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Abstract
Landscape genetic analyses allow detection of fine-scale spatial genetic structure 
(SGS) and quantification of effects of landscape features on gene flow and connec-
tivity. Typically, analyses require generation of resistance surfaces. These surfaces 
characteristically take the form of a grid with cells that are coded to represent the de-
gree to which landscape or environmental features promote or inhibit animal move-
ment. How accurately resistance surfaces predict association between the landscape 
and movement is determined in large part by (a) the landscape features used, (b) the 
resistance values assigned to features, and (c) how accurately resistance surfaces 
represent landscape permeability. Our objective was to evaluate the performance 
of resistance surfaces generated using two publicly available land cover datasets 
that varied in how accurately they represent the actual landscape. We genotyped 
365 individuals from a large black bear population (Ursus americanus) in the Northern 
Lower Peninsula (NLP) of Michigan, USA at 12 microsatellite loci, and evaluated the 
relationship between gene flow and landscape features using two different land 
cover datasets. We investigated the relative importance of land cover classification 
and accuracy on landscape resistance model performance. We detected local spa-
tial genetic structure in Michigan's NLP black bears and found roads and land cover 
were significantly correlated with genetic distance. We observed similarities in model 
performance when different land cover datasets were used despite 21% dissimilar-
ity in classification between the two land cover datasets. However, we did find the 
performance of land cover models to predict genetic distance was dependent on 
the way the land cover was defined. Models in which land cover was finely defined 
(i.e., eight land cover classes) outperformed models where land cover was defined 
more coarsely (i.e., habitat/non-habitat or forest/non-forest). Our results show that 
landscape genetic researchers should carefully consider how land cover classification 
changes inference in landscape genetic studies.
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1  | INTRODUC TION

Natural ecosystems are spatially heterogeneous and temporally 
dynamic. This complexity has important ecological implications for 
the organisms inhabiting these ecosystems and dispersing through 
them (Bolliger et al., 2010; Spear et al., 2010; Storfer et al., 2007). 
Identifying factors that influence the degree of population con-
nectivity across heterogeneous landscapes provides insight into 
population dynamics and the evolutionary trajectory of a species 
(Segelbacher et al., 2010). For example, wide ranging species such 
as the American black bear (Ursus americanus) can be sensitive to 
land cover (Pelton, 1992). Fragmentation of preferred forest cover 
and increasing prevalence of human-altered landscapes can impede 
or facilitate longer black bear dispersal (Cushman, 2006; Draheim 
et al., 2018; Short Bull et al., 2011). Landscape genetic approaches 
are valuable for understanding the effects of land use/land cover 
on species movements and abundance, and enable managers to 
target regions or habitat types that are important to maintain con-
nectivity across anthropogenically altered habitats and ultimately 
assess the impacts of future change (Bolliger et al., 2010; Manel & 
Holderegger, 2013).

Traditional landscape genetic analyses often require generation 
of resistance surfaces. These surfaces typically take the form of a 
grid (raster) with cells (pixels) that are coded a priori to reflect pre-
dictions on the degree to which landscape or environmental features 
promote or inhibit animal gene flow (Spear et al., 2010). How accu-
rately resistance surfaces predict the association between the land-
scape and movement is determined in large part by (a) the landscape 
features used in modeling, (b) the resistance (cell) values assigned 
to features and (c) how accurately resistance surfaces represent the 
actual landscape.

Expert opinion has been the most common way to assign resis-
tance values. However, expert opinion has fallen out of favor over 
the recent years due to the subjective nature of this approach (Zeller 
et al., 2016). Simulation studies have found that landscape genetic 
associations are sensitive to parameterization of resistance weights 
(Koen et al., 2012). One way to improve resistance surface accuracy 
is to use a more rigorous analytical method such as habitat prefer-
ence models or genetic data to assign biologically relevant weights 
(Cushman & Lewis, 2010; Peterman, 2018).

