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Due to the demand for high-quality animal protein, there has been consistent

interest in how to obtain more high-quality beef. As well-known, the adipose

content of beef has a close connection with the taste and quality of beef, and

cattle with di�erent energy or protein diet have corresponding e�ects on the

lipid metabolism of beef. Thus, we performed weighted gene co-expression

network analysis (WGCNA) with subcutaneous adipose genes from Norwegian

red heifers fed di�erent diets to identify hub genes regulating bovine lipid

metabolism. For this purpose, the RNA sequencing data of subcutaneous

adipose tissue of 12-month-old Norwegian red heifers (n = 48) with di�erent

energy or protein levels were selected from the GEO database, and 7,630

genes with the largest variation were selected for WGCNA analysis. Then, three

modules were selected as hub genes candidate modules according to the

correlation between modules and phenotypes, including pink, magenta and

grey60 modules. GO and KEGG enrichment analysis showed that genes were

related to metabolism, and participated in Rap, MAPK, AMPK, VEGF signaling

pathways, and so forth. Combined gene interaction network analysis using

Cytoscape software, eight hub genes of lipid metabolism were identified,

including TIA1, LOC516108, SNAPC4, CPSF2, ZNF574, CLASRP, MED15 and

U2AF2. Further, the expression levels of hub genes in the cattle tissue were also

measured to verify the results, and we found hub genes in higher expression

in muscle and adipose tissue in adult cattle. In summary, we predicted the

key genes of lipid metabolism in the subcutaneous adipose tissue that were

a�ected by the intake of various energy diets to find the hub genes that

coordinate lipid metabolism, which provide a theoretical basis for regulating

beef quality.

KEYWORDS

di�erent diets, WGCNA, lipid metabolism, energy metabolism, hub genes

Frontiers in Veterinary Science 01 frontiersin.org

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.1014286
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.1014286&domain=pdf&date_stamp=2022-11-09
mailto:zanlinsen@163.com
https://doi.org/10.3389/fvets.2022.1014286
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2022.1014286/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wang et al. 10.3389/fvets.2022.1014286

Introduction

Because the worldwide demand for meat products is
consistently increasing (1, 2), how to produce high-quality beef
has always been a topic of concern among scholars (3). RNA
sequencing has widely been used in animals to mine potential
regulatory molecules for many years. For instance, using this
approach, researchers have identified several pathways by which
KLF6 is involved in lipid metabolism (4). Studies have indicated
that the variation of the energy and protein levels in feed
(5), and the change in the energy and protein intake ratio
(6) have a non-negligible regulatory influence on cattle growth
and development, production performance, metabolic level,
immune function, and reproductive capacity. Meanwhile, the
content and distribution of adipose tissue which plays a role in
the metabolism of meat is an important factor affecting the taste
and quality of beef (7, 8). A study demonstrated that feeding a
high-energy diet effectively increased fat deposition in fattening
cattle (9). However, monotonous performance and phenotypic
changes have prevented us from understanding the molecular
mechanistic effects of different energy and protein intakes on
beef-related metabolism (10). At present, the complex molecular
regulatory mechanism of bovine subcutaneous adipose tissue is
not clear (11). Scholars at home and abroad have predictedmany
key signaling pathways and regulatory genes regulating bovine
lipid metabolism through molecular biology and bioinformatics
analysis and other research methods (12–14).

Weighted gene co-expression network analysis (WGCNA) is
currently the preferred algorithm for calculating the correlation
between genes and phenotypes (15). Based on high-throughput
RNA sequencing data, it relies on the R software package (16) for
data analysis, constructs a cluster tree portraying different gene
modules, integrates genes with the same biological function into
one module systematically (17). The gene expression patterns
within themodule are comparable (18), when they are associated
with phenotypes and participate in the same biological process
(19). To sum up, it is suitable for analyzing complex regulatory
mechanisms. At present, in the research of livestock and poultry,
researchers mainly forecast the regulatory network of important
economic traits (20), the molecular regulatory mechanism of
disease occurrence (21), and the associated network between
the phenotype of livestock and the internal molecular regulatory
mechanism by incorporating other bioinformatics analysis tools
(22, 23). Therefore, it is viable to employ WGCNA to explore
hub genes and metabolic processes that alter fat deposition. At
present, some results have beenmoderately reported in pigs (24),
chickens (25), cattle (26), and other animals (27).

