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Abstract

Accurate prediction of disease risk based on genetic factors is an important goal in human

genetics research and precision medicine. Advanced prediction models will lead to more

effective disease prevention and treatment strategies. Despite the identification of thou-

sands of disease-associated genetic variants through genome-wide association studies

(GWAS) in the past decade, accuracy of genetic risk prediction remains moderate for

most diseases, which is largely due to the challenges in both identifying all the functionally

relevant variants and accurately estimating their effect sizes. In this work, we introduce

PleioPred, a principled framework that leverages pleiotropy and functional annotations in

genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as

its input, and jointly models multiple genetically correlated diseases and a variety of external

information including linkage disequilibrium and diverse functional annotations to increase

the accuracy of risk prediction. Through comprehensive simulations and real data analyses

on Crohn’s disease, celiac disease and type-II diabetes, we demonstrate that our approach

can substantially increase the accuracy of polygenic risk prediction and risk population strat-

ification, i.e. PleioPred can significantly better separate type-II diabetes patients with early

and late onset ages, illustrating its potential clinical application. Furthermore, we show that

the increment in prediction accuracy is significantly correlated with the genetic correlation

between the predicted and jointly modeled diseases.

Author summary

Genetic risk prediction plays a significant role in precision medicine. Accurate prediction

models could have great impact on disease prevention and treatment strategies. However,

prediction accuracies for most complex diseases remain moderate mainly due to the chal-

lenges in identifying and quantifying the effects of genetic variants from millions of mark-

ers, limited access to individual-level genotype data, and lack of efficient computational
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methods. Up to now, most methods have been focused on predicting disease risk using

data from a single trait. With the discovery of genetic correlations among many complex

diseases, incorporating data of genetically correlated diseases could have the potential to

increase prediction accuracy. Current statistical methods are not able to fully exploit the

richness of these kinds of data to take into account the shared genetic architecture. To

make use of commonly available GWAS summary statistics, we propose a novel method

to address these challenges by jointly modeling genetically correlated diseases and inte-

grating genomic functional annotations. We demonstrate the substantial improvement in

accuracy in both extensive simulation studies and real data analysis of Crohn’s disease,

celiac disease and type-II diabetes. Furthermore, we show that the increment in prediction

accuracy is significantly correlated with the genetic correlation between the predicted and

jointly modeled diseases.

Introduction

Achieving accurate disease risk prediction using genetic information is a major goal in human

genetics research and precision medicine. Accurate prediction models will have great impacts

on disease prevention and treatment strategies[1]. Various approaches that utilize genome-

wide data in genetic risk prediction have been proposed, including machine-learning models

trained on individual-level genotype and phenotype data[2–7], and polygenic risk scores

(PRS) derived from genome-wide association study (GWAS) summary statistics [8, 9]. Despite

the potential information loss in summary data, PRS-based approaches have been widely

adopted in practice due to computational efficiency and the easy accessibility of GWAS sum-

mary level data[10, 11]. However, prediction accuracies for most complex diseases remain

moderate, which is largely due to the challenges in both identifying all the functionally relevant

variants and accurately estimating their effect sizes in the presence of linkage disequilibrium

(LD) [12].

Integrating external information, e.g. pleiotropy [2, 3], LD [9], and functional annotations

[13] has been shown to effectively address these challenges. Maier et al.[3] and Li et al.[2]

showed that joint modeling of correlated traits could increase the prediction accuracy using

individual level genotype data for psychiatric disorders and autoimmune diseases. Using sum-

mary level data, Hu et al.[13] proposed a single-trait risk prediction framework explicitly

modeling LD and functional annotations, which consistently improves prediction accuracy for

complex diseases. Furthermore, integrative genomic functional annotation, coupled with the

rich collection of summary statistics from GWAS, have enabled increased statistical power in

several different settings [14, 15]. Here, we introduce PleioPred (available at https://github.

com/yiminghu/PleioPred), a principled framework that integrates GWAS summary statistics

of genetically correlated diseases with various types of annotation data and reference genotype

panels to improve risk prediction accuracy. Incorporating data from related traits and func-

tional annotations increases the effective sample size and statistical power to detect function-

ally relevant variants, especially when diseases share similar genetic architecture. We compare

PleioPred with state-of-the-art single-trait PRS-based approaches and demonstrate its consis-

tent improvement in risk prediction performance using real data of multiple complex diseases.