In spite of the analytical advancements in assigning biologically 
plausible resistance values, these approaches may not improve accu-
racy of predictions if there is uncertainty in the underlying datasets 
used for the parametrizations. For example, land cover is an indicator 
of ecological suitability (e.g., habitat and available resources) for a 
given species and a common predictor variable used in landscape 
genetic studies. Land cover resistance surfaces are typically con-
structed using publicly available land cover data layers (e.g., National 
Land Cover Database (NLCD), Global Land Cover (GLC) database, 

and NOAA’s Coastal Change Analysis Program (CCAP) (Bartholomé 
& Belward, 2005; Homer et al., 2007; NOAA, 2014). Often datasets 
are produced using different data sources, foci, algorithms and class 
definitions, and therefore, differ in their representation of the actual 
landscape (Kienast, 1993). Previous studies have shown disparities 
among land cover datasets, even those that are derived from the 
same satellite imagery (Foody, 2002; Ge et al., 2007; Pérez-Hoyos 
et al., 2017; Tsendbazar et al., 2015). These disparities demonstrate 
the need to make informed decisions regarding which data layer to 
use or how fine (many classes) or coarse (few classes) land cover 
data are classified. The choice of a particular land cover dataset or 
classification scheme could ultimately impact downstream analytical 
outcomes and inferences that may be used to direct management 
decisions (Bai et al., 2014; Ge et al., 2007; Pérez-Hoyos et al., 2017; 
Tsendbazar et al., 2015).

While many scientific articles have lauded the integration of GIS 
and genetic data (Bolliger et al., 2010; Spear et al., 2010; Storfer 
et al., 2007), few have provided guidance to practitioners about how 
freely available land cover data are generated or how classification 
accuracy (i.e., uncertainty) is assessed. Neither have studies routinely 
compared the degree of dissimilarity (i.e., classification inconsis-
tences) among datasets. While a few studies have assessed perfor-
mance of resistance surfaces by varying the parameters (i.e., cost 
values) to create resistance surfaces (Cushman & Landguth, 2010; 
Graves et al., 2012; Spear et al., 2010), comparatively less attention 
has been paid to understanding how the selection of different data 
layers that are meant to represent the same landscape features may 
impact the detection of associations between genetic and landscape 
variation.

Here we evaluate the performance of landscape genetic resis-
tance models generated using two freely available land cover data-
sets. For each dataset, we created resistance surfaces using the 
same ecological model and biological assumptions then evaluated 
the influence of landscape features on spatial genetic structure of a 
large black bear population in Michigan's Northern Lower Peninsula 
(NLP), USA. Our three main objectives were (a) define fine-scale spa-
tial genetic structure, (b) identify landscape features that impede or 
facilitate gene flow, and (c) compare genetic and landscape associ-
ations estimated using different land cover datasets to understand 
the influence land cover dataset selection and reclassification have 
on landscape genetic analyses.

2  | MATERIAL AND METHODS

2.1 | Sampling, DNA extraction, PCR amplification

Tissue samples (teeth, N = 365) were collected from harvested bears 
registered at hunter check stations during the 2006 fall harvest 
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(September-October) in Michigan's Northern Lower Peninsula (NLP, 
47,739 km2; Figure 1). Bear harvest locations were recorded as 
township, range, and section. In Michigan, a survey township is a 
square unit of land containing approximately 36 square miles. Each 
square mile (2.59 km2) is a section. Harvest locations reported to 
a section were georeferenced using the section centroid and con-
verted to UTM coordinates.

We extracted DNA from bear teeth using Qiagen DNEasy Tissue 
Kits (Qiagen Inc.) following manufacturer protocols. DNA was quan-
tified using a Nanodrop spectrophotometer (Thermo Scientific) and 
diluted to a 20 ng/μl working concentration. We used PCR to amplify 
12 variable microsatellite loci including: G10X, G10L, G10D, G10B, 
G10M (PCR annealing temperature TA = 58°C; Paetkau et al., 1995) 
UarMU59, UarMU50 (TA = 58°C, Taberlet et al., 1997), ABB1, ABB4 
(TA = 54°C; Wu et al., 2010), UT29, UT35, and UT38 (TA = 54°C; Shih 
et al., 2009). We amplified DNA according to conditions outlined in 
Moore et al. (2014). Amplified products were sized on 6.5% denatur-
ing acrylamide gels for electrophoresis and visualized on a LI-COR 
4,200 Global IR2 System (LI-COR Inc.). All individual genotypes were 

scored independently by two experienced laboratory personnel 
using SAGA genotyping software (LI-COR Inc.). To assess genotyp-
ing error, 10% of samples were randomly selected and genotyped a 
second time to yield a genotyping error rate of <2%.

