Since
the contamination of supplements became a serious issue, reputable supplement companies have
been taking several measures to prevent adulteration [238]. These include product and manufacturing
audits to attest the quality control along the production process, and the testing of products for trace
amounts of prohibitive substances by specialized sports anti-doping laboratories [238].

Recently, the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American
College of Sports Medicine [12] divided the DS into three categories: sports foods (such as sports
drinks, sports bars and electrolyte supplements), medical supplements (iron, calcium, vitamin D
and n-3 supplements) and specific performance supplements (creatine, caffeine, sodium bicarbonate,
beta-alanine and nitrate). Considering the specificity of soccer, Table 3 displays the rationale for intake
and the protocol and practical recommendations of the specific performance supplements of interest
for soccer.
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Table 3. Practical recommendations in selected performance dietary supplements.

Supplement Rational for Intake Protocol and Practical
Recommendations References

Beta-alanine

Increase in muscle buffer capacity.
Delay in the onset of muscular
fatigue. Facilitated recovery during
repeated bouts of
high-intensity exercise.

4–6 g/day, for at least 2–4 weeks.
Attenuate paresthesia by using divided
lower doses (1.6 g) or using a
sustained-release formula and avoid
intake before a match.

[242,243]

Caffeine
Improve cognitive and skill
performance.
Decrease perceived exertion.

3–6 mg/kg 60 min before kick-off. [15,70,244,245],

Creatine

Maintenance of intracellular levels
of adenosine triphosphate.
Improvement of power, strength
and muscle mass.

0.1 g/kg or 5 g/day after
training/match. Add 100 g CHO or 50 g
CHO + 50 g protein for
optimal absorption.

[245,246]

Nitrate Decrease oxygen cost of
submaximal exercise.

6–8 mmol/day for 2–5 days before a
match and 90 min before kick-off. [15,247,248]

Sodium bicarbonate
Greater extracellular buffer
concentration increasing H+ efflux
from the muscles into the blood.

0.2–0.3 g/kg ingested 60–120 min
before exercise.
May cause gastrointestinal side-effects.

[249]
Note: recommendations

based on limited
evidence

6.6.1. Beta-Alanine

Beta-alanine supplementation has become a common practice among competitive athletes
participating in a range of different sports [250]. Among other roles [251], beta-alanine supplementation
augments intramuscular carnosine content, leading to an increase in muscle buffering capacity, as
carnosine readily accepts protons during contraction-induced acidosis [252]. As such, a delay in the
onset of muscular fatigue and a facilitated recovery during repeated bouts of high-intensity exercise
have also been reported as positive effects of beta-alanine supplementation [250]. As muscle is unable
to synthesize the two carnosine precursors, L-histidine and b-alanine, the concentration of intracellular
carnosine is largely dependent on the uptake of these amino acids from the bloodstream. Of the two,
beta-alanine has been identified as the rate-limiting precursor to carnosine [253]. Reviews on the effects
of its supplementation have been published [242,254].

In a classic study by Hoffman et colleagues [255] college football players ingested 4.5 g of
beta-alanine or placebo for 30 days. Beta-alanine supplementation began three weeks before preseason
training camp and continued for an additional nine days during camp. Anaerobic performance,
training volume, and ratings of soreness and fatigue were assessed pre- and post-intervention and
included a 60-s Wingate anaerobic power test and three line drills. At the end of the 30-day investigative
period, only the beta-alanine group showed a trend toward lower fatigue rates during the anaerobic
performance test. More interestingly for team sports, beta-alanine supplementation allowed for higher
training volumes and lower subjective feelings of fatigue, indicated that as duration of supplementation
continued, the efficacy of beta-alanine supplementation in highly trained athletes became apparent
(training logs were used to record resistance training volumes). Earlier, the effects of creatine and
beta-alanine supplementation on performance and endocrine responses in strength/power athletes
had been analyzed and it was found that beta-alanine + creatine did not produce further strength
increments when compared to creatine alone but the co-supplementation elicited greater changes in
lean body mass and percent body fat [256].

Studies conducted on the effects of beta-alanine on soccer related performance variables are scarce.
Saunders and colleagues gave either a placebo or a beta-alanine supplement (3.2 g/day for 12 weeks)
to 17 amateur soccer players and evaluated their effect on the YoYo Intermittent Recovery Test Level
2 [257]. These researchers found that while participants on the placebo group saw a decrease on
their performance (−7.3%), participants on the supplemented group achieved the opposite (+34.3%).
Also of note, only two participants on the placebo group improved their performance, but eight out of
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the nine supplemented participants achieved better results, while the remaining participant saw no
modification on his performance.

