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A B S T R A C T   

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, 
osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the 
most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and 
differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and 
exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, 
we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, 
including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem 
cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse 
adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adi
pogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic 
capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic anal
ysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC 
lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, 
PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived 
MSCs represent optimal progenitor sources for cell-based bone tissue engineering.  
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1. Introduction 

As an essential part of the locomotor system, bone plays important 
roles in bone marrow generation, calcium and phosphorus storage, and 
protection of internal organs [1,2]. While being one of a few organs in 
our body that maintain regenerative ability throughout lifetime, bone 
can suffer from large defects that are beyond the intrinsic regenerative 
capacity, such as traumatic injuries, fractures, and surgical resection of 
tumors. Since the delayed or poor bone defect healing has serious 
negative impact on the quality of life and/or survival of the affected 
individuals, it is usually necessary to use bone grafts to accelerate the 
healing of damaged bone [2–4]. However, persistent pain, long recovery 
time, risks of infection and resorption, and other donor site morbidities 
limit the potential applications of autogenous and allogenous grafts 
bone [2–4]. Bone tissue engineering approaches have emerged as a 
promising alternative to overcome the limitations of bone grafts [2–4]. 

Successful bone tissue engineering requires a combination of multi
potent stem/progenitor cells [5–8], growth/osteogenic factors [9–16], 
and biocompatible scaffold materials [17], in which osteogenic pro
genitors represent an important component of any efficacious bone tis
sue engineering strategy. Through a comprehensive analysis of 14 types 
of human bone morphogenetic proteins (BMPs), we previously identi
fied the BMP9 as the most potent osteogenic factor to induce osteogenic 
differentiation in vitro and in vivo [11,18–20]. While numerous studies 
have reported that embryonic stem cells (ESCs) [21] and induced 
pluripotent stem cells (iPSCs) [22] have the characteristics of prolifer
ative and osteogenic differentiation capabilities, adult stem cells, mostly 
mesenchymal stem cells (MSCs) are the most promising seed cells for 
bone tissue engineering due to their abundance and easy accessibility 
[5–8,23]. MSCs are multipotent stem cells that can undergo self-renewal 
and differentiate into multiple cell lineages such as bone, cartilage, fat 
and muscle [5–7,23]. Even though bone marrow stromal-derived stem 
cells (BMSCs) are considered prototypic MSCs, it is well known now that 
MSCs can be isolated from various tissues, most notably adipose tissue 
[5–7,23]. However, the osteogenic and bone defect repair profiles of the 
different MSC sources have yet to be compared. 

In order to identify an optimal progenitor source for bone tissue 
engineering applications, we conducted a comprehensive comparative 
analysis of the proliferative activity and osteogenic potential of four 
commonly-used MSC sources, including immortalized mouse embryonic 
fibroblasts (iMEF) [24,25], immortalized mouse bone marrow stromal 
stem cells (imBMSC) [26], immortalized mouse calvarial mesenchymal 
progenitors (iCAL) [27], and immortalized mouse adipose-derived 
mesenchymal stem cells (iMAD) [28]. Given the fact that these MSC 
lines are reversibly immortalized and retain MSC multipotency with 
osteogenic, chondrogenic and adipogenic differentiation potential [24, 
29–34], the four MSC lines provide a unique platform for comparing the 
osteogenic capacity of MSCs derived from different tissues in a 
comprehensive fashion. Our results demonstrate that iMADs exhibited 
the strongest osteogenic and adipogenic capabilities upon BMP9 stim
ulation in vitro. In vivo studies employing ectopic osteogenesis and 
critical-sized calvarial defect repair model revealed that iMAD and iCAL 
cells exhibited the highest osteogenic capability. Transcriptomic anal
ysis indicated that, while each MSC line regulated a distinct set of target 
genes, all four MSC lines underwent osteogenic differentiation by 
regulating several osteogenesis-related signaling pathways, including 
Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and Jak-STAT signaling path
ways. Collectively, our results demonstrate that adipose-derived MSCs 
represent one of the best progenitor sources for cell-based bone tissue 
engineering applications. 

2. Materials and Methods 

2.1. Cell culture and chemicals 

The four types of mouse MSC lines, immortalized mouse embryonic 

fibroblasts (iMEF) [24,25], immortalized mouse adipose-derived 
mesenchymal stem cells (iMAD) [28], immortalized mouse calvarial 
mesenchymal progenitors (iCAL) [27], and immortalized mouse bone 
marrow stromal stem cells (imBMSC) [26] were previously character
ized. Human HEK293-derived lines 293pTP and RAPA cells were also 
described previously [35,36], and used for recombinant adenovirus 
packaging and amplification. All cells were cultured in high glucose 
complete Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10 % FBS (LONSA SCIENCE SRL, Uruguay), 100 units of penicillin 
and 100 μg % of streptomycin at 37 ◦C in 5 % CO2 as described [37–41]. 