2.2 | Population genetic analysis

We tested for the presence of null alleles and allelic dropout using 
program MICRO-CHECKER (Van Oosterhout et al., 2004). We 
tested for deviations from Hardy–Weinberg equilibrium using pro-
gram GENEPOP (Version 3.1d; Raymond & Rousset, 1995), and used 
sequential Bonferroni tests to correct for multiple tests (Rice, 1989). 
We used Bonferroni corrections (Goudet, 1995, 2001) to test for 
linkage disequilibrium using program FSTAT 2.93. We quantified 
microsatellite genetic diversity and statistical power using mean 
number of alleles (A), observed heterozygosity (Ho), and expected 
heterozygosity (HE) over all loci, and probability of identity (PID) using 
program GenAlEx (Peakall & Smouse, 2006, v. 6.0).

F I G U R E  1   Study area in the Northern 
Lower Peninsula (NLP) of Michigan, 
USA showing locations of black bear 
harvest samples collected during 2006 
(N = 365). Pie graphs were constructed 
using individual posterior probabilities 
of membership to each genetic cluster 
(K = 2) identified in Program STRUCTURE. 
K2G1 = genetic cluster one (western) and 
K2G2 = genetic cluster two (eastern)
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We assessed spatial genetic structure using a global genetic spa-
tial autocorrelation coefficient (r) calculated using program GenAlEx 
(Peakall & Smouse, 2006, v. 6.0). Coefficient r (range, −1 to + 1) was 
calculated by correlating pairwise geographical and inter-individual 
genetic distance. We used program STUCTURE v. 2.3.4 (Pritchard 
et al., 2000) to characterize spatial genetic structure. We estimated 
the number of genetic clusters (K) without geographic location infor-
mation and the posterior probability of each individual belonging to 
each cluster. We performed 10 independent runs of K = 1–10 using 
simulations of 2 x 106 iterations after a burn-in period of 5 x 105 
Markov Chain Monte Carlo (MCMC) iterations. The most likely 
number of clusters was determined by the log likelihood of K and 
the posterior probability of K (P(K|X)) as determined by the method 
described in Pritchard et al. (2000) and estimates of delta K (Dk) 
(Evanno et al., 2005) using program STRUCTURE HARVESTER v. 
06.93 (Earl, 2012). To visualize the spatial distribution of the genetic 

clusters, we used ArcGIS 10.1 to plot posterior probability of cluster 
membership for each individual. To measure genetic differentiation 
among individuals, we calculated the proportion of shared alleles 
(Dps; Bowcock et al., 1994) for each pairwise combination of individ-
uals using GenAlEx v. 6.0 (Peakall & Smouse, 2006).

2.3 | Landscape genetic analysis

We used two land use/land cover digital coverage maps de-
rived from Landsat TM imagery; (a) Michigan Department of 
Natural Resources (MDNR) Resource Information Systems (MIRIS) 
Integrated Forest Monitoring, Assessment, and Prescription Project 
(IFMAP; MDNR, 2004) land cover data (resolution = 30 m), and 
(b) the National Oceanic and Atmospheric Administration (NOAA) 
Coastal Change Analysis Program (CCAP; NOAA, 2014) Land Cover 

F I G U R E  2   Side by side comparison of CCAP and IFMAP land cover maps using the black bear habitat suitability classification scheme 
described in Carter et al. (2010). (a) Land cover maps for the entire study area. (b) Land cover of the same 7 x 10 km area
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data (resolution = 30 m). The IFMAP dataset is categorized into 34 
land cover classes (Table S1). Reported accuracy assessment (based 
on 2,817 reference points) for IFMAP was 77% for overall accuracy 
and 68% for division among major forest types (i.e., mixed, decidu-
ous, coniferous). MDNR defined a forest stand as coniferous, decid-
uous, or mixed using a 60% stand purity rule. That is, a forest stand 
is considered of mixed composition unless 60% of the forest stand is 
dominated by either coniferous or deciduous trees (MDNR, 2004). In 
contrast, the CCAP land cover dataset is classified into 25 land cover 
classes (Table S1) with an overall accuracy of 87% and 83% for major 
forest types based on 900 reference points. NOAA used a higher 
stand purity requirement (75%) for defining coniferous and decid-
uous forest types resulting in a larger proportion of forest stands 
either being classified as mixed forest or non-forest (NOAA, 2014; 
Figure 2).