Here, the association analysis between subcutaneous adipose
tissue genes of Norwegian red heifers fed on different energy
diets was conducted to predict the hub metabolic regulatory
genes of subcutaneous adipose tissue. Qinchuan beef cattle were
used as the molecular research objects to verify the generality

of this result, which provide a theoretical basis for regulating
the metabolism of subcutaneous adipose tissue and improving
beef quality.

Materials and methods

Sample collection and processing

Tissues from the heart, liver, spleen, lung, kidney,
subcutaneous fat, and muscle from a healthy adult cattle and
newborn calf were collected after slaughter, frozen immediately
with liquid nitrogen, and stored at −80◦C. The samples in
this study were collected from healthy Qinchuan beef cattle
with consistent growth and bred at the National Beef Cattle
Improvement Center of Northwest Agriculture and Forestry
University (Yangling, China).

Data collection and collation

The reads count matrix of transcriptome data of each sample
used in this study were obtained fromGSE79347 dataset (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79347). The
datasets respectively were from two types of Norwegian red
heifers (high-yielding dairy group, hmy; normal milk producing
group, lcm) fed with four kinds of feeds, including high energy
high protein (HEHP), high energy low protein (HELP), low
energy high protein (LEHP), and low energy low protein (LELP).
Six biological replicates were taken from each treatment group,
with a total of 48 samples.

The raw data were converted into standard fastq format
through SRA tools (version 2.8.1) software, Then the quality
control and preprocessing of the data were carried out using the
FastQC (version 0.11.9) (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). For downstream WGCNA analysis, we
first extracted the protein-coding gene-set according to gene
annotation information from Ensembl database (https://asia.
ensembl.org/index.html). Then, the FPKM (Fragments Per
Kilobase of exon model per Million mapped fragments) value
of each gene was calculated according to the reads count, which
aims to normalize the gene expression.

Weighted gene co-expression network
construction

The weighted co-expression network was constructed by the
WGCNApackage in R Studio (28, 29). The gene expression level,
first, was calculated based on the raw counts of each sample to
construct a gene expression matrix of 48 samples according to
FPKM (Fragments per Kilobase of transcript per million) which
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is a standardized measurement of transcription abundance. The
top 75% (30) genes with the largest variation were selected by
the gene expression level to construct a correlation matrix. Then
we chose the soft threshold β that best fits the scale-free network
to obtain the scale-free adjacency matrix which was computed
into a Topological Overlap Matrix (TOM). We constructed
a hierarchical clustering tree according to the corresponding
dissimilarity (1-TOM), theminimumnumber threshold of genes
in each module was set to 50, to identify modules by merging co-
expression similarity genes. In addition, similar modules were
merged based on the dissimilarity of module eigengenes with
a threshold less than 0.20 (31). Finally, Pearson correlation
analysis was performed between modular characteristic genes
(ME) and lipid metabolism. The results of the correlation and
significance levels of module eigengenes (MEs) with phenotypes
were displayed by the R software package ggplot2, and the
gene significance (GS) and module membership (MM) values
were exported.

Functional annotation of module genes
and screening of hub genes

The Pearson correlation coefficient greater than 0.3 and
p < 0.05 were used as thresholds to select modules for GO
function annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The online
tool g:Profiler (https://biit.cs.ut.ee/gprofiler/) was used for GO
function annotation with default parameters (32). There were
three categories of GO annotation: biological process (BP),
cellular component (CC), and molecular function (MF). The
results were consistent with a p < 0.05 arranged in ascending
order of p-value, and the top 5 of the obtained results were
displayed. The module genes of KEGG pathway enrichment
analysis were implemented by KOBAS (http://kobas.cbi.pku.
edu.cn/genelist/) with default parameters (33) and screening
condition for significant enrichment according to p < 0.05.

The higher the GS value, the greater the correlation between
this gene and this phenotype is; the higher the MM value is,
the greater the contribution of this characteristic gene to this
module; the gene with the highest GS and MM values in the
module is regarded as a hub gene. Therefore, the intramodular
key genes were chosen based on | GS | > 0.2, | MM | > 0.9
with a p < 0.05 (34). The interaction network between key genes
obtained through weighted gene co-expression network analysis
and its target genes were arranged in descending order of weight,
and the top 200 (35) genes were selected and imported into
Cytoscape_V3.8.2 software (36) to select hub genes.

