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Abstract

In the Baltic Sea redoxcline, lysogenic viruses infecting prokaryotes have rarely been

detected using the commonly used inducing agent mitomycin C. However, it is well known

that not all viruses are induceable by mitomycin C and growing evidence suggests that

changes in trophic conditions may trigger the induction of lysogenic viruses. We hypothe-

sized that using antibiotics to simulate a strong change in trophic conditions for antibiotica-

resistant cells due to reduced competition for resources might lead to the induction of lyso-

genic viruses into the lytic cycle within these cells. This hypothesis was tested by incubating

prokaryotes obtained throughout the Baltic Sea redoxcline in seawater with substantially

reduced numbers of viruses. We used a mixture of the protein synthesis-inhibiting antibiotics

streptomycin and erythromycin to induce the desired changes in trophic conditions for resis-

tant cells and at the same time ensuring that no progeny viruses were formed in sensitive

cells. No inducible lysogenic viruses could be detected in incubations amended with mitomy-

cin C. Yet, the presence of streptomycin and erythromycin increased virus-induced mortality

of prokaryotes by 56–930% compared to controls, resulting in the induction of lysogenic

viruses equivalent to 2–14% of in situ prokaryotic abundance. The results indicate the exis-

tence of a previously unrecognized induction mechanism for lysogenic viruses in the Baltic

Sea redoxcline, as the mode of action distinctly differs between the used antibiotics (no

virus production within affected cells) and mitomycin C (lysogenic viruses are produced

within affected cells). Obtaining accurate experimental data on levels of lysogeny in prokary-

otic host cells remains challenging, as relying on mitomycin C alone may severely underesti-

mate lysogeny.

Introduction

The Baltic Sea is the second largest brackish water system in the world, where a stable halocline

between freshwater at the surface and saltier, deeper water is maintained through freshwater

input from several large rivers [1]. A stable halocline restricts the import of oxygen (O2) from
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the surface into deeper water masses and also acts as a barrier for nutrient exchange. Conse-

quently, deeper areas of the Baltic Sea are severely depleted in O2 due to respiration and con-

tain high concentrations of hydrogen sulfide (H2S; [2,3]). The transition zone between the oxic

surface layer and deeper anoxic waters is characterized by a stable redoxcline with steep gradi-

ents in O2, H2S, and high concentrations of nitrite, nitrate, phosphate, and ammonium [4,5].

Also, prokaryotic activity (the term prokaryotes here is used to denote members of the phylo-

genetic domains Bacteria and Archaea, no phylogenetic relationship is implied) is particularly

high in the redoxcline, where chemolithoautotrophs perform dark CO2 fixation [6–8].

Protistan grazing and viral lysis constitute the two principal prokaryotic mortality factors in

aquatic habitats [9,10]. In pelagic redoxclines, protistan grazing drastically declines below the

oxic-anoxic interface, particularly when it becomes sulfidic [11,12]. However, also enhanced

viral lysis could not be confirmed [11,13]. Previously, the Baltic Sea redoxcline was found to be

an environment where high viral abundance in the order of 107 viruses mL-1 is maintained by

a combination of low prokaryotic virus production and low viral decay, resulting in exception-

ally long viral turnover times of up to 84 d [13].

Viruses entirely depend on the metabolism of the host for proliferation and most viruses

infecting prokaryotes, known as phages, fall into one of two groups: lytic and lysogenic viruses.

Lytic viral infection directly leads to the production of viruses upon infection, followed by lysis

of the host cell and release of progeny viruses into the environment. Lysogenic viruses may

either directly enter the lytic cycle or at first form a symbiotic relationship with their host cell

by integrating their genome into their host’s genome (prophage state) and remaining dormant

before the lytic cycle is induced. Some lysogenic viruses can readily be induced into the lytic

cycle by exposing the host cell to ultraviolet radiation or the chemical mitomycin C [14,15].

The cytostatic drug mitomycin C is mainly used in human cancer treatment. However, mito-

mycin C’s effect on eukaryotes and prokaryotes is similar to the exposure to ultraviolet radia-

tion: cells suffer from DNA-damage, preventing genome replication and cell division [16–18].

In prokaryotes, damage to the genomic DNA leads to the activation of the gene RecA, encod-

ing for a DNA recombination and repair protein, as part of the SOS response, a cellular DNA

repair mechanism that also may lead to the cleavage of certain phage repressor proteins

responsible for maintaining some viruses in its lysogenic state [19].