In order to understand how genetic differentiation was influ-
enced by landscape features, we generated resistance surfaces using 
Spatial Analyst in ARCGIS 10.1. We chose each land cover feature 
according to positive or negative associations with black bear pres-
ence, based on habitat suitability estimates derived for NLP black 
bears by Carter et al. (2010). We generated a series of landscape re-
sistance surfaces (i.e., models of landscape resistance to black bear 
gene flow) based on roads, rivers, and land cover, which have pre-
viously been reported to influence habitat selection by black bears 
in the NLP (Carter et al., 2010). We made the first set of resistance 
surfaces using a fine-scale land cover classification scheme for the 
IFMAP or the CCAP datasets (resolution = 150 m). We reclassified 
the IFMAP land cover data according to bear habitat suitability 
into eight classes: northern hardwood mixed forest (comprised of 
northern hardwood, aspen, oak, upland hardwoods), forested wet-
land (lowland forest), coniferous forest (pine, conifers), non-forested 

upland, agriculture, non-forested wetland, open water, and devel-
oped (Table S1). We similarly reclassified the CCAP dataset based 
on bear habitat suitability: mixed/deciduous, forested wetland, co-
niferous forest (evergreen forest), non-forested upland, agriculture, 
non-forested wetland, open water, and developed (Table S1).

Following reclassification of our land cover datasets using Carter 
et al. (2010), we generated a confusion matrix (error matrix, Foody, 
2002) to compare the concordance of pixels (i.e., raster cells) be-
tween the CCAP and IFMAP datasets. In other words, for a given 
pixel, we quantified how often the two land cover datasets assigned 
the same land cover class, and how often pixels were classified dif-
ferently. Our confusion matrix is a c x c (c = is the number land cover 
classes) table that quantifies the agreement (diagonal elements) and 
disagreement (off-diagonal elements) of land cover classification 
between the CCAP and IFMAP land cover datasets. In our matrix, 
the columns of Table 1 represent the assigned class of each pixel 
according to the CCAP land cover dataset. The rows are the class 
of the same pixels according to the IFMAP land cover dataset. The 
cells of the table therefore show the number of pixels of a particular 
class (i.e., developed) that is classified as either the same class or any 
alternative class between the two datasets (Table 1).

We also modeled resistance as a function of land cover accord-
ing to two alternative hypotheses, using a binary classification of 
land cover: (a) bear habitat (significantly positively correlated with 
bear presence; IFMAP = northern hardwood mix, aspen, forested 
wetland; CCAP = mixed/deciduous, forested wetland) or non-hab-
itat (either positively associated but not significant or significantly 
negatively correlated with bear presence; IFMAP = pine, oak, 
non-forested upland, agriculture, non-forested wetland, developed; 
CCAP = evergreen forest, non-forested upland, agriculture, non-for-
ested wetland, developed), and (b) forested areas (IFMAP = northern 

TA B L E  1   Confusion matrix for evaluating agreement and disagreement of land cover classification between IFMAP and CCAP land cover 
datasets (resolution 150 m)

IFMAP Classes

CCAP Classes

Developed Agriculture

Non-
forested 
upland

Mixed/ 
Deciduous 
Forest

Evergreen 
Forest

Forested 
Wetland

Non-forested 
Wetland

Open 
Water

Developed 13,967 7,071 7,764 3,218 1699 507 736 233

Agriculture 3,604 96,513 19,223 4,760 1,091 754 918 29

Non-forested upland 2,810 4,932 64,606 19,218 6,172 1,238 1,491 53

Mixed/Deciduous Forest 3,274 2,922 24,487 231,364 8,075 7,380 3,115 135

Evergreen Forest 889 555 5,836 16,032 51,778 2,632 860 123

Forested Wetland 707 598 3,311 12,928 4,380 61,703 13,458 294

Non-forested Wetland 478 481 2,906 3,735 1,002 14,034 24,428 809

Open Water 88 112 106 206 134 231 890 24,749

Total 25,816 113,183 128,239 291,460 74,330 88,479 45,895 26,425

Class Changes 11,849 16,670 63,632 60,096 22,553 26,775 21,467 1676

Percent Similarity 54% 85% 50% 79% 70% 70% 53% 94%

Note: The diagonal elements are the number of pixels where land cover classifications agree, off-diagonal elements are the number of pixels where 
classifications disagree (Total pixels = 793,826). The columns represent what class is assigned to each pixel by the CCAP dataset and the rows are 
what the same pixels are according to the IFMAP dataset.
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hardwood mix, aspen, forested wetland, pine, oak; CCAP = mixed for-
est/deciduous, forested wetland, evergreen forest) or non-forested 
areas (IFMAP = non-forested uplandagriculture, non-forested wet-
land, developed; CCAP = non-forested upland, agriculture, non-for-
ested wetland, developed). Major rivers and all roads (Interstate-75, 

state roads, all other roads) were included as predictor variables as 
potential physical barriers to dispersal. We proposed 18 alternative 
landscape hypotheses (Table 2).