Quantitative real-time PCR analysis

After processing the beef tissues, we used RNAiso Plus Kit
(Trizol, Takara, Beijing, China) to extract the total RNA from

TABLE 1 The hub genes’ quantitative PCR primer sequences.

Genes Primer sequences(5′-3′) Annealing

temperature

β-actin F: ATCGGCAATGAGCGGTTC 60◦C

R: CGTGTTGGCGTAGAGGTC 60◦C

TIA1 F: GGATACAGCCGGAAATGATCCA 60◦C

R: TGTGTGCTGACAACGGTACT 60◦C

LOC516108 F: GCTGTAGGGCGGAAGATGTG 60◦C

R: AGCCTCCTGTCCAGAGACATA 60◦C

SNAPC4 F: CTTCAAGCAGTTGCCAAGTATG 60◦C

R: CCAACGCCGTATTTTTCTATC 60◦C

CPSF2 F: CGCTTTGGGGCAGGACTTAT 60◦C

R: ATAAATTCCTTCTGGGCGGGG 60◦C

CLASRP F: GAAGAAGGCATCCATCGGCTACAC 60◦C

R: GCATCCTGACGAAGTCGCCATC 60◦C

ZNF574 F: TACCGCAAAGCAGAAGAGG 60◦C

R: ACCTCGGTCACCACCTCAGT 60◦C

MED15 F: ACGTTTCGGGGCAGGAGA 60◦C

R: TCTTGGCCTTCAGGAACACG 60◦C

U2AF2 F: GTCTCGCGCAGCCTTCTTA 60◦C

R: GAGAGGAAACGGAGAAGGGC 60◦C

the beef heart, liver, spleen, lung, kidney, muscle, and adipose
tissues. The cDNA was obtained by reverse transcription kit
(PrimeScriptTM RT reagent Kit with gDNA Ewraser, Takara,
Beijing, China). The DNA and CDS region sequences of hub
genes were downloaded from the NCBI database for primer
design. Then, the designed primer sequences were uploaded to
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for specificity
test. Primer sequences are shown in Table 1. The relative
expression levels of hub genes in adult cattle heart, liver, spleen,
lung, kidney, muscle, and adipose tissue were measured, and
the expression levels of hub genes in the adult cattle and the
newborn calves’ adipose tissue were compared. Quantitative
real-time PCR were performed using the PerfectStart Green
qPCR SuperMix kit (TransGen Biotech, Beijing, China), and
the results were obtained. It should be noted that three
biological replicates and technical replicates were performed
for all experiments. SPSS 25 (37) and Graphpad Prism 9 (38)
softwares were used for difference significance analysis and
mapping, respectively.

Statistical analysis

The relative expression levels of different quantitative real-
time PCR data were analyzed by the 2−11Ct method. All
experiments were performed in triplicate. The results were
expressed as mean ± standard error of the mean (SEM).
Statistical analyzes were performed with SPSS 25 (37) and
Graphpad Prism 9 (38). Differences between groups were
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FIGURE 1

Identify soft thresholds and filter modules. (A) Scale-free topology fit index. (B) Mean connectivity of di�erent soft-thresholding power. (C) The

cluster dendrogram of gene modules eigengenes. (D) The gene clustering dendrogram.

calculated by Analysis of Variance (ANOVA) methods and
significance was indicated by lowercase letters or asterisks.
∗p < 0.05, significant; ∗∗p < 0.01, moderately significant;
∗∗∗p < 0.001, highly significant; and ∗∗∗∗p < 0.0001,
extremely significant.