Mitomycin C is widely used experimentally for inducing lysogenic viruses into the lytic

cycle. Previously, mitomycin C was also used to screen the water column of the Baltic Sea for

the presence of lysogenic viruses. An early study found that up to 80% of prokaryotic cells

within the pelagic redoxcline were lysogenically-infected [20]. However, using a more refined

incubation method, later studies concluded that lysogeny, if detectable at all by mitomycin C,

is only of minor importance in the Baltic Sea water column [11,13]. This is in contrast to recent

data obtained by the same method from the Arabian Sea showing that lysogeny can be as high

as 48% in the suboxic zone and varying between 9–24% in the redoxcline [21]. Although DNA

damage and the ensuing RecA-dependent SOS response are well known to induce many but

not all lysogenic viruses into the lytic cycle [22,23], other RecA-independent induction mecha-

nism have been described [24–27]. Also, lysogeny on a community level may be influenced by

environmental parameters such as temperature or trophic conditions [28–32]. Thus, lysogenic

viruses entering the lytic cycle upon induction due to RecA-independent mechanisms or due

to changes in environmental conditions might still be present in the Baltic Sea redoxcline and

possibly be missed by the mitomycin C-based approach.

Antibiotics constitute an effective way of altering the composition of a prokaryotic commu-

nity. By inhibiting growth of susceptible members of the community, other not affected taxa

might experience less competition for nutrients and, thus, a boost in growth. In that sense, the

application of antibiotics to a mixed prokaryotic community alters the trophic conditions for a

Lysogenic virus induction in the Baltic Sea by antibiotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0220716 August 6, 2019 2 / 12

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0220716


specific subset of the community by mitigating competition. For some environments, changes

in the trophic conditions have been shown to induce the lytic cycle of lysogenic viruses

[28,29,32]. Streptomycin and erythromycin are two antibiotics that interfere with protein syn-

thesis. Streptomycin inhibits prokaryotic growth by binding to the 16S rRNA component of

the 30S ribosomal subunit, altering the ribosome structure, resulting in tRNA mismatches and

protein mistranslation [33]. Exposure to high concentrations of streptomycin may even lead to

membrane permeabilization due to the insertion of mistranslated proteins into the cyto-

plasmic membrane [34]. Erythromycin binds to the 50S ribosomal subunit, mechanically

blocking the ribosomal export tunnel and preventing peptide elongation [35]. Thus, viruses

cannot be produced within streptomycin- and/or erythromycin-susceptible cells, because pro-

tein synthesis is inhibited also preventing the formation of new virus capsids. This is in con-

trast to mitomycin C-affected cells, which may be the source of progeny viruses due to

induction of lysogenic viruses into the lytic cycle within these cells. Contrary to earlier studies

[36–38], streptomycin as well as erythromycin have been shown to be effective against Bacteria
as well as Archaea [39,40].

In this study we tested whether streptomycin and erythromycin can be used to experimen-

tally induce lysogenic viruses infecting prokaryotes into the lytic cycle. We hypothesize that

the growth-inhibiting effect of the antibiotics on susceptible taxa would result in boosted

growth of the unaffected members of the prokaryotic community [41] due to reduced compe-

tition for nutrients. In turn, enhanced growth of some host cells might lead to the induction of

lysogenic viruses into the lytic cycle within these cells without sustaining DNA damage. Thus,

induction of lysogens in antibiotica-resistant host cells due to elevated growth would indicate

the presence of lysogenic viruses that are inducible via a, as yet uncharacterized, RecA-inde-

pendent induction mechanism.

Materials and methods

Study sites, sampling, and physicochemical parameters

Samples were taken at the oxic-anoxic interface at two stations in the Central Baltic Sea during

a cruise with RV Meteor in June 2012. Three depth layers were sampled once at Gotland Deep

(N 57˚19.20’ E 20˚03.00’, bottom depth: 248m) and twice at Landsort Deep (58˚ 34,998’ N 18˚

13,998’ E, bottom depth: 460m). Based on the concentration of O2 and H2S, the samples cov-

ered the oxic zone (O2 > 30 μM, no H2S), the suboxic zone (30 μM�O2 > 0 μM, no H2S), the

transition zone (30 μM�O2 > 0 μM, H2S> 0 μM), and the anoxic zone (no O2, H2S>

0 μM). For more details about the sampling stations and data on in situ prokaryotic and viral

abundance as well as physicochemical parameters throughout the redoxcline see Köstner et al.