Another interesting study aimed to determine if beta-alanine could help to improve sprinting
performance at the end of an endurance competition. This is interesting for team sports, as performance
detriments tend to increase by the end of a match and the ability to perform a maximal intensity
exercise by then may be decisive for the match result. Therefore, subjects performed a 10-min time
trial and a 30-s isokinetic sprint (100 rpm) after a 110-min simulated cycling race and it was found
that during the final sprint after the time trial, beta-alanine supplementation resulted on an average
increased peak power output by 11.4% and a mean power output increased by 5.0% [258].

A recent position stand of the International Society of Sports Nutrition [243] states that:
(1) daily supplementation (4–6 g/day) significantly augments muscle carnosine concentrations;
(2) beta-alanine supplementation currently appears to be safe in healthy populations at recommended
doses; (3) paresthesia (tingling) may occur as a side effect, but studies indicate this can be attenuated
by using divided lower doses (1.6 g) or using a sustained-release formula; (4) daily supplementation
(4–6 g/day) for at least two to four weeks has been shown to improve exercise performance, with more
pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; (5) beta-alanine
attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates
that beta-alanine may improve tactical performance; (6) combining beta-alanine with other single or
multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high
enough (4–6 g daily) and long enough (minimum four weeks); (7) more research is needed to determine
the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other
health-related benefits associated with carnosine. In summary, the body of scientific data indicate that
athletes may not only be using beta-alanine supplementation to enhance sports performance but also
as a training aid to augment bouts of high-intensity training, to decrease rates of perceived fatigue and
to perform higher training volumes in team-sport athletes, which may allow for greater overload and
superior adaptations compared with training alone [250]. Nonetheless, more studies involving soccer
players are needed to fully comprehend the interactions between beta-alanine supplementation and
performance in soccer.

6.6.2. Caffeine

The ergogenic effect of caffeine, one of the most popular dietary supplements, is relatively
well-documented [259]. The International Society of Sports Nutrition considered that caffeine
supplementation is beneficial for intermittent exercise within a period of prolonged duration, including
team sports such as soccer [260].

Froskett and collaborators [261] showed that the ingestion of 6 mg/kg of caffeine 60 min before a
simulated soccer activity could improve players’ passing accuracy and jump performance without
any detrimental effects on other performance parameters. In another study [262], male soccer players
performed a 90-min intermittent shuttle-running trial 1 h after ingesting a carbohydrate-electrolyte
solution containing 3.7 mg/kg of caffeine. The solution was also ingested every 15 min during the
exercise protocol. Compared to placebo, the addition of caffeine to the carbohydrate-electrolyte
solution improved sprinting performance, countermovement jumping and ratings of pleasure. Based
on this two studies, a recent review [70] concluded that caffeine in doses of 6 mg/kg has the potential
to preserve skills performed under conditions that induce soccer-specific fatigue, but its effects are not
strongly conclusive due to the small number of studies.

More recently, 6 mg/kg of caffeine ingested 1 h before a 90-min intermittent treadmill-running
protocol enhanced the ratings of pleasure and arousal during the exercise protocol and increased vigor
compared to placebo [244]. In another study [263], also with female players, the ingestion of 3 mg/kg
of caffeine in the form of an energy drink 1 h before a countermovement jump and a 7 × 30 m sprint
test followed by a simulated soccer match (2 × 40 min) increased the countermovement jump height
and the average peak running speed during the sprint test. During the simulated match, the ingestion
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of caffeine increased the total running distance, the number of sprints and the running distance covered
at >18 km/h. Nevertheless, it is worthy to mention that not all studies investigating the use of caffeine
on soccer have found positive effects [264,265].

6.6.3. Creatine

Creatine is an endogenous compound synthesized from arginine, glycine and methionine and is
mostly (95%) stored in skeletal muscle where it can be found as a free form or bound to a phosphate
molecule (phosphocreatine) [245]. The most well know physiology effect of creatine is its role on
the maintenance of intracellular levels of adenosine triphosphate (ATP), whereby phosphocreatine
promptly donates its phosphate molecule to adenosine diphosphate (ADP) to (re-)form ATP, and
therefore, maintaining the highest power output. However, this energy system can be almost
completely depleted after only a few seconds of maximal exercise [266]. In a single 6-s sprint, glycogen
degradation (glycogenolysis) contributes 50% of the ATP production, whereas phosphocreatine
contributes 48% and the remaining 2% is provided by the muscle’s small store of ATP [267]. In even
shorter maximal sprint durations, phosphocreatine is the primary energy source for ATP production.
Along with power and strength, creatine has traditionally been praised for its effects on muscle mass
increase and many other beneficial outcomes, from age-related disease prevention to improved brain
performance [245,268], and is a popular supplement among elite soccer players [230].