Results

Construction of weighted gene
co-expression network

A total of 7,630 genes, which was the largest variation,
were obtained for subsequent analysis. There was no outlier
in the samples through 48 samples drawn with a hierarchical
clustering tree. First, the soft threshold was filtered. When the
soft threshold β = 10 in this test, the scale-free network fitting
index (R2) was greater than 0.85 (Figure 1A) and the average
connectivity approached 0 (Figure 1B), which conforms to the

characteristics of a scale-free network. Then, by merging similar
modules with the dynamic hybrid-cutting method and setting
the MEDissThres cutting line to 0.20, light cyan was merged
with cyan, yellow was merged with black, turquoise was merged
with green, midnight-blue was merged with brown, and tan and
purple were merged with pink (Figure 1C). Finally, there were
15 modules with different colors, blue, grey60, red, cyan, pink,
light-green, salmon, royal blue, black, green-yellow, light-yellow,
magenta, brown, green, and grey (Figure 1D). The number of
genes in the different modules had a large variation, from 85
genes in the royal-blue module to 1954 in the green module
(Supplementary Table S1).

Identification of candidate modules

As shown in Figure 2, there were three modules among 15
modules whose filter condition | R | > 0.3 (p < 0.05) were
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FIGURE 2

Relationship between modules and di�erent feeding methods. The numbers on the top of the block represent the correlation and the p-value

on the bottom. The horizontal axis represents the di�erent feeding methods, and the vertical axis represents the eigenvector of each module.

Red means positive correlation, and blue means negative correlation.
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FIGURE 3

GO enrichment analysis. (A) Pink module. (B) Grey60 module. (C) Magenta module.

selected as key genes candidate modules, including the grey60
module, pink module, and magenta module. The grey60 module
(R = −0.37, p = 0.01) significantly negatively correlated
with low energy and low protein diets. Conversely, the pink
module (R = 0.38, p = 0.008) significantly correlated with low
energy and low protein diets, as well as significantly negatively
associated with high energy and low protein diets (R = −0.33,
p = 0.02). The magenta module (R = 0.3, p = 0.04) was
significantly positively related to low energy and low protein
diets. According to the analysis results, the different energy
intakes of Norwegian red heifers had a significant impact on
their gene expression. Therefore, these three modules were
screened as lipid metabolism-related modules for subsequent
functional analysis and identification of hub regulatory genes.

Functional enrichment analysis of three
modules

To understand the molecular functions and biological
pathways of genes in co-expression modules closely correlated
with different feeding methods, the genes of three modules
were executed to GO and KEGG enrichment analyzes above.
Among the GO terms (Supplementary Table S2), the pink
module genes were mainly used as nucleoplasm, cytoplasmic,
and organelle components that participated in the regulation of
the RNAmetabolic process, regulation of nucleobase compound
metabolic process, regulation of transcription, regulation of
nucleic acid–templated transcription, and regulation of RNA
biosynthetic process (Figure 3A). The cellular component of
the grey60 module genes was significantly enriched in the
nucleoplasm (Figure 3B). Moreover, the biological processes

of the magenta module were closely related to carbohydrate
derivative metabolic processes (Figure 3C).

The KEGG enrichment results of the pink module showed
that the pathways, such as Rap1, MAPK, Notch, VEGF, IL-17,
GnRH signaling pathway, and beta-alanine metabolism were
related to different energy intakes (Figure 4A). Additionally, the
pancreatic secretion, glycerophospholipid metabolism, Rap1,
and MAPK signaling pathway were enriched in the grey60
module (Figure 4B) and the thermogenesis process, insulin
resistance process, non-alcoholic fatty liver disease (NAFLD),
oxidative phosphorylation, pyrimidine metabolism, insulin
signaling pathway, adipocytokine signaling pathway, AMPK
signaling pathway, metabolic pathways, and VEGF signaling
pathway were enriched in the magenta module and were closely
associated with low energy and low protein diets (Figure 4C).
The complete results are shown in Supplementary Table S3.

Hub genes associated with lipid
metabolism

To identify hub genes, | GS | > 0.2, | MM | > 0.9, and
weighted p < 0.05 were used as the identification criteria in
grey60, pink, and magenta modules (Supplementary Table S4).
The TIA1 gene in the grey60 module (Figure 5A) and the
LOC516108 gene in the magenta module (Figure 5B) met the
requirements, which were exported to Cytoscape to construct
a network of relationships between genes. The pink module
had more genes, so the top 200 genes were selected according
to weight, calculated, and visualized using the Cytohubba
tab in Cytoscape (Figure 5C). The results showed that TIA1,
LOC516108, SNAPC4, CPSF2, ZNF574, CLASRP, MED15, and
U2AF2 were hub genes.
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FIGURE 4