[13].

Experimental setup

For each sample, 1.8 L of water was filtered over 3 μm pore-size membrane filters (Cat. No.

TSTP04700, 47 mm diameter; Merck Millipore, Darmstadt, Germany) to remove larger organ-

isms and particles. Subsequently, two consecutive tangential flow filtration steps (Vivaflow

200, PES membrane, 0.2 μm pore size, Cat. No. VF20P7; Vivaflow 200, PES membrane, molec-

ular weight cut-off 100 kDa, Cat. No. VF20P4, Sartorius Stedim Biotech, Göttingen, Germany)

were performed to obtain a prokaryotic concentrate (size fraction of 0.2–3 μm; final volume

~100 mL) and ultra-filtered seawater (size fraction <100kDa) to be used as growth medium in

the experiments. In total, nine experiments were performed, each with a control and three

treatments in duplicate. The experiments are based on the knowledge that viruses are incapa-

ble of active movements, finding their host cells via a stochastic and density-dependent
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mechanism. By diluting viruses within a sample new virus infections are effectively prevented

because the abundance of viruses is too low (virus dilution approach; [42]). Rising numbers of

viruses over time within such incubations can only be the result of virus infections that have

already occurred before sampling and setup of the experiments. This approach has already

been applied to studying levels of virus-mediated mortality of prokaryotes throughout the Bal-

tic Sea redoxcline [11,13]. Control treatments contained 5 mL of prokaryotic concentrate

diluted in 45 mL of ultra-filtered seawater from the same sample. In addition, mitomycin C

treatments (MI) contained 1 μg mL-1 of the drug, antibiotic treatments (STER) were amended

with streptomycin (100 μg mL-1) and erythromycin (10 μg mL-1), and the fourth treatment

contained mitomycin (1 μg mL-1), streptomycin (100 μg mL-1), and erythromycin (10 μg mL-1,

MISTER). Incubations were performed in 60 mL glass vials equipped with air-tight butyl rub-

ber seals and incubated in the dark at 4˚C for 40 h. Sub-sampling for the enumeration of pro-

karyotes and viruses (see below) was performed at 5 h-intervals. To prevent oxygen

contamination all sample handling, filtrations, and sub-sampling was performed in an anaero-

bic chamber filled with nitrogen gas.

Enumeration of prokaryotes and viruses

Samples (1.8 mL) for determining prokaryotic abundance and viral abundance were fixed with

glutaraldehyde (0.5% final concentration) for 10 min at room temperature before flash-freez-

ing in liquid nitrogen and stored at -80˚C. Upon thawing, prokaryotes and viruses were

stained with SYBR Green I (final dilution: 1:20000 of 10000× commercial stock, Invitrogen,

Life Technologies, Carlsbad, CA, USA) and enumerated on a BD FACSAria II flow cytometer

(Becton Dickinson, Durham, NC, USA) as previously described [43,44].

Determination of prokaryotic growth (PG), virus production (VP), and the

frequency of infected cells (FIC)

Temporal changes in prokaryotic and viral abundance during the incubations were used to

determine PG, VP, and FIC as previously described in detail by Köstner et al. [13]. In short,

PG and VP were calculated from the positive slopes between local minima and maxima of pro-

karyotic and viral abundance, respectively (S1 Fig and S1 Table in [13]). In order to enable

direct comparisons among treatments, all rate measurements (PG, VP) were corrected for dif-

ferences between in situ and initial prokaryotic abundance at the start of the incubations. Like-

wise, FIC was calculated based on local minima and maxima of viral abundance and the

prokaryotic abundance at the start of the experiments (S1 Fig and S1 Table in [13]). A constant

burst size of 28 viruses per lysed host cell was assumed in FIC calculations [20]. Differences

among treatments were assumed to be relevant when ranges of the duplicate incubations did

not overlap. Thus, based on our data lysogeny is defined as the difference in FIC between a

specific treatment and its corresponding control provided that FIC from the control is sub-

stantially lower compared to the treatment.