To eliminate the subjectivity in assigning resistance weights to 
resistance surfaces, we used a genetic algorithm implemented in the 

Rank Model LL k AICc ∆AICc wi R2

1 Roads + River −140,596.39 7 281,200.78 0.00 0.55 0.063

2 Interstate 75 
only

−140,597.20 3 281,202.40 1.62 0.24 0.055

3 Roads −140,597.35 5 281,202.71 1.93 0.21 0.052

4 CCAP HSI 
land cover 
only

−140,640.89 9 281,289.78 89.00 0 0.048

5 IFMAP HSI 
land cover 
only

−140,641.67 9 281,291.35 90.57 0 0.040

6 CCAP Hab/
Non-Hab 
land cover 
only

−140,653.36 3 281,314.73 113.95 0 0.024

7 IFMAP Hab/
Non-Hab 
land cover 
only

−140,654.67 5 281,317.33 116.55 0 0.001

8 Rivers −140,655.00 3 281,318.30 117.52 0 0.022

9 CCAP Forest/
Non Forest 
land cover

−140,655.70 3 281,319.40 118.63 0 0.022

10 IFMAP 
Forest/Non 
Forest land 
cover only

−140,655.96 3 281,319.93 119.15 0 0.017

11 Null −140,656.19 1 281,320.38 119.60 0

12 Distance −140,735.54 2 281,477.08 276.31 0 0.044

13 IFMAP 
HSI + Rivers

−140,735.26 11 281,478.51 277.73 0 −0.053

14 CCAP 
HSI + Rivers

−140,735.32 11 281,478.63 277.85 0 −0.062

15 CCAP 
HSI + Roads 
+River

−140,735.41 17 281,478.83 278.05 0 −0.063

16 IFMAP 
HSI + Roads 
+River

−140,735.53 17 281,479.05 278.27 0 −0.054

17 CCAP 
HSI + Roads

−140,735.54 13 281,479.07 278.29 0 −0.021

18 IFMAP 
HSI + Roads

−140,735.54 13 281,480.56 279.78 0 −0.021

Note: ∆AICc, the difference between AICc for the alternative model compared to the highest 
ranked model; AICc, the AICc score; CCAP, Coastal Change Analysis Program land cover dataset; 
Hab, Habitat; HSI, Habitat Suitability Index, designating models in which land cover is reclassified 
using Carter et al., 2010 ecological model; IFMAP, Integrated Forest Monitoring, Assessment, and 
Prescription Project land cover dataset; k, number of parameters in the model; LL, log likelihood; 
Model, name of the model; R2, r squared; Rank, the rank based on AICc values; wi, Akaike's weight.
The models are ranked based on the smallest AICc value.

TA B L E  2   The highest ranked a priori 
landscape models and the null models 
explaining black bear genetic distance
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R-package ResistanceGA (Peterman, 2018) to parameterize individ-
ual resistance values for a give resistance surface based on pairwise 
genetic distance. The optimized surfaces are generated using sam-
ple locations and effective distances calculated by CIRCUITSCAPE 
v. 4.0 (McRae, 2006) to maximize the fit of a resistance model to the 
genetic dataset using linear mixed effects models and AICc values 
(Peterman, 2018). Optimization proceeded until no further improve-
ment of AICc was achieved. For our analysis, our input landscape 
surfaces incorporated one or more landscape variables including 
land cover, rivers, and roads (predictor variables were not correlated 
(|r| < .33). We randomly selected 340 samples to meet the pre-con-
dition of the program, which only allows one genetic sample per 
surface pixel. We used the proportion of shared alleles between all 
pairs of individuals (Dps; Bowcock et al., 1994) as the dependent 
variable. We ran each model twice as recommended by Peterman 
(2018) to evaluate output for consistency between replicate runs. 
Model testing was performed by fitting a maximum-likelihood pop-
ulation effects (Clarke et al., 2002) model to relate genetic distance 
(Dps) to resistance distance for each candidate model. In addition to 
landscape resistance surfaces, we assessed Euclidean distance alone 
(isolation by distance, IBD) as well as an intercept only null model. 
Model selection was determined by comparison of AICc and Akaike 
weight (wi) following Burnham and Anderson (2002).