We first apply PleioPred to Crohn’s disease (CD), celiac disease (CEL) and type-II diabetes

(T2D) by jointly modeling them with known correlated diseases (i.e. CD with Ulcerative Coli-

tis (UC); CEL with UC; T2D with coronary artery disease (CAD)) and show a statistically

significant improvement in prediction performance in independent validation cohort over
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single-trait models. By comparing two-trait prediction model with and without functional

annotations in both simulation and real data analysis, we demonstrate that functional annota-

tion may further improve the performance of joint modeling. Furthermore, we show that PRS

calculated from PleioPred can effectively partition T2D patients by their age of onset, indicat-

ing the potential clinical usage of our approach[16, 17]. Through jointly modeling T2D with a

wide spectrum of diseases, we demonstrate that the increment in prediction accuracy is signifi-

cantly correlated with the genetic correlations between T2D and the jointly modeled diseases.

Results

Methods overview

We propose a Bayesian framework to incorporate functional annotations and pleiotropy. We

assume throughout the report that the phenotypes of two diseases Y ð1ÞN1�1; Y
ð2Þ

N2�1 and the geno-

types XN1�M
; ZN2�M

are standardized with mean zero and variance one. When phenotypes are

binary, Y ð1ÞN1�1 and Y ð2ÞN2�1 denote disease liabilities instead [18, 19]. Here N1 and N2 denote the

sample sizes for the two diseases and M is the number of markers. We assume a linear model

with genotype matrices, effect sizes (β and γ) and random errors (ε and δ) mutually indepen-

dent as follows

Y ð1ÞN1�1 ¼ XN1�M
bM�1 þ εN1�1

Y ð2ÞN2�1 ¼ ZN2�M
gM�1 þ dN2�1

We also assume that the effect sizes of different SNPs are independent. As for random

errors, we assume that

ε
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In practice, bD1 and bD2 can be estimated from a reference panel and we therefore denote the

LD matrix as bD for convenience. Then following the derivation in Hu et al. [13], we can derive

the conditional distribution of GWAS summary statistics as
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where Ns is the number of overlapping samples between the two studies. When Ns is relatively

small, we can discard terms with
NSre
N1N2

to reduce the computation burden.
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We first consider an infinitesimal model to account for a polygenic genetic architecture.

We assume that the effect sizes follow a multivariate normal distribution:

b

g

 !

� N
0

0

 !

;
diagðs2

1iÞ rg � diagðs1is2iÞ

rg � diagðs1is2iÞ diagðs2
2iÞ

" # !

where s2
1i and s2

2i denote the variance of effect sizes of SNP i and ρg: = cor(βi, γi), represents the

genetic correlation between two diseases. This is equivalent to a multivariate random effects

model with various variance components. Suppose that the whole genome is partitioned into

K functional regions A1, . . ., AK. We assume that the effect size of a SNP depends on the func-

tional regions it falls in and the effect sizes are additive in the overlapping regions. To be spe-

cific, we have

varðbiÞ ¼ s2

1i ¼
X

c:i2Ac

t1c

varðgiÞ ¼ s2

2i ¼
X

c:i2Ac

t2c

where τjc denotes the variance of the effect size of SNPs on disease j falling in Ac alone. In the

random effects model, the variance of effect size can be interpreted as heritability and thus for

convenience, we will use heritability of SNP i instead of the variance of effect size in the rest of

the manuscript.

Details on parameter estimation are described in Methods. When all the parameters are

specified, we can estimate the expectation of the effect sizes given the marginal effect size esti-

mators of two diseases. The PRSs are defined as

PRS1 ¼
XM

j¼1

XjEðbjj
~b; ~g; bDÞ

PRS2 ¼

XM

j¼1

ZjEðgjj~b; ~g; bDÞ

Finally, we treat ρg as a tuning parameter and the posterior expectation of the effect sizes

can be calculated in closed form (Methods).

In practice[9, 13], we note that a sparse model yields higher accuracy for most diseases.

Moreover, the infinitesimal model assumption is relatively strong in some cases. For example,

two related diseases may only share some causal variants and have no correlation among the

effect sizes or the correlation structures may vary across the genome. We therefore propose a

hierarchical Bayesian model with a more general assumption and we refer to this framework

as the non-infinitesimal model. Under this model, we assume that the effect sizes follow a
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mixture distribution.
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That is, the effect sizes of SNP i for the two diseases follow a mixture distribution with two

independent normal distribution (when SNP i is causal in both diseases), joint normal and

point mass (when SNP i is causal in only one diseases) and joint point mass (when SNP i is not

causal in either disease) [20]. Although we do not have closed form solution for the posterior

expectation of the effect sizes, we use Markov Chain Monte Carlo (MCMC) to sample from

the posterior distribution of the effect sizes to estimate the posterior expectation (Methods).