KEGG enrichment results. (A) Pink module. (B) Grey60 module. (C) Magenta module.
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FIGURE 5

Co-expression network diagram of the interaction between hub genes and their target genes. (A) Grey60 module. (B) Magenta module. (C) Pink

module.
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FIGURE 6

The tissue expression profile of 8 hub genes. (A) Tissue expression profile of TIA1. (B) Tissue expression profile of LOC516108. (C) Tissue

expression profile of SNAPC4. (D) Tissue expression profile of CPSF2. (E) Tissue expression profile of ZNF574. (F) Tissue expression profile of

CLASRP. (G) Tissue expression profile of MED15. (H) Tissue expression profile of U2AF2. Superscript letters indicate mean significant di�erence

(p < 0.05). Values with superscript letters indicate a mean significant di�erence (p < 0.05). (I) Relative expression of adult cattle and newborn calf

in adipose. *Denotes significance according to ANOVA methods, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Expression analysis of hub genes

RNAwas extracted from the heart, liver, spleen, lung, kidney,
muscle, and adipose tissue of the adult cattle and the adipose
tissue of newborn calves, and reversely transcribed into cDNA.
The primers of eight hub genes were combined with the tissue
cDNA by PerfectStart Green qPCR SuperMix kit to determine
the relative expression levels. The tissue expression profile
showed that the relative expression level of eight hub genes was
higher in adipose tissue as energy storage and muscle tissue
as a metabolic organ (Figures 6A–H). At the same time, the
expression level in adipose tissue of adult cattle was significantly
higher than the expression level in adipose tissue of newborn
calves (Figure 6I).

Discussion

In this research, bioinformatics analysis techniques were
used to correlate the metabolic gene expression levels of
subcutaneous adipose tissue of Norwegian red heifers with

various energy and protein diets, and to predict the regulated
lipid metabolism hub genes and biological processes linked with
energy intake. The results indicated that different energy intakes
were involved in the metabolic process of the subcutaneous
adipose tissue of Norwegian red heifers, while different protein
intakes did not significantly affect the metabolic process,
which was consistent with the results of previous studies;
but intergene regulatory network and hub genes were not
identified in previous studies (39). Consequently, we eventually
identified eight hub genes in three modules that regulate
subcutaneous adipose tissue metabolism by weighted gene co-
expression network analysis, laying a foundation for further
understanding the regulatory mechanism of diverse energy
intake on subcutaneous adipose tissue metabolism.

Enrichment analysis results of three
modules

GO functional annotation and KEGG enrichment analysis
were carried out on the three selected modules, and the
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GO results showed that all 138 genes of the grey60 module
were used as components of cellular nucleoplasm, and studies
showed that part of the eukaryotic ribosome synthesis is carried
out in nucleoplasm, resulting in huge energy consumption
(40). Chromosome rearrangement in the nucleoplasm is also
associated with carbohydrate intake (41), and energy intake
may affect the biological processes in the nucleoplasm, thus
affecting the expression of genes in the nucleoplasm. In addition,
genes significantly associated with low energy and low protein
in the grey60 module were primarily enriched in Rap1, MAPK,
pancreatic secretion, glycerophospholipid metabolism, and so
on. Studies have shown that the Rap1 signaling pathway controls
systemic metabolism in the hypothalamus (42), regulates
metabolic processes inside and outside the nucleus (43), and
regulates energy dissipation processes such as plasmamembrane
transport signal transduction, endocytosis, exocytosis and cell
membrane fusion (44). It has also been found to regulate the
glucose metabolism process in mice, which can improve blood
glucose and diabetes (45), and Rap1 protein is also an activator
of MAPK signaling (46). MAPK signaling pathway is believed
to play an important role in the regulation of insulin secretion
and type II diabetes mellitus (T2DM) (47), and the secretion
dose of insulin controls the lipid accumulation of precursor
adipocytes and regulates the metabolism of adipose tissues
(48). Besides, the MAPK signaling pathway was also found to
be negatively regulated by TREM-2 in diet-induced diabetic
mice (49), and genes enriched in the MAPK signaling pathway
were shown to be related to lipid metabolism in mice (50).
Because the main function of the pancreas is to secrete lipase
(51), and the content of hydrolyzed fat of secreted pancreatic
lipase accounts for more than 80% of the total diet (52), the
pancreatic secretion process was markedly influenced. When
mice were fed with various energy diets, the glycerophospholipid
metabolism pathway was substantially distinct between low-
energy and high-energy experimental groups (53), which was
consistent with the results of this research. Therefore, GO
and KEGG results revealed that genes in the grey60 module
related to low energy and low protein diets were predominantly
used as nucleoplasm components to regulate the adipose
metabolism pathway.