Results

Growth of prokaryotes

Throughout all experiments and depth zones, average PG ranged from 2.2–6.9×103 mL-1 h-1 in

controls and from 0.8–4.9×103 mL-1 h-1 in experimental treatments (MI, STER, MISTER; Fig

1A, 1D and 1G). Overall, PG in the treatments was either similar or 22–68% lower as com-

pared to controls, with the exception of STER in the anoxic zone 1 at Landsort Deep 2 where

it was 74% higher than in the corresponding control (Fig 1G). However, throughout all

Lysogenic virus induction in the Baltic Sea by antibiotics
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Fig 1. Treatment effects on prokaryotic growth (PG), viral production (VP) and the frequency of infected cells (FIC). The figure shows average values of

duplicate incubations for PG (A, D, G), VP (B, E, H), and FIC (C, F, I) in controls and experimental treatments (MI: mitomycin C; STER: streptomycin and

Lysogenic virus induction in the Baltic Sea by antibiotics
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experiments and depth zones, PG was never negative in any of the treatments. PG in STER

was either similar or 70–145% higher than in the MI treatments except for the transition zone

at Gotland Deep where PG in STER was 30% lower than in MI (Fig 1A). In seven experiments

PG did not differ between STER and MISTER. However, in the anoxic zone at Gotland Deep

and the anoxic zone 1 at Landsort Deep 2, PG in MISTER was 15% and 38% lower than in

STER, respectively, (Fig 1A and 1G).

Viral proliferation

VP. Average VP in controls varied between 1.2–3.2×104 mL-1 h-1 and between 0.6–

21.8×104 mL-1 h-1 in the treatments (Fig 1B, 1E and 1H). In the oxic zone at Gotland Deep VP

in MI, STER, and MISTER was 48–127% higher compared to the control, yet in the anoxic

zone none of the treatments had any effect on VP (Fig 1B). Also, VP in the transition zone at

Gotland Deep was 33% higher in STER as compared to the control. At Landsort Deep 1, the

only discernible treatment effect on VP was found in the STER treatment in the suboxic zone,

where it was 440% higher compared to the control (Fig 1E). At Landsort Deep 2 VP in the

anoxic zone 1 was 178% higher in STER than the control and in the anoxic zone 2 VP in STER

and MISTER was 50% and 234% higher than the control, respectively (Fig 1H). All other treat-

ments at Landsort Deep 2 were similar to the controls. Except for the transition and anoxic

zone at Landsort Deep 1 where VP did not differ between MI and STER (Fig 1E), VP in STER

was higher by 27–1596% compared to MI. In the transition zone at Gotland Deep and the sub-

oxic zone at Landsort Deep 1, VP in MISTER was lower by 17% and 57% compared to STER,

respectively (Fig 1B and 1E). In the anoxic zone 2 at Landsort Deep 2 VP in MISTER was

122% higher than in STER (Fig 1H). VP did not correlate with PG when calculated from all

data or when only treatment data for each depth zone separately were taken into account

(Spearman rank correlation, data not shown, in each case p> 0.05).

FIC. Throughout all control incubations, average FIC ranged from 1.1–11.4% of in situ
prokaryotic abundance and in experimental treatments from 0.5–25.6% (Fig 1C, 1F and 1I).

During seven experiments, the MI treatment had no effect on FIC as compared to the controls.

However, in the anoxic zones 1 and 2 at Landsort Deep 2, FIC in MI was smaller than the con-

trols by 75% and 78%, respectively (Fig 1I). In the anoxic zone at Gotland Deep (Fig 1C) and

in the anoxic zone at Landsort Deep 1 (Fig 1F) FIC in STER did not change compared to con-

trols. In all other experiments FIC in STER increased by 56–930% compared to controls. If

data in a control incubation are substantially lower than data in the corresponding treatment

(i.e., ranges of duplicates are not overlapping), levels of lysogeny can be calculated as the differ-

ence between treatment and control. Thus, our data translate into 1.7–14.2% of prokaryotic

cells infected by lysogenic viruses. Also, FIC in STER was higher by 83–1441% compared to

MI, except for the transition and anoxic zones at Landsort Deep 1 where it was similar to MI

(Fig 1F). In MISTER, FIC was either similar or higher by 96–471% than the controls but never

smaller. Also, in seven experiments FIC in MISTER and STER was similar. In the suboxic

zone at Landsort Deep 1 FIC in MISTER was 47% smaller compared to STER (Fig 1F) and in

the anoxic zone 2 at Landsort Deep 2 FIC in MISTER was 67% higher than in STER (Fig 1I).