For both infinitesimal and non-infinitesimal models, we used a total of 61 different annota-

tion categories, including functional genome predicted by GenoCanyon scores [14], GenoSky-

line tissue-specific functionality scores of 7 tissue types [15], and 53 baseline annotations for

diverse genomic features [21]. More specifically, GenoCanyon is a statistical framework to pre-

dict functional regions in the human genome through integrative analysis of ENCODE epige-

nomic data and multiple conservation metrics [14]. Later we further extended the framework

and developed GenoSkyline, which aimed to predict tissue-specific functionality [15]. We

smoothed GenoCanyon scores by a 10Kb window, a strategy previously shown to improve

robustness of functionality prediction [22]. The smoothed GenoCanyon annotation and raw

GenoSkyline annotations of seven tissue types were dichotomized based on a cutoff of 0.5. The

regions with GenoCanyon or GenoSkyline scores greater than the cutoff are interpreted as

non-tissue-specific or tissue-specific functional regions in the human genome. Such dichoto-

mization has been previously shown to be robust against the cutoff choice [15].

We compare the prediction performance of eight methods, corresponding to infinitesimal

and non-infinitesimal versions of single-trait and two-trait approaches with and without func-

tional annotations. As shown in [9, 13], LDpred and AnnoPred outperform other state-of-the-

art PRS methods, we therefore use these two approaches as the representative single-trait pre-

diction methods.

• AnnoPred-inf/AnnoPred: single-trait prediction model with 61 functional annotations

• LDpred-inf/LDpred: single-trait prediction model without functional annotations, corre-

sponding to a special case of AnnoPred when assuming only one annotation covering the

whole genome

• PleioPred-anno-inf/PleioPred-anno: two-trait prediction model with 61 functional annotations

• PleioPred-inf/PleioPred: two-trait prediction model without functional annotations, corre-

sponding to a special case of PleioPred-anno when assuming only one annotation covering

the whole genome

All of these methods studied require a pre-specified tuning parameter except for PleioPred

and PleioPred-anno. To select a suitable tuning parameter, we divided the independent testing

Leveraging pleiotropy and functional annotations in genetic risk prediction
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dataset (individual level genotype and phenotype data) into two equal parts (A and B, non-

overlapping), and selected the tuning parameters by optimizing prediction accuracy on dataset

A. We then evaluated prediction accuracy using the remaining half of testing data, i.e. dataset

B. Finally, we repeated the analysis one more time by choosing the tuning parameter on dataset

B while evaluating the prediction accuracy on dataset A. Results from these two separate analy-

ses were averaged to quantify model performance. Ideally, the parameter should be tuned in

an independent cohort and then evaluated in another independent cohort. However, it is very

challenging to find two independent cohorts without any overlapping samples with the train-

ing GWAS and we therefore chose a cross-validation scheme. In real data analysis, tuning the

parameter within the same cohort may lead to a little bit over-optimistic results due to possible

shared confounders. However, the proposed non-infinitesimal models address this issue via a

hierarchical Bayesian approach to avoid tuning parameter and thus result in more robust and

generalizable estimation. Besides the methods discussed above, we have also compared the per-

formance of proposed joint models with a recently developed multi-trait analysis tool (MTAG

[23]). Following the Polygenic Prediction section in their bioRxiv preprint (page 8), we first

applied MTAG to GWAS summary statistics to get the multi-trait adjusted p values and effect

sizes and then used the generated summary statistics as input to LDpred. The AUC of LDpred

with MTAG adjusted summary statistics and all other four methods are shown in S7 Table.

Our method outperformed all other methods including MTAG. Notably, MTAG outper-

formed LDpred in Crohn’s disease but its performance was even slightly worse than LDpred

for celiac disease and type-II diabetes.

Simulations

We first performed simulations to demonstrate PleioPred’s ability to improve risk predic-

tion accuracy. We simulated traits from GERA (dbGaP access number phs000674.v1.p1)

genotype data, which contains 61,172 individuals genotyped for 670,176 SNPs. More specif-

ically, we randomly selected ~28,000 individuals as training set to calculate the summary

statistics for disease 1 and another ~28,000 for disease 2. The remaining ~5000 individuals

were used for testing. Throughout the simulation we used genotype data of chromosome 1

(50,279 SNPs) to generate phenotypes. We first generated two annotations and each annota-

tion was simulated by randomly selecting 10% of the genome, denoted as A1 and A2. Denote

the heritability of each trait as h2
1

and h2
2

(both 30%) and the number of causal variants as m1

and m2 (both 300). Causal variants were generated as follows: one third of causal variants

were selected from A1, one third from A2 and the rest from (A1

S
A2)C, of which p of the

causal variants was shared by both diseases (0.2 and 0.8). Effect sizes of causal variants were

sampled from N 0;
h2

1

m1

� �
and N 0;

h2
2

m2

� �
. We also randomly selected 5000 individuals and

10000 individuals from the training data of disease 1 and 2 respectively to calculate sum-

mary statistics in order to study the effect of unbalanced sample sizes on the increment of

prediction accuracy.