In the GO results of the pink module, genes were
mainly involved in RNA metabolism, regulation of nucleobase
compound metabolic process, regulation of transcription,
and regulation of nucleic acid-templated transcription as
nucleoplasm, cytoplasmic, and organelle components. The
KEGG analysis demonstrated that themodule genes weremostly
enriched in Rap1, MAPK, Notch, VEGF, IL-17, and GnRH
signaling pathways. Rap1 and MAPK signaling pathways were
also the main gene enrichment pathways in the grey60 module,
which further confirms the importance of these two pathways
for energymetabolism. Notch signaling was activated inmice fed
a high-energy diet (54), and KCTD10 has also been recognized
as an upstream regulator of Notch signaling to regulate brown

fat thermogenesis and whole-body metabolism (55). Studies
have also found that the VEGF signaling pathway is regulated
by calcium dobesilate (CAD) to alleviate diabetes in mice
with high energy diet (56), and gene encoding cyclooxygenase
2(COX2) regulates glucose and lipid metabolism by regulating
VEGF signaling pathway in mice with obesity caused by high
energy diet (57). Besides, studies have discovered that IL-17
and Azgp1 interact with each other to alter lipid metabolism
in mice with a high-energy diet (58). Finally, gonadotropin
has been found to be too low in rabbits on a high-energy
diet (59), and metabolic pathways regulate the gonadotropin
signaling pathway by affecting the hypothalamus have also been
confirmed (60). In conclusion, the pink module is still closely
associated with specific energy metabolism.

For the GO annotation, magenta module genes are
mainly involved in carbohydrate metabolism as nucleoplasm,
cytoplasm, and organelles, as well as KEGG, showed that
genes in the module were enriched in thermogenesis, oxidative
phosphorylation, pyrimidine metabolism, insulin signaling
pathway, adipocytokine signaling pathway, AMPK signaling
pathway, metabolic pathways, and VEGF signaling pathway.
In the clinical study, 28 people were put on a low-energy
diet, and the blood analysis of the patients indicated that a
low-energy diet involved carbohydrate metabolism and insulin
secretion (61). Insulin secretion and AMPK signaling pathway
were also considerably modified after 14 weeks of high and
low-energy diets in mice (62) in the magenta module. In
previous studies, carbohydrate metabolism in adipose tissue was
altered when mice were fed diets with different energy levels
(63), and modulation of energy levels in the rat diet was also
found to result in shifts in AMPK and insulin signaling (64).
Likewise, in previous studies, 3-month-old mice were treated
with high-energy and low-energy diets for 72 h, respectively,
and both treatments involved the insulin secretion process and
VEGF signaling pathway (65). All these results prompted us to
further evaluate the relationship between genes and changes in
energy metabolism.

Hub genes in three modules

Under the low-energy and low-protein diets, genes were
down-regulated in the grey60 module. The TIA1, as the hub
gene in the module, shuttled in the nucleus and was responsible
for gene transcription and pre-mRNA splicing (66). In addition,
the TIAI as an RNA-binding protein performed a role in
translational regulation in the cytoplasm (67, 68), which is
closely related to biological processes such as cell proliferation
and apoptosis (69), immunity, and inflammation (70). At the
same time, the TIA1 gene has also been proven to be the core
regulatory gene of RNA metabolism (71) and involved in a
variety of cellular metabolic processes (72). It was identified
that deletion of the TIA1 gene in mice was comparable to mice
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under starvation conditions, leading to upregulation of Plin4,
Pnpla2, Pnpla7, and other genes (73), which are responsible for
lipid droplet generation (74, 75), free fatty acid supply (76),
regulation of energy metabolism, and lipid metabolism (77).
The downstream gene regulated by TIA1 and PDGFD is also a
newly identified adipokine (78) which is down-regulated during
adipogenesis in humans and mice (79), consistent with the
results of this analysis.