The effects of acute creatine supplementation have been investigated. Ostojic and colleagues found
that creatine supplementation for seven days (3 × 10 g/day) improved performance in a soccer-specific
battery of tests, including a dribble test, a sprint-power test, an endurance test, and a vertical jump
test [269]. Another study revealed that six days of creatine supplementation (4 × 5 g/day) improved
repeated sprint performance and jumping ability after an intermittent exercise test in 17 highly trained
male soccer players [270]. The same creatine supplementation protocol produced improved results on
repeated sprint and agility tasks in elite female soccer players [271].

Longer creatine supplementation protocols have also been implemented. A 13 weeks of creatine
supplementation (2 × 7.5 g/day in the first week and 5 g/day throughout the rest of the protocol)
improved the muscle strength of collegiate female soccer players [272]. Claudino and colleagues found
that creatine monohydrate supplementation prevented the decrement in lower-limb muscle power
in elite soccer players during a 7-week pre-season progressive training [273]. Here, subjects from the
creatine group received 20 g/day of creatine monohydrate for 1 week divided into four equal doses
(loading phase), followed by single daily doses of 5 g for the next six weeks (maintenance phase).
More recently, Ramirez-Campillo and colleagues investigated the effects of a six-week plyometric
training and creatine supplementation intervention (4 × 5 g/day in the first week followed 5 g/day in
the next five weeks) on maximal-intensity and endurance performance in female soccer players during
in-season training and found that creatine produced improved results in the jumps and repeated
sprinting performance tests [270].

In events where a supercompensation protocol is possible or desirable (i.e., competitions that take
place in just one or a few days), creatine ingestion (20 g/day for six days) can augment dietary
carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery
(sustaining it on the next five days) following prolonged exhaustive exercise [274].

Nevertheless, creatine does not always produce improved performance results, whether using an
acute [275] or a chronic supplementation protocol [276]. Non-responders typically have higher preload
levels of creatine and phosphocreatine, less type II muscle fibers, small preload muscle cross-sectional
area, and lower fat-free mass [277].

On the methodology of creatine supplementation there are various issues that should be addressed.
For example, creatine supplementation seems to be most effective when taken after exercise, both on
healthy older adults or healthy young adults, at a dose of 0.1 g·kg−1 or around 5 g [278,279]. The ideal
frequency of weekly ingestion is not known but on physically active university students there was
no difference between a two or a three day/week intake schedule [280]. Nevertheless, professional
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soccer players often train/play 5–6 days per week and should supplement accordingly, or at least
after high intensity training or every match. Creatine ingested in combination with CHO substantially
increased muscle creatine accumulation compared with the ingestion of creatine alone [281] but a
combination of 50 g of CHO and 50 g of protein seem to be as effective as an isolated dose of 100 g
of CHO [282]. Otherwise, a recent review on creatine supplementation and lower limb strength
performance found that this supplement is effective for exercise with a duration of less than 3 min,
independent of population characteristic, training protocols (including the non-necessity of a loading
phase) and supplementary doses and duration [283]. The same study states that creatine monohydrate
is still the most used form of creatine supplementation. Finally, long-term creatine use does not appear
to result in adverse health effects, at least while consuming the most popular creatine forms [246,284].

6.6.4. Nitrate

Dietary nitrate supplementation is known for its capacity for reducing the oxygen cost of
submaximal exercise [285]. The ingestion of nitrate leads to an increment of plasma nitrite
concentrations and, consequently, to an increased production of nitric oxide [286]. Nitric oxide has
several metabolic and vascular effects that seem to contribute to a better exercise efficiency [286].
Dietary nitrate is available in the form of beetroot shots, nitrate-containing gels and bars [15].
The ingestion of nitrate-rich foods such as spinach, lettuce and arugula might be an alternative
to supplementation [287].