Correlations between simulated and predicted traits of disease 1 were calculated from 50

replicates under different simulation settings. PleioPred-anno showed the best prediction per-

formance in all settings (Fig 1). The performance of the two-trait model improves as the pro-

portion of shared causal variants increases. In the unbalanced case when the sample size of

disease 1 is smaller than that of disease 2, we observed a larger increment in prediction accu-

racy, indicating that the benefit of integrating large GWAS of genetically correlated diseases

and functional annotations when the sample size of disease of interest is moderate.

Leveraging pleiotropy and functional annotations in genetic risk prediction
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Real data analysis

To further illustrate the improvement in risk prediction accuracy, we first applied PleioPred to

Crohn’s disease (CD), celiac disease (CEL) and type-II diabetes (T2D). We jointly modeled

CD with ulcerative colitis (UC), CEL with UC, and T2D with coronary artery disease (CAD).

We trained PleioPred using publicly accessible GWAS summary statistics and evaluated risk

prediction performance using individual-level genotype and phenotype data from cohorts

independent from the training GWAS samples. The training summary statistics for the two

autoimmune disease include the training summary statistics are from the International

Inflammatory Bowel Disease Genetics Consortium (IIBDGC; CD: Ncase = 6,333 and Ncontrol =

15,056, with samples from the Wellcome Trust Case Control Consortium (WTCCC) removed

from the meta-analysis), a CEL GWAS with 4,533 cases and 10,750 controls [24], a UC GWAS

from IIBDGC (Ncase = 6,687 and Ncontrol = 19,718). For the validation data, we merged the CD

cases from WTCCC (Ncase = 1,829) and CEL cases from the National Institute of Diabetes and

Digestive and Kidney Diseases study (NIDDK, Ncase = 1,716) with healthy controls from the

Resource for Genetic Epidemiology Research on Aging Cohort (GERA, Ncontrol = 5,488).

For T2D, we trained the model on summary data from the Diabetes Genetics Replication

Fig 1. Prediction accuracy of non-infinitesimal models in simulated data. We trained the models with equal training sample

sizes (N1 = N2 = 28068, right panel) and unequal training sizes (N1 = 5000, N2 = 10000, left panel). Prediction accuracy was

measured by correlation between simulated traits and predicted PRS.

https://doi.org/10.1371/journal.pgen.1006836.g001
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and Meta-analysis study (DIAGRAM, Ncase = 12,171 and Ncontrol = 56,862) [25] and the Coro-

nary ARtery DIsease Genome wide Replication and Meta-analysis study (CARDIoGRAM,

Ncase = 22,233 and Ncontrol = 64,762)[26]. Samples from the Northwestern NUgene Project

(Ncase = 662 and Ncontrol = 517) [27] were used for validation. Details for each training GWAS

summary statistics and independent testing cohorts are provided in S1 Text and S3 and S4

Tables.

We evaluated the effectiveness of the per-SNP heritability estimated from functional anno-

tations of the two autoimmune diseases (i.e. CD, CEL) with well-powered testing cohorts

(N>3,000). Interestingly, not only the per-SNP heritability of the testing diseases (CD and

CEL) but those of related diseases (UC) could effectively identify SNPs with large effect sizes

(Fig 2A and 2B) and consistent effect directions in independent validation cohorts (Fig 2C and

2D), which shows that functional annotations can effectively prioritize shared causal variants

between genetically correlated diseases.