Similar to VP, FIC did not correlate with PG when calculated from all data or when only treat-

ment data for each depth zone separately were taken into account (Spearman rank correlation,

data not shown, in each case p> 0.05).

erythromycin; MISTER: mitomycin C, streptomycin, erythromycin) for each sampling station (Gotland Deep, Landsort Deep 1, Landsort Deep 2) and depth zone.

Error bars show the range of duplicate incubations and lower-case letters indicate differences between treatments. Note the differences in y-axes scales.

https://doi.org/10.1371/journal.pone.0220716.g001
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Discussion

Treatment effects on growth of prokaryotes

PG throughout all sampling stations and depth zones always was positive in every treatment,

even in MISTER, where the presence of mitomycin C, streptomycin, and erythromycin chal-

lenged susceptible cells with inhibition of DNA replication and protein synthesis concomi-

tantly (Fig 1A, 1D and 1G). Regardless of the differences in the mechanisms by which the used

drugs act on prokaryotes [16,33,35], our data indicate that not all prokaryotic cells were

affected equally by these treatments. In some cells DNA and/or protein synthesis might have

been irreparably harmed, leading to cell death accompanied by the release of cell compounds

into the ambient water [33]. Partially resistant cells might have been able to repair DNA-dam-

age via the SOS-response, and/or degrade the antibiotics, and recover after some time of

growth inhibition. A substantial fraction of prokaryotes in the Baltic Sea has been found to be

resistant to antimicrobial agents [45,46] and, although growth of resistant cells is not directly

affected by the presence of such drugs, it might be indirectly favored as resistant cells might

take advantage of the suppression of potential competitors [41].

The lack of any correlation between PG and viral proliferation measured as VP and FIC

(Fig 1 and results section) appears to contradict our initial hypothesis that reduction in compe-

tition due to susceptible cells suffering from antibiotic treatment should have increased growth

of resistant cells that in turn were responsible for elevated viral proliferation in STER. How-

ever, given that our data represent bulk measurements of prokaryotic abundance and not sin-

gle-cell production rates, enhanced growth of specific cells may be masked. At a minimum PG

in the STER treatments indicates continued growth by a specific subset of the community

together with no or reduced growth by other taxa. It has been demonstrated that uneven

growth in prokaryotic communities may increase viral proliferation rates [47]. Indeed, in

many cases VP was elevated together with increased FIC in the STER treatments (Fig 1).

Variation in PG among treatments was substantial, hence, no general trend in terms of

treatment severity of the antimicrobial drugs could be identified (Fig 1). The lack of such a

trend indicates substantial variability among sampled prokaryotic communities in their ability

to withstand mitomycin C (MI), the combination of streptomycin and erythromycin (STER),

or a cocktail of all three drugs (MISTER). One possible cause for this variability is that sulfate-

reducing Bacteria found in the oxic-anoxic interface [48,49] may use produced H2S as defense

mechanism against antibiotics [50]. This may be supported by our data as the variation in PG

among treatments in all transition zone samples is exceptionally low compared to other depth

zones (Fig 1A, 1D and 1G).

Antimicrobial agents and their influence on viral proliferation

Mitomycin C. Lysogeny has long been thought to be the common viral replication strat-

egy in environments with low host abundance and low activity while more productive systems

with higher host abundances appear to favor lytic viruses [20,23]. This conclusion is mainly

based on studies using mitomycin C as the inducing agent, nevertheless, not all lysogenic

viruses can be induced into the lytic cycle by this substance [22,23]. A literature screening of

relevant studies revealed that induction of lysogenic viruses into the lytic cycle by mitomycin

C resulted in highly variable estimates for the fraction of lysogenic cells among environments

with no consistent link to host density [51]. A finding that to a certain extent is also supported

by our data from the MI treatments when comparing variability of PG and FIC (Fig 1A, 1D,

1G, 1C, 1F and 1I). Indeed, as FIC in MI treatments never was higher compared to the con-

trols, induction of lysogenic viruses by mitomycin C was not detectable throughout the Baltic

Lysogenic virus induction in the Baltic Sea by antibiotics
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Sea redoxcline (see also [11,13]), while in many cases a clear treatment effect on PG was identi-

fiable (Fig 1A, 1D and 1G).