3  | RESULTS

3.1 | Population genetics

We found no evidence for null alleles or allelic dropout, and no loci 
were found to deviate significantly from Hardy–Weinberg or linkage 
equilibrium, so all 12 loci were retained for further analyses. Across 

all loci, expected heterozygosity ranged from 0.67 to 0.91, number 
of alleles per locus ranged from six to 26 (Table S2), and PID was 
2.2 x 10–14.

The NLP black bear population is not genetically homogeneous. 
Global spatial autocorrelation analysis revealed an isolation by dis-
tance pattern, whereby genetically similar individuals were not ran-
domly distributed. Individuals sampled at inter-individual distances 
of 0–30 km showed significant positive spatial genetic autocor-
relation (Figure 3). Our STRUCTURE results indicated the highest 
average log-likelihood value (−15,714.50) was observed for K = 4. 
However, using Delta K, as recommended by Evanno et al. (2005), 
the greatest support was for K = 2, which suggest the NLP bears 
consist of two genetic clusters. Distribution of individual posterior 
probabilities of cluster membership indicated a longitudinal (east-
west) gradient (Figure 1).

3.2 | Landscape genetic analysis

Quantitative comparison of the IFMAP and CCAP land cover data-
sets revealed 21% of pixels were classified differently between the 
two datasets (Table 1). Most notably, pixels classified as developed, 
non-forested upland, and non-forested wetland in the CCAP dataset 
were most frequently classified as a different land cover class for the 
IFMAP dataset.

Landscape resistance modeling revealed the best univariate 
models based on AICc included: (a) interstate 75 only, (b) roads 
only, and (c) land cover only (for both IFMAP and CCAP datasets) 
classified according to the habitat suitability model from Carter 
et al. (2010). All three outperformed either the distance only or null 
model. However, when multiple landscape predictors were consid-
ered, the best performing model included rivers and roads (Akaike 

F I G U R E  3   Global spatial 
autocorrelation of black bear samples. 
Bars represent standard errors. The 95% 
confidence intervals (dashed lines) about 
the null hypothesis of no spatial structure 
were estimated by permutations based on 
distance classes of 5 km
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weight, wi = 0.55) indicating rivers + roads, in the absence of land 
cover, were good predictors of gene flow (Table 2). In spite of the 
21% discordance in pixel classification between the two land cover 
datasets, we found no differences in model performance among 
the models using the different land cover datasets. However, we 
did observe models with land cover defined with more complexity 
(i.e., eight land cover classes) outperformed those models that de-
fined land cover using a binary classification scheme (i.e., habitat/
non-habitat or forest/non-forest.)

4  | DISCUSSION

Comparative studies are needed to assess different landscape ge-
netic approaches. As we have shown, differences do exist among 
land cover datasets and have the potential to affect landscape ge-
netic inference, yet effects are not often considered in landscape 
genetic studies. Our study centered on comparing the effects of 
using two different land cover datasets generated using different 
criteria to infer landscape-genetic associations in a large bear popu-
lation in Michigan's NLP, USA. We found that landscape factors bet-
ter predicted black bear genetic differentiation than distance alone 
and found no differences in model performance between land cover 
datasets, despite marked dissimilarity in land cover classifications.

4.1 | Land cover dataset comparison

Comparisons among land cover datasets revealed that 21% of the 
pixels differed in their land cover classification between the IFMAP 
and CCAP datasets even though the datasets were generated using 
the same satellite imagery (Table 1, Figure 2a). Differences may be 
attributed to several factors. First, despite the potential for high-
resolution satellite imagery to pick up fine-scale differences in land 
cover, no classification is ever a perfect representation of the land-
scape. Digitized land cover maps are models or generalizations; thus, 
they have inherent limitations. Uncertainty or error in remote sensing 
is primarily associated with land cover class misidentification (Foody, 
2002; Liu et al., 2004). Land cover classification can be subjective 
(Thomlinson et al., 1999) and can have a propensity for high error 
rates, despite recommended guidelines to ensure accuracy of clas-
sifications (e.g., overall accuracy of 85% with no class less than 70% 
accurate; Congalton & Green, 2008). For example, the same satel-
lite images classified by two independent researchers, but applying 
the same definition of land cover types, can produce different land 
cover maps. The IFMAP and CCAP datasets differed considerably in 
overall misclassifications (e.g., accuracy assessments; IFMAP > 77%, 
CCAP > 87%), and propensity for misclassification increases when 
examining closely related land cover types (e.g., accuracy assess-
ment among forest types; IFMAP > 67%, CCAP > 83%; Beier 
et al., 2008; MDNR, 2004; NOAA, 2014). Second, the data layers we 
used in our evaluation use different thresholds for stand dominance 
(IFMAP = 60%, CCAP = 75%) when classifying coniferous/deciduous 