Fig 2. Evaluating effectiveness of annotations and per-SNP heritability. (A, B) Comparing signal strengths of SNPs with

high and low heritability of related diseases in independent validation cohorts. Both SNPs with higher heritability of testing disease

and related disease have significantly stronger associations across two independent and well-powered testing datasets

(N>3,000, (A) Crohn’s disease; (B) Celiac disease.). P-values were calculated using one-sided Kolmogorov-Smirnov test. (C, D)

Comparing consistency of SNPs’ effect direction between training and testing datasets. Each bar quantifies the proportion of

SNPs with consistent effect directions. P-values were calculated using one-sided two-sample binomial test. (C) Crohn’s disease;

(D) Celiac disease.

https://doi.org/10.1371/journal.pgen.1006836.g002
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Correlations between the calculated PRS and disease status (COR) for different approaches

and area under the ROC curve (AUC) are summarized in Table 1 and S1 Table. In both infini-

tesimal and non-infinitesimal models, we observed that two-trait models consistently outper-

formed single-trait methods and incorporating functional annotations could further improve

the prediction accuracy across different diseases. Furthermore, non-infinitesimal models

achieved much better performance than infinitesimal models. We also fitted a logistic regres-

sion model with the case/control status as outcome and PRS as covariates and reported the

corresponding slopes of PRSs, which measures the increase in odds ratio of getting disease

with a unit change in PRS (Table 1) and further validated the advantage of integrating pleiot-

ropy and functional annotations. A likelihood ratio test was used to test for the difference in

the prediction accuracy between models comparing the likelihood of a logistic regression fit-

ting PRS of one method to that of a logistic regression fitting PRS of two methods jointly

(Table 2). From the test, PleioPred with 61 annotations performed significantly better than sin-

gle-trait models (infinitesimal model: p = 1.4e-33 for CD, p = 1.6e-12 for CEL and p = 1.7e-3

for T2D; non-infinitesimal model: p = 5.2e-29 for CD, p = 2.8e-7 for CEL and p = 0.027 for

T2D). Reversing the order of test (that is, comparing the likelihood of two-trait model with

that of two-trait and single-trait model jointly or model using annotations with model using

and not using annotations jointly) results in non-significant p-values for most tests (S2 Table),

which further demonstrates that PRS incorporating functional annotations and pleiotropy

mostly encompasses the information of PRS of single trait model. Besides CAD, we also jointly

modeled T2D with a spectrum of traits, whose genetic correlations with T2D have been sys-

tematically studied [28], including age at menarche (AAM), autism spectrum (AUT), bipolar

disorder (BIP), body mass index (BMI), birth length (BIL), birth weight (BIW), childhood obe-

sity (CHO), fasting glucose (FG), HDL Cholesterol (HDL), height (HGT), major depressive

disorder (MDD), rheumatoid arthritis (RA) and schizophrenia (SCZ). We estimated the

genetic correlations between T2D and these traits using LDSC[21, 28] and showed that the

increment in prediction accuracy is significantly correlated with the genetic correlation

between T2D and the jointly modeled traits (P = 0.002; Fig 3 and S1 Fig).

Since COR only measures the global discriminating power of prediction method, it might

not be the best evaluation metric for risk prediction approaches, with which it is of more use

Table 1. Mean CORs and Regression slopes of infinitesimal and non-infinitesimal methods in independent validation cohort of CE, CEL, and T2D.

For two-trait prediction models, we jointly modeled CD with UC, CEL with UC and, T2D with CAD.

CORa Regression Slopeb

CD CEL T2D CD CEL T2D

ldpred-inf 0.196 0.072 0.137 0.454 0.168 1.99

AnnoPred-inf 0.219 0.098 0.145 0.572 0.255 2.15

PleioPred-inf 0.246 0.100 0.168 0.661 0.292 2.198

PleioPred-anno-inf 0.248 0.122 0.184 0.739 0.400 2.333

ldpred 0.247 0.120 0.217 0.873 0.661 2.83

AnnoPred 0.279 0.132 0.219 1.306 0.924 2.86

PleioPred 0.307 0.141 0.225 1.284 1.332 3.05

PleioPred-anno 0.297 0.156 0.22 1.340 1.361 3.063

a correlations between disease status and PRS;
b Regression slopes of logistic regression with case/control status as outcome and PRS as covariates, larger value indicates a larger increase in odds ratio

when PRS increases by one unit.

https://doi.org/10.1371/journal.pgen.1006836.t001
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to stratify the population into clinically meaningful groups[1, 17, 29]. In order to test different

methods’ ability to stratify individuals with high risk, we compared the proportion of cases

among testing samples with high PRS from non-infinitesimal models in CD and CEL.

PleioPred-anno showed highest power in stratifying patients within the top risk population

(Fig 4A). For T2D, we compared the distribution of the age of onset within risk groups strati-

fied by different non-infinitesimal PRSs (Fig 4B). Onset ages of T2D are significantly lower

among the individuals with higher two-trait PRS than those with higher single-trait PRS,

which indicates that PRS of two-trait methods could effectively stratify the population with

high absolute risk of T2D and demonstrates the potential clinical usage of the PleioPred and

the advantage of joint modeling of related diseases over single-trait prediction methods.