For osteogenic induction, these cells were cultured in osteogenic 
medium (0.1 μM Dexamethasone, 50 μM vitamin C and 10 mM β-sodium 
glycerophosphate) for varied time periods as reported [18,41–43]. Un
less indicated otherwise, all other chemicals were purchased from 
Sigma-Aldrich (St Louis, MO), Thermo Fisher Scientific (Pittsburgh, PA), 
or Solarbio (Beijing, China). 

2.2. Crystal violet cell viability assay 

Subconfluent cells were seeded in 24-well plates. At the indicated 
time points, the cells were gently washed with PBS and stained with 0.5 
% crystal violet/formalin solution for 10 min. The stained cells were 
washed with tap water and air-dried for scanning. The staining images 
were recorded under a bright field microscope. For quantitative anal
ysis, the stained cells were dissolved in 10 % acetic acid and measured 
for absorbance at 592 nm as described [44–47]. Each assay condition 
was done in triplicate. 

2.3. WST-1 cell proliferation assay 

Subconfluent cells were seeded in 96-well plates. At the indicated 
time points, the Premixed WST-1 Reagent (Clontech, Mountain View, 
CA) was added, incubated at 37 ◦C for 120 min, followed by reading 
absorbance at 450 nm using a microplate reader (Biotek, EON, USA) as 
described [48–51]. Each assay condition was performed in triplicate. 

2.4. RNA isolation and touchdown-quantitative real-time PCR (TqPCR) 

Total RNA was isolated by using the TRIZOL Reagent (Invitrogen, 
China), and subjected to reverse transcription using hexamer and M- 
MuLV reverse transcriptase (New England Biolabs, Ipswich, MA). The 
cDNA products were used as PCR templates. Gene-specific PCR primers 
were designed by using Primer3 program (Table S1). TqPCR was carried 
out by using 2x SYBR Green qPCR Master Mix (Bimake, Shanghai, 
China) on a CFX-Connect unit (Bio-Rad Laboratories, Hercules, CA) as 
described [52,53]. All TqPCR reactions were done in triplicate. Gapdh 
was used as a reference gene. Quantification of gene expression was 
carried out by using the 2− ΔΔCq method as described [32,51,54–56]. 
Clustering heatmap analysis of relative gene expression was carried out 
by using the pheatmap package in R (4.2.2). 

2.5. Immunofluorescence (IF) staining 

The IF staining was carried out as previously described [25,37,57]. 
Briefly, cells were seeded and treated in chamber slides, fixed with 4 % 
paraformaldehyde for 15 min at RT, treated with 0.5 % Triton X-100 for 
20 min, and blocked with 5 % goat serum (1:10 dilution) for 20 min at 
RT, followed by incubation with primary antibodies against CD105 
(1:100 dilution; Proteintech; Cat# 10862-1-AP), NANOG (1:100 dilu
tion; Proteintech; Cat# 14295-1-AP), ACTA2 (1:50 dilution; Bimake; 
Cat# A5550), HAND1 (1:100 dilution; Bioworld; Cat# MB63487) or 
PPARγ (1:100 dilution; Affinity; Cat# AF6284) overnight. After being 
washed, the cells were incubated with goat anti-rabbit IgG/APC (1:200 
dilution; Bioss; Cat# bs-0295G-APC) or CoraLite594 – conjugated Goat 
Anti-Rabbit IgG (H + L) (1:200 dilution; Proteintech; Cat# SA00013-4) 
or Fluorescein (FITC)–conjugated Affinipure Goat Anti-Rabbit IgG(H +
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L) (1:200 dilution; Proteintech; Cat No. SA00003-2). The cell nuclei 
were counterstained with DAPI (10 μg/mL). Minus primary antibodies 
were used as negative controls. IF staining results were recorded under a 
confocal microscope (Leica TCS SP8). 

2.6. Construction and amplification of the recombinant adenoviruses Ad- 
B9, AdR-B9, Ad-GFP and Ad-RFP 

All recombinant adenoviruses were constructed by using the AdEasy 
technology as described [58–60]. The Ad-B9 co-expresses human BMP9 
and GFP, whereas AdR-B9 co-expresses mouse BMP9 and RFP as 
described in our previous studies [18–20]. An analogous adenovirus 
expressing GFP or RFP only, Ad-GFP or Ad-RFP, was used as a mock 
virus control [35,54,61–63]. 