Streptomycin and erythromycin. Streptomycin and erythromycin are inhibiting pro-

karyotic protein synthesis and, thus, also maturation of progeny viruses. Nevertheless, our

data show that FIC in the STER treatments of seven experiments substantially increased by

56–930% compared to the controls (Fig 1C, 1F and 1I), often accompanied by increased VP

(Fig 1B, 1E and 1H). Given that new infections during the time course of such incubations are

prevented by dilution [13], these additional viruses (in comparison to the control) could only

be due to viral infections that were already ongoing at the time of sampling. One might argue

that these data might be caused by death and lysis of cells susceptible to streptomycin and

erythromycin. Especially at high concentrations of streptomycin, susceptible cells may lyse due

to the insertion of mistranslated proteins into the cell membrane and in case of current lytic

viral infections this may lead to the release of progeny viruses before the end of the latent

period [34,52]. Nevertheless, this mechanism does not seem plausible, because previously a

concentration of 300 μg mL-1 of streptomycin was used to lyse cells within a one hour period

(e.g., [52]), whereas in this study the 3×times lower concentration of 100 μg mL-1 was used.

Even so, for the sake of argument let’s assume that all cells were susceptible to streptomycin-

induced lysis at the beginning of the incubations (this is clearly not the case; Fig 1A, 1D and

1G) and that all virally-infected cells harbored mature progeny viruses at the end of the latent

period. Based on FIC varying between 1.1–11.4% in the controls (Fig 1C, 1F and 1I), the fre-

quency of virally infected cells containing mature progeny viruses can be calculated as 0.2–

1.7% of in situ prokaryotic abundance [53]. However, elevated FIC in STER compared to con-

trols translates into an additional fraction of 1.7–14.2% of in situ prokaryotic abundance that

released viruses upon lysis. Thus, even with extreme and unrealistic assumptions, streptomy-

cin-induced cell lysis cannot explain our data.

Another possible explanation for our findings is that burst size may have changed dramati-

cally in STER treatments. In this study, FIC was calculated assuming a constant burst size of 28

viruses released for every lysed prokaryotic cell [20]. Given that the control and the treatments

for each depth zone are derived from the same water sample, assuming a constant burst size is

justified. Burst size is considered to be a virus taxon-specific trait, i.e., different viruses differ in

their burst size [54]. Thus, increased FIC in STER treatments compared to controls may in

principal be explained by a reduction in burst size. Yet given that new virus infections are pre-

vented by the dilution of viruses during the incubations [13], this would indicate that a differ-

ent set of virus taxa was lysing additional cells and that these viruses have already infected their

host cells at the time of sampling. Regardless of whether or not a substantial change in burst

size was the cause for elevated FIC in STER treatments or simply more viruses lysed more pro-

karyotic cells: both lines of interpretation require the presence of a different set of virus taxons

compared to the control treatments, that were already present within their host cells at the

time of sampling. The most plausible explanation for our data is that lysogenic viruses were

induced into the lytic cycle. Given that the incubations were held in the dark and mitomycin C

was not added to STER, the induction mechanism for these viruses likely was RecA-

independent.

Conclusions

Exposing prokaryotic communities from the Baltic Sea redoxcline to a mixture of the antibiot-

ics streptomycin and erythromycin causes induction of lysogenic viruses into the lytic cycle.

This method revealed that between 1.7–14.2% of prokaryotes contained lysogenic viruses in

this environment, whereas mitomycin C-inducible prophages could not be detected (see also

Lysogenic virus induction in the Baltic Sea by antibiotics
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[11,13]). Contrary to the frequently-used inducing agent mitomycin C, streptomycin and

erythromycin hinder protein synthesis within susceptible cells and do not cause DNA-damage.

This implies that the induction mechanism does not depend on the cellular SOS-response.

Instead, our data indicate that uneven growth of host cell populations (e.g., antibiotic-sensitive

versus resistant cells) causes the observed induction of lysogenic viruses into the lytic cycle.

Finally, relying solely on mitomycin C may severely underestimate the fraction of prokaryotic

cells infected by lysogenic viruses.
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