In the non-infinitesimal two-trait model, the major contribution to improved performance

came from pleiotropy. That is, the variants that are causal in both diseases would be prioritized

and those are not causal or have smaller effect sizes in both diseases would be given lower effect

size estimation. Therefore, incorporating a genetically correlated disease is equivalent to inte-

grating a functional annotation and its effectiveness and power depend on the genetic correla-

tion between two diseases. When the two diseases are very similar and share a large amount of

causal and non-causal variants, adding less effective annotations may dilute the signals and

lead to lower prediction accuracy. This aligns with our results in Tables 1 and 2, in which

CD-UC and T2D-CAD have a rather high genetic correlation (0.427, 0.432 respectively) and

PleioPred yields better performance. On the contrary, CEL-UC have a relatively lower genetic

correlation (0.283) and PleioPred-anno yields the best prediction accuracy. We performed fur-

ther analysis with T2D and 13 other correlated diseases (those used in Fig 3). We plot the pre-

diction accuracy of PleioPred and PleioPred-anno against absolute genetic correlation and it

can be seen that when the functional annotations are fixed, as the absolute genetic correlation

increases, PleioPred tends to yield slightly better results (S2 Fig).

Discussion

Our work demonstrates that pleiotropy and functional annotations can effectively improve

the performance of genetic risk prediction. PleioPred jointly analyzes genetically correlated

diseases and diverse types of annotation data with GWAS summary statistics to upweight

Table 2. p-values from the likelihood ratio tests comparing different models.

CD CEL T2D

x1 x2 p-values from LRTa

ldpred-inf AnnoPred-inf 4.4e-15 2.8e-6 0.011

ldpred-inf PleioPred-inf 3.9e-34 2.3e-7 0.041

AnnoPred-inf PleioPred-anno-inf 1.5e-18 4.9e-8 0.031

PleioPred-inf PleioPred-anno-inf 1.8e-9 1.9e-8 0.017

ldpred-inf PleioPred-anno-inf 6.4e-31 1.6e-12 1.7e-3

ldpred AnnoPred 1.3e-5 1.7e-5 0.066

ldpred PleioPred 9.3e-40 0.022 0.039

AnnoPred PleioPred-anno 8.6e-13 5.7e-5 0.021

PleioPred PleioPred-anno 7.7e-3 0.014 0.45

ldpred PleioPred-anno 5.2e-29 2.8e-7 0.027

a Likelihood ratio = -2[logL(x1)—logL(x1 + x2)], where logL(x1) and logL(x1 + x2) is the log likelihood from a logistic regression with case/control status as

outcome and x1 and x2 as covariates.

https://doi.org/10.1371/journal.pgen.1006836.t002
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Fig 3. Prediction accuracy of the PleioPred-anno on T2D when jointly modeled with additional traits. Genetic correlations were estimated using

LDSC[28] and the significant correlations were labeled in purple. P-value and confidence region indicates the significant correlation between prediction

accuracy and genetic correlation. The similar pattern was observed in infinitesimal and non-infinitesimal models without annotations (S1 Fig). AAM: age at

menarche, AUT: autism spectrum, BIP: bipolar disorder, BMI: body mass index, BIL: birth length, BIW: birth weight, CHO: childhood obesity, CAD:

coronary artery disease, FG: fasting glucose, HDL: HDL Cholesterol, MDD: major depressive disorder, RA: rheumatoid arthritis, and SCZ: schizophrenia.

https://doi.org/10.1371/journal.pgen.1006836.g003
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Fig 4. Comparing non-infinitesimal methods in different standards. (A) Enrichment of proportion of cases in testing samples with high PRS

(top 1%, 5%, 10%, 20% and 30% risk groups stratified by PRS) in CD and CEL. (B) Distribution of age of onset of T2D in testing samples with high

PRS (top 5%, 10%, 20% and 30% risk groups stratified by PRS) in T2D. P-values were calculated using Wilcoxon rank test comparing the two-trait

models with the one-trait models. The last column represents the overall age of onset in testing samples.