Although the use of nitrate became popular on soccer, few studies have investigated the
effectiveness of nitrates specifically on soccer performance. Wylie and collaborators [247] investigated
the intake of 490 mL of nitrate-rich beetroot juice concentrated or placebo over ≈30 h preceding the
completion of a Yo-Yo intermittent recovery level 1 test (IR1) by male recreational team-sport players.
The supplementation protocol consisted of the ingestion of 2 × 70 mL (2 × ≈4.1 mmol of nitrate) in
the morning and 2 × 70 mL in the evening. On each experimental day, subjects consumed a further
2 × 70 mL 2.5 h prior to and 1 × 70 mL 1.5 h prior to the start of the exercise protocol. Performance
in the Yo-Yo IR1 test was 4.2% greater with the beetroot juice compared to placebo. More recently,
Thompson and collaborators [248] studied the intake of 70 mL beetroot juice/day (≈6.4 mmol of
nitrate) or placebo for five days by male team-sport players. On day 5, subjects completed a series
of maximal 20-m sprints followed by the Yo-To IR1; cognitive tasks were completed prior to, during
and immediately following the Yo-Yo IR1. The distance covered in the Yo-Yo IR1 test improved by
3.9% compared to placebo. The reaction time to the cognitive tasks was 4.7% shorter in the beetroot
juice group than in the placebo group at rest but not during the Yo-Yo IR1. In another study, [288],
improvements in total work done during prolonged intermittent exercise and in reaction time of
response to cognitive tasks in the second half of the intermittent exercise protocol were also achieved
with the ingestion of a larger daily dosage (140 mL beetroot juice; 12.8 mmol of nitrate) during a larger
period of time (7 days).

Nitrate seems to be a promising dietary supplement in the context of sport. Nevertheless, further
research on high-intensity intermittent team sports such as soccer with elite athletes is necessary.

6.6.5. Sodium Bicarbonate

Although there is a rationale to use alkalizing agents such as sodium bicarbonate on soccer, to our
knowledge, few studies have been performed regarding this issue. Saunders and collaborators [289]
investigated the acute supplementation of sodium bicarbonate (0.3 g/kg–0.2 g/kg 4 h before exercise
and 0.1 g/kg 2 h before exercise) or placebo on three sets of 5 × 6 s repeated sprints performed during a
football specific intermittent treadmill protocol performed in hypoxia (15.5% O2). In this study,
the supplementation with sodium bicarbonate did not improve repeated sprints performance.
In another study, [290] with male rugby players, the ingestion of 0.3 g/kg of sodium bicarbonate
65 min before a 25-min warm-up followed by 9 min of high-intensity rugby-specific training followed
by a rugby-specific repeated-sprint test, increased blood HCO3− concentration and attenuated the
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decline in blood pH compared with placebo but did not significantly improve exercise performance.
Contrarily, in a recent study [291], high-intensity intermittent exercise performance was improved
by the intake of 0.4 g/kg of sodium bicarbonate before the Yo-Yo intermittent recovery test level 2.
The sodium bicarbonate was evenly distributed in ~25 gelatin capsules, with one fifth taken at 90, 80,
70, 60 and 50 min prior to exercise in order to avoid stomach discomfort.

Nevertheless, a review from Bishop on the dietary supplements for team-sport performance [249]
concluded that based on several studies on running and cycling sprint performances, the ingestion of
sodium bicarbonate is likely to improve both repeated- and intermittent-sprint performance. More
research is needed to confirm the possible ergogenic effect of sodium bicarbonate on soccer.

7. Conclusions

Finding the “sweet spot” between training adaptations, performance and sound recovery is
challenging. Nutrition plays an important role in this process, along with the management of training
and match loads as well as other performance and recovery strategies (e.g., ice baths, massage,
cryotherapy, software for soccer analysis and the development of better sports equipment, among
others). In fact, research shows us that the potential benefits of a sound nutritional support seem
unequivocal for soccer performance and recovery. Today, most soccer teams are concerned with
their players’ nutritional habits, and generally provide them with detailed nutritional individual
plans. Here, a food first approach is of paramount importance but when an adequate nutrition is
already in practice, the sensible use of evidence-based ergogenic supplements may further optimize a
player’s performance.

In this review, we have provided detailed information on the most recent recommendations
for macro and micronutrient intakes, as well as hydration and selected performance-enhancing
supplements. Whenever possible, we also provided relevant information on the timing of ingestion,
according to a soccer player’s condition. In particular, readers can find nutritional guidelines for daily
nutritional intakes, pre-, peri- and post-match/exercise and competition. We also cover the more recent
issue of periodized nutrition, a newer strategy to improve soccer performance through manipulation
of macronutrient intake in relation to muscle nutrient needs and metabolic adaptations.

Future research should investigate if these recommendations apply for women and younger
soccer players, since they may display different nutritional intake needs. Nevertheless, and while
these recommendations seem to be the most relevant and up to date, we should recall that nutrition
is an evolving science and that future research will soon strengthen some of the prevailing practices,
possibly discard others and likely introduce innovative and improved nutritional strategies. All of
those will most certainly have a desired and decisive impact on the optimization of soccer performance.
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