forest cover types (MDNR, 2004). For the IFMAP data, the MDNR 
lowered the thresholds to 60% because much of Michigan's forests 
are mixed and agency personnel wanted to emphasize species pre-
dominance in cover type for forestry practices, thereby reducing the 
number of forest cover types that fall within mixed forest classes 
(MDNR, 2004). In addition, a lower stand threshold in the IFMAP 
data would result in more pixels identified as forested compared to 
the CCAP data. For example, 29% of cells classified as forested wet-
land in the IFMAP dataset are identified as non-forested wetland 
in the CCAP dataset. Finally, the IFMAP dataset was published in 
2001, five years before the CCAP data (year of publication 2006) 
and within the NLP there has been landscape modification from on-
going anthropogenic activities (primarily deforestation).

Surprisingly, despite the discrepancies observed among land 
cover datasets, we found that the source of the land cover data did 
not influence downstream analysis. That is, IFMAP and CCAP land 
cover were equally predictive of black bear gene flow. How a species 
responds to the landscape is in large part determined by a species 
dispersal potential and sensitivity to landscape configuration and 
complexity. Black bears are habitat generalists and exhibit large dis-
persal movements (Brodeur et al., 2008; Mitchell & Powell, 2007; 
Moore et al., 2014; Noyce & Garshelis, 2011; Rogers, 1987), thus 
have the potential to move efficiently through non-preferred hab-
itat. If broad scale spatial patterns (as opposed to fine/pixel scale) 
are more likely to influence black bear dispersal, it is not surprising 
that changes in class designations at a pixel scale may matter little 
compared to the scale at which bears perceive the landscape. Our 
findings of concordance between land cover datasets can only be 
applied to Michigan black bears in the NLP. Fine-scale differences 
between land cover datasets may be more impactful for landscape 
genetic models of habitat specialists, less mobile species, or species 
that are particular sensitive to landscape modification (i.e., develop-
ment, agriculture). Further investigations, for example using other 
land cover datasets, locales, and species, are needed to address this 
question.

4.2 | Effect of landscape features on black bear 
connectivity

Black bears in the NLP exhibited significant positive spatial ge-
netic autocorrelation for distances up to 30 km, consistent with 
IBD (Coulon et al., 2004; Wright, 1943). Positive spatial genetic 
autocorrelation over short distances is likely attributed to male-
biased dispersal and female natal philopatry, commonly exhibited 
by black bears, where female offspring establish home ranges 
adjacent to the mothers whereas male offspring disperse from 
the natal area (Costello, 2010; Moore et al., 2014; Rogers, 1977, 
1987; Schwartz & Franzmann, 1992). Indeed, black bear disper-
sal in Michigan's NLP is strongly male biased (Moore et al., 2014; 
Waples et al., 2018). IBD is consistent with studies on bears 
and other wide-ranging carnivores (Brown et al., 2009; Paetkau 
et al., 1997; Rueness et al., 2003).
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We did, however, find isolation by landscape resistance to be 
more strongly supported than IBD and the null model. Our results 
using univariate landscape models suggest that roads were the 
landscape feature most strongly correlated with genetic distance 
for black bears in the NLP. We found state roads and interstate-75 
had a 600 to 1,000 times higher resistance value than low traffic 
paved/forest roads suggesting strong avoidance of crossing high-
ways than other roads. In Michigan, hunting and vehicle collisions 
are the most common causes of recorded bear mortality (Frawley, 
2010). McFidden-Hiller et al. (2016) found increased human–bear 
interactions with high primary road (e.g., interstates, highways, 
and residential) density. Roads can negatively impact bears survival 
and connectivity by (a) providing ease of access for hunters, and 
(b) acting as a barrier to dispersal. Roads as dispersal barriers have 
been shown for both black bears (Lee & Vaughan, 2003; Thompson 
et al., 2005) and brown bears (Proctor et al., 2005) which is likely 
due to habitat disturbance or risk of vehicle collisions (McFadden-
Hiller et al., 2016). In addition, our STRUCTURE results indicate that 
two genetically distinct groups exist in the NLP, defined as a west-
ern and an eastern genetic cluster. Interestingly, running proximal to 
the primary shift from western to eastern individuals is Interstate-75 
(Figure 1) further indicating primary roads are barriers to gene flow 
for black bears in Michigan's NLP.