https://doi.org/10.1371/journal.pgen.1006836.g004
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causal SNPs shared between diseases and with a higher likelihood of functionality, which

lead to consistently better prediction accuracy for multiple complex diseases. Besides predic-

tion accuracy, PleioPred can better stratify population into different risk groups and has

greater potential in clinical usage. Our method is not without limitation. First, despite con-

sistent improvement compared with existing PRS-based methods, AUCs for most diseases

remain moderate. In order to effectively stratify risk groups for clinical usage, our model

remains to be further calibrated using large cohorts with measured environmental and clini-

cal risk factors [1]. Second, accurate estimation of GWAS signal enrichment and SNP effect

sizes requires a large sample size for the training dataset. This could be potentially improved

by better estimators for annotation-stratified heritability in the future [30]. Third, it is non-

trivial to foresee whether PleioPred or PleioPred-anno would work better for a given pair of

diseases. According to our observation in real data analysis, PleioPred would eventually out-

perform PleioPred-anno with an increasing genetic correlation. The threshold at which the

change happens could be learned with a validation dataset in practice. The proposed frame-

work can be easily customized and extended to incorporate more than two diseases, which

could potentially further increase the prediction accuracy. However, it is worth noting that

computation burden and the difficulty in model fitting also increases with the number of dis-

eases. Furthermore, many GWAS have shared control samples, which may result in dupli-

cated information and noise in the training samples. A few Bayesian models combining

GWAS summary statistics with functional annotations have been proposed for the purpose

of fine-mapping functional variants [31–33]. Whether these models could be adapted to ben-

efit risk prediction accuracy remains to be investigated in the future. Importantly, the rich

collection of publicly available integrative annotation data, in conjunction with the increas-

ing accessibility of GWAS summary statistics, makes PleioPred a customizable and powerful

tool. As GWAS sample size continues to grow, PleioPred has the potential to achieve even

better prediction accuracy and become widely adopted as a summary of genetic contribution

in clinical applications of risk prediction. Although more and more GWAS summary results

are becoming available [34], in order to evaluate the prediction accuracy, a cohort indepen-

dent with both training GWAS samples is required, which is very challenging to find. We

will apply the proposed methods to a wide range of diseases when independent validation

data become available in the future.

Methods

Conditional distribution of marginal effect size estimators

Assume the phenotypes of two diseases Y ð1ÞN1�1; Y
ð2Þ

N2�1 and the genotypes XN1�M
; ZN2�M

are stan-

dardized with mean zero and variance one. Here N1 and N2 denote the sample sizes for the

two diseases and M is the number of markers. We further assume a linear model with genotype

matrices, effect sizes (β and γ) and random errors (ε and δ) mutually independent.

Y ð1ÞN1�1 ¼ XN1�M
bM�1 þ εN1�1

Y ð2ÞN2�1 ¼ ZN2�M
gM�1 þ dN2�1

Assume that the effect sizes of different SNPs are independent. As for random errors, we
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where Ns is the number of overlapping samples between the two studies. When Ns is relatively

small, we can discard terms with
NSre
N1N2

to reduce the computation burden. In practice, we usu-

ally ignore the overlap between samples mainly due to four reasons: 1) it is usually challenging

to estimate the parameter ρe and obtain the exact number of overlapping samples. 2) The off-

diagonal term
NSre
N1N2

is much smaller comparing to the diagonal terms (
NS
N1N2
� 1

N2
1

). Even in the

case of complete overlap where
NSre
N1N2
¼

re
N1

, ρe is still at the magnitude of ð1 � h2
1
Þð1 � h2

2
Þ. 3)

sensitivity analysis through simulations indicated that the method is very robust to overlapping

samples (S6 Table). 4) In practice, ρe can be estimated via LDSC if NS is known. However,

including the covariance matrix of ~b and ~g can significantly increase the computational cost

and thus increase the variability of estimation.

Infinitesimal model

Assume that the effect sizes follow a multivariate normal distribution:

b

g

 !

� N
0

0

 !

;
diagðs2

1iÞ rg � diagðs1is2iÞ

rg � diagðs1is2iÞ diagðs2
2iÞ

" # !

where s2
1i and s2

2i denote the variance of effect sizes of SNP i and ρg: = cor(βi, γi), representing

the genetic correlation between two diseases. Suppose that the whole genome is partitioned

into K functional regions A1,. . ., AK. Specific annotations used in PleioPred were described

previously (Results). We assume the effect size of a SNP depends on the functional regions it
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falls in and the effect sizes are additive in the overlapping regions:

varðbiÞ ¼ s2

1i ¼
X

c:i2Ac

t1c

varðgiÞ ¼ s2

2i ¼
X

c:i2Ac

t2c

where τjc denotes the variance of the effect size of SNPs on disease j falling in Ac alone.