Genes in the pink module are positively correlated with
low-energy and low-protein diets, and negatively correlated
with high-energy and low-protein diets. Among the hub genes,
SNAPC4 is related to pancreatic development (80), and the
functions of the pancreas are secreting digestive enzymes
and hormones to coordinate the digestion and absorption of
nutrients and energy metabolism (81, 82). The BUB1B, as
their downstream target gene, is co-regulated by SNAPC4, the
recognition-specific polyadenylation signaling gene (83, 84),
is co-regulated by SNAPC4, CPSF2 and the RNA splicing
gene (85). The CLASRP and its expression fluctuated in the
lungs of 16-week-old mice on a high-energy diet (86, 87).
Moreover, the down-regulation of BUB1B gene expression
was also determined after 72 h of OE33P cells in a high-
fat medium (88). Down-regulation of IL17RA, a downstream
gene of ZNF574 (the hub gene in the pink module), was
found to reduce the side effects of obesity in mice fed with
high energy diet for 9 weeks (89). As a key factor in the
lipid regulation (90), MED15 converts saturated fatty acids
into unsaturated fatty acids to regulate lipid metabolism (91).
Its downstream target gene FADD has also been convinced
to be a key factor in glucose and lipid metabolism (92). In
addition, mice, after 15 weeks of high-energy feeding, were
found with down-regulated FADD and were not as obese as
wild-type mice (93), which confirmed that the body may affect
metabolism through down-regulation of FADD and decrease
the impact of obesity. The U2AF2, the last hub gene in
the pink module, binds to the U2AF1 (94) and regulates
translation through RNA in the cytoplasm (95, 96). Down-
regulation of its downstream gene EGLN2 was found to
ameliorate metabolic problems in mice fed a 12-week high-
energy diet (97).

LOC516108, the hub gene in the magenta module, is a
protein-encoding gene, and its regulated CAB39 was found
to be a direct target of microRNA-451 in adipocytes (98).
After 20 weeks of high-energy feeding, microRNA-451 was
down-regulated and CAB39 expression was also altered in mice
compared with the control group (99). The ATP8 downstream
of the hub gene principally affects mitochondrial function (100),
and has been identified to regulate insulin secretion and glucose
metabolism of pancreatic β-cells in high-fat diet mice (101).
Other studies have found that HRAS is up-regulated in low-
fat diet mice (102), which is also the gene downstream of
LOC516108, mainly blocks fat generation and regulates energy
metabolism (103, 104).

To further verify the reliability of the results, real-time
quantitative analysis of eight hub genes was performed in the
heart, liver, spleen, lung, kidney, muscle, and adipose tissue of
healthy adult cattle and newborn calves. Compared to the eight
hub genes in the relative expression of the adult cattle group,
we found that the relative expression quantity was elevated
in the adipose tissue of energy storage and muscle tissue as
a metabolic organ. When adult cattle and calf adipose tissues
were compared, the relative expression levels of the eight hub
genes were considerably higher in adult cattle than in newborn
calves and were two to three times higher numerically. These
results suggest that the above eight hub genes can turn on the
homeostatic regulation of the metabolism of substances in the
body by adjusting the external feeding method. However, the
regulatory mechanism of their metabolism in vivo is still unclear
and needs to be further explored.

Conclusions

In summary, we explored the effects of distinct energy
and protein feeding methods on the changes of the entire
transcriptome of cattle and screened out three related modules
(grey60, pink, and magenta modules) by constructing a
weighted co-expression network. They were related to the
nucleoplasm, cytoplasmic, and organelle components, and
participated in Rap1, MAPK, AMPK signaling pathways, and
so on. Furthermore, we identified eight hub genes from these
three modules, namely TIA1, LOC516108, SNAPC4, CPSF2,
CLASRP, ZNF574, MED15, and U2AF2, which were all related
to metabolic regulation. Our findings systematically elucidated
the biological processes and important regulators closely related
to subcutaneous adipose tissue metabolism, which would
contribute to a better understanding of molecular mechanisms
in the subcutaneous adipose tissue metabolism and provide
useful reference information for molecular breeding of cattle.
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