Comparison of land cover only models reveals land cover clas-
sified using the habitat suitability models from Carter et al. (2010) 
(Table 2) outperformed all models where land cover was classified 
using two coarse definitions; (a) habitat/non-habitat or (b) forest/
non-forest. Previous studies have found strong support for associ-
ations between black bear genetic structure and land cover classi-
fied broadly as forest/non-forest (Cushman et al., 2006; Short Bull 
et al., 2011). One possible explanation for a poorer model perfor-
mance when land cover is coarsely defined in our study is the dif-
ference in spatial distribution of food availability between our study 
area and previous studies (i.e., NLP versus. Rocky Mountains). Unlike 
conifer-dominated forest types that occur in the Rocky Mountains 
of the United States, Michigan's NLP forests are a heterogeneous 
mix of deciduous, coniferous, and mixed stands with different un-
derstory communities and thus food availabilities.

Comparisons between competing landscape models parame-
terized using single and multiple variables found that inclusion of 
more than a single landscape predictor improved model perfor-
mance when rivers and roads were included. This result indicates 
that rivers may act as a semipermeable barrier to black bear gene 
flow; however, inclusion of rivers only slightly improved model 
performance (R2 = .063) when compared to roads alone (i.e., I75 
only = ΔAICc > 1.62, R2 = .055 or roads ΔAICc > 1.93, R2 = .052). 
Interestingly, when adding land cover classified based on the HSI to 
roads resulted in poorer performing models despite land cover only 
models performing better than the distance and null models (e.g., 
CCAP, ΔAICc ~ 89, R2 = .048; IFMAP, ΔAICc = 90, R2 = .040). One 
possible explanation is that land cover may not be a good predictor 

F I G U R E  4   Comparison of cumulative resistance maps 
representing movement probability among pairs of individuals 
from three competitive isolation-by-resistance models (Table 2) 
based on (1) land cover only, generated from CCAP land cover; 
(2) roads and rivers; and (3) Interstate-75 only using program 
CIRCUITSCAPE. Gradients of colors indicate the probability of 
black bear movement. Yellow colors indicate high probability; red 
and pink colors indicate medium probability; and purple and blue 
representing low probability
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of gene flow overall. Thus, adding land cover to the model may have 
increased noise.

Visualization of potential dispersal pathways based on three 
models revealed similar patterns of high, medium, and low proba-
bility of bear movement (Figure 4). Heat maps show two clear areas 
of high flow; a large patch located in the east central region and a 
smaller patch located in the south central region of the study area 
(near Houghton Lake and Higgins Lake). Connecting these two re-
gions are many areas of medium permeability suggesting dispersal 
within the NLP can occur via multiple pathways. Corridors, if ade-
quate in arrangement and number, can in theory offset the nega-
tive consequences of landscape fragmentation and are necessary 
to maintain occupancy in a population that exhibits source-sink dy-
namics (Dixo et al., 2009). Draheim et al. (2016) found black bears 
exhibit asymmetric dispersal among areas within the NLP suggest-
ing loss of movement corridors could have wide ranging effects. 
For example, long-term persistence of black bears in sink areas de-
pends on the rate of extinction and the rate of movement between 
patches (Fahrig & Merriam, 1994). Thus, loss of corridors by habitat 
alteration in the NLP can decrease probability of local black bear 
occupancy.

5  | CONCLUSION

Our results indicate considerable classification discrepancies be-
tween land cover datasets did not impact our landscape genetic 
results; however, land cover had a minimal influence on black bear 
connectivity compared to roads and rivers. We did find that how 
coarse (e.g., forest/non-forest) or fine (e.g., classified using eight 
classes as identified by Carter et al., (2010)) land cover is defined be-
fore parametrization changed our understanding of how land cover 
affects black bear genetic connectivity in Michigan's NLP. Our ability 
to relate genetic distance to landscape elements is largely depend-
ent on hypothesized parameterized resistance surfaces. However, 
resistance surfaces are also dependent on the landscape data layers 
used for parametrization. Indeed, we obtained varying degrees of 
genetic and landscape associations using the same landscape data, 
which differed only in classification complexity (i.e., many or few 
land cover types). We recommend that landscape genetic research-
ers should not only carefully consider which landscape variables 
they use and how they assign resistance weights (e.g., parametriza-
tion versus expert opinion) to generate resistance surfaces, but also 
scrutinize how landscape elements, such as land cover, are initially 
characterized.
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