For parameter estimation, we applied a two-stage approach: first,s2
1i and s2

2i are estimated

using annotation stratified LD score regression (LDSC)[21], which is essentially a method

of moments estimator since LDSC utilizes the relationship between the second moment of

marginal estimators and variance components of each functional region.

EN1
~b2

i � N1

X

c

t1clði; cÞ þ 1

EN2
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Specifically for each disease, we use bs2
ji ¼ Cjð

X

c: i2Ac
bt jcÞ to specify the per-SNP heritability

for disease j where Cj is a constant calculated from the following equation

X

i

bs2

ji ¼
bH 2

j

We do not directly use
X

c: i2Ac
bt jc as the per-SNP heritability because it is estimated in the

context where all SNPs in the 1000 Genomes database are included in the model [21]. Such

per-SNP heritability estimates cannot be extrapolated to the risk prediction context where

many fewer SNPs are analyzed [35]. Therefore, we rescale the heritability estimates to better

quantify each SNP’s contribution towards chip heritability. Following [36], we use a summary

statistics-based heritability estimator that approximates the Haseman-Elston estimator:

bH 2

j ¼
ð�w2

j � 1Þ

Nj
�l

where �w2
j and�l denote the mean squared marginal estimators (N1

~b2
i and N2

~g2
i for diseases 1

and 2) and the mean non-stratified LD score, respectively.

In the GWAS setting, bD are usually non-invertible and have very high dimensions. We thus

study the posterior distribution of a small chunk of marginal effect size estimators instead. Let

~bb and ~gb be the estimated marginal effect sizes of SNPs in a region b (e.g. an LD block) and

the corresponding genotype matrices are Xb and Zb and sample correlation matrices is bDb,

respectively. Then the conditional distribution of the marginal effect size estimators is
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2i denote the heritability of SNPs in region b for the two dis-

eases, which are usually close to zero since the region b is relatively small and can be safely

rounded to zero in calculation. We choose the size of b using the standard described in [9].

Finally, we treat ρe as a tuning parameter and the posterior expectation of the effect sizes

can be calculated as:
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Non-infinitesimal model

In practice[9, 13], we note that a sparse model yields a higher accuracy for most diseases.

Moreover, the infinitesimal model assumption is relatively strong in some cases. For example,

two related diseases may only share some causal variants and have no correlation among the

effect sizes or the correlation structures may vary across the genome. We therefore propose a

hierarchical Bayesian model with a more general assumption and we refer to this framework

as the non-infinitesimal model. Under this model, we assume that the effect sizes follow a

mixed distribution.
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That is, the effect sizes of SNP i to two diseases follow a mixed distribution with normal

(when SNP i is causal in both diseases), joint normal and point mass (when SNP i is causal in

only one diseases) and joint point mass (when SNP i is not causal in either disease). Although

we do not have closed form solution for the posterior expectation of the effect sizes, we can

use Gibbs sampler to sample from the posterior distribution of the effect sizes to estimate the
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The posterior distribution of~p is rather complicated and we therefore applied a Metropolis

Hastings method to sample~p and use the following proposing distribution.

~p � Dirichletðða1 þ d11; a2 þ d10; a3 þ d01; a4 þ d00ÞÞ

in which d11 represents the number of SNPs that are causal in both diseases, d10 and d01 repre-

sent the number of SNPs that are causal in only one disease and d00 denotes the number of

non-causal SNPs from previous sampling step. To ensure convergence, we shrink the posterior

probability of being causal if the estimation of heritability at current step of either disease is

larger than the heritability estimated from the GWAS summary statistics. That is, ð~p11; ~p10; ~p01Þ

are shrunken by a factor c ¼ min 1;
bh2

1P
j
bb2
ðiÞ;j

;
bh2

2P
j
bg2
ðiÞ;j

 !

, where bbðiÞ;j and bgðiÞ;j are the sampled

effect size of SNP j in the ith iteration. And simulations showed the algorithm yields fast con-

vergence and high accuracy in estimation (S5 Table). An important advantage about the non-

infinitesimal approach is that it has no tuning parameters and thus more computationally effi-

cient. Furthermore, by imposing a Bayesian shrinkage, we can better select functionally rele-

vant variants and tune down the unrelated information.

The running time mainly depends on the number of SNPs and iterations in MCMC steps

used in prediction and for a typical GWAS dataset with 400,000 SNPs, it usually takes approxi-

mately two hours to finish 250 iterations in MCMC (which already leads to good conver-

gence). And we recommend using at least one thousand unrelated individuals with the same

ancestry for which summary statistics datasets are obtained from following the same guideline

of [9].
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