2.7. Qualitative and quantitative assays of alkaline phosphatase (ALP) 
activity 

Subconfluent cells were seeded in 24-well plates and treated with 
osteogenic medium (normal medium as the control), or infected with 
Ad-B9 (Ad-GFP as the control), respectively. ALP activity was qualita
tively assessed with histochemical staining assay (BCIP/NBT Alkaline 
phosphatase color development Kit, beyotime, Cat# C3206), while ALP 
activity was quantitatively analyzed with the Native Lysis Buffer 
(Solarbio, Cat#R0030) and the AKP/ALP activity test kit (Solarbio, 
Cat#BC2145) at indicated time points as described [43,64,65]. The 
staining images were documented under a bright field microscope. Each 
assay condition was done in triplicate. 

2.8. Alizarin red staining 

The Alizarin red staining was carried out as previously reported [31, 
32,43]. Briefly, cells were seeded in 24-well plates, treated with osteo
genic medium or normal medium, or infected with Ad-B9 or Ad-GFP, 
respectively. At the indicated time points, cells were fixed with 4 % 
paraformaldehyde at RT for 10 min and washed with distilled water. The 
fixed cells were incubated with 0.4 % Alizarin red S for 5 min, followed 
by extensive washing with distilled water. The stained calcium mineral 
deposits were documented under a bright field microscope. Each assay 
condition was done in triplicate. 

2.9. Oil Red O staining 

Cells were seeded in 24-well culture plates and treated with AdR-B9 
or Ad-RFP. Alternatively, frozen sections from freshly retrieved subcu
taneous implant masses in nude mice were washed with PBS to remove 
the embedding agents. The Oil red O staining was carried out as previ
ously reported [19,54,66,67]. Specifically, both cultured cells and 
frozen sections were fixed with 4 % paraformaldehyde for 10 min, 
briefly incubated in 60 % isopropanol, and then stained with 
freshly-prepared Oil Red O solution for 5 min, followed by PBS washes. 
The staining results were recorded under a bright field microscope. Each 
assay condition was done in triplicate. 

2.10. Bodipy 493/503 staining 

Bodipy 493/503 fluorescent detection of lipid droplets was carried 
out as reported [54,68]. Cells were seeded in 24-well culture plates and 
infected with AdR-B9 or Ad-RFP. The cells were fixed with 4 % para
formaldehyde for 10 min, lipid droplets were stained with 30 μmol/L 
BODIPY493/503 (Sigma-Aldrich), and the nuclei were stained with 
DAPI for 5 min, followed by PBS washes. The results were recorded 
under a fluorescence microscope. Each assay condition was done in 
triplicate. 

2.11. Subcutaneous ectopic bone formation in athymic nude mice 

The use and care of experimental animals was approved by the 
Research Ethics and Regulations Committee of Chongqing Medical 
University, Chongqing, China. All experimental procedures followed the 
approved guidelines. Athymic nude mice were obtained from and 
housed in the Experimental Animal Research Center of Chongqing 
Medical University. Stem cell-based ectopic bone formation was per
formed as previously described [69–75]. Briefly, subconfluent cells were 
infected with Ad-B9 or Ad-GFP for 36 h, collected and resuspended in 
sterile PBS for subcutaneous injection into the flanks of athymic nude 
mice (5–6 week old, male, 5 × 106 cells/injection, 6 injections per 
mouse, and 3 mice per group). At 28 days after injection, mice were 
sacrificed, and subcutaneous masses at the injection sites were retrieved. 
No masses were detected in the Ad-GFP injection group. 

2.12. Gelatin methacryloyl (GelMA) hydrogel-MSC cell mixture 

GelMA hydrogel was synthesized and characterized as previously 
described [76]. The concentrations of GelMA, UV cross-linking duration, 
and numbers of MSC cells were optimized as shown in Fig. S9A, panel a 
& b. Briefly, 5 % or 10 % GelMA mixed with 105 or 106 iMEF cells in 30 
μL PBS were seeded in 96-well plates, exposed to UV irradiated (UV 365 
nm, 3.7 V, 15 W) for 30 s, 60 s and 120 s, respectively, followed by 
adding 200 μL complete DMEM medium for observing color changes of 
the medium after 48 h. WST-1 assay was carried out to assess cell 
proliferation. 

For the calvarial defect repair model shown in Fig. S9B, panel a–c, 
106 cells infected with Ad-GFP mixed with 5 % GelMA in 100 μL PBS, 
seeded in 96-well plates, treated with UV irradiation for 30 s, then added 
200 μL complete DMEM medium, observed the color change of the 
medium at day 0, 1, 2, 3 and 4. WST-1 assay was carried out to assess cell 
proliferation. 

2.13. Mouse model of critical-sized calvarial defect 

Athymic nude mice were obtained from and housed in the Experi
mental Animal Research Center of Chongqing Medical University. The 
critical-sized mouse calvarial defect model was established as previously 
described [77–79]. Briefly, athymic nude mice (4–6 week old, male, 4 
mice per group) were anesthetized by intraperitoneal injection of 3 % 
sodium pentobarbital at 50 mg/kg body weight. As shown in Fig. S9C, 
panel a–c, under sterile conditions, an incision was made on the vertex 
scalp, and the skin was pulled apart to the sides to expose the calvaria. A 
4 mm-diameter calvarial defect was created on the left parietal bone of 
each mouse with a multifunctional micro electric stainless-steel drill. 30 
μL of 5 % GelMA-MSC mixture (containing 106 of iMAD, iMEF, iCAL or 
imBMSC cells infected with Ad-B9 or Ad-GFP) was instilled into the 
defect, followed by 30 s of UV exposure to solidify the hydrogel-cell mix. 
The incision was closed with 4–0 nylon interrupted sutures. At 4 weeks 
after implantation, mice were sacrificed, and calvarial samples were 
retrieved and fixed for μCT imaging and histologic analysis. 

2.14. Micro-computed tomographic (μCT) imaging analysis 

The retrieved subcutaneous samples and calvarial specimens were 
fixed in 4 % paraformaldehyde, and imaged with the Bruker Micro-CT 
Skyscan 1276 system (Kontich, Belgium) as described [80–82]. The 
scanning parameters were as follows: voxel size 6.533712 μm, medium 
resolution, 85 kV, 200 μA, 1 mm Al filter, and integration time 384 ms. 
Density measurements were calibrated to the manufacturer’s calcium 
hydroxyapatite (CaHA) phantom. Data analysis was performed using the 
manufacturer’s evaluation software. Reconstruction was accomplished 
by NRecon (version 1.7.4.2). The 3-D images were obtained from con
toured 2D images based on distance transformation of the grayscale 
original images (CTvox; version 3.3.0). 3D analysis was performed using 
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software CT Analyzer (version 1.18.8.0) or Amira 5.3 (Visage Imaging, 
Inc.). 

2.15. Histologic and specialty staining 

After μCT imaging, the retrieved subcutaneous masses and calvarial 
specimens were decalcified and subjected to paraffin embedding, fol
lowed by sectioning. The sections were deparaffinized and subjected to 
H & E staining (Solarbio, Cat# G1120), Masson trichrome staining 
(Solarbio, Cat#G1340), Modified Saffron-O and fast green stain kit (for 
bone; Solarbio, Cat#G1371) and Alcian blue staining (Solarbio, Cat# 
G2541) as described [83–87]. For immunohistochemical (IHC) staining, 
the tissue sections were deparaffinized, rehydrated, antigen-retrieval 
treated, blocked and incubated overnight with primary antibody 
against Collagen II (1:200 dilution; Abcam; Cat# ab307674), followed 
by stained with biotin-labeled goat anti-rabbit IgG and horseradish 
peroxidase-conjugated-labeled streptavidin. The staining results were 
recorded under a bright field microscope. 

2.16. Next-generation RNA-sequencing analysis 

Exponentially growing iMAD, iMEF, iCAL and imBMSC cells were 
infected with AdR-B9 or Ad-RFP for 48 h. Total RNA was isolated with 
the TRIZOL Reagent (Invitrogen, China) according to the manufac
turer’s protocol. RNA integrity was assessed using the Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). RNA-seq analysis was 
commercially conducted by BGI Genomics (Shenzhen, China). Briefly, 3 
μg RNA per sample was used for library construction using NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) following 
manufacturer’s recommendations and index codes were added to attri
bute sequences to each sample. Library quality was assessed on the 
Agilent Bioanalyzer 2100 system. The clustering of the index-coded 
samples was performed on a cBot Cluster Generation System using 
TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manu
facturer’s instructions. After cluster generation, the libraries were 
sequenced on the Illumina Hiseq platform to generate 150 bp paired-end 
reads. 

Raw data (raw reads) of Fastq format were initially processed 
through in-house perl scripts. Clean reads were obtained by removing 
reads containing adapters, ploy-N and low quality reads from raw data. 
At the same time, Q20, Q30 and GC contents of the clean data were 
calculated. The paired-end clean reads were aligned to the reference 
genome using Hisat2 v2.0.5. FeatureCounts v1.5.0-p3 was used to count 
the reads numbers mapped to each gene. Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) of each gene was calculated 
based on the length of the gene and reads count mapped to a given gene.  

The sample matrix was collated using R (4.2.2). Specifically, the 
principal component analysis (PCA) of samples was performed using 
FactoMineR and factoextra packages, and the results were visualized by 
pca3d package. Differential expression analysis was performed using the 
edge R and limma packages. The Venn diagrams were drawn using the 
ggvenn package, and the clustering heatmap was drawn using the 
pheatmap package. Genes with |log2FC |>1 found by DESeq2 were 
designated as altered expressed genes, and with an adjusted P-value 
(FDR) < 0.05 were assigned as differentially expressed genes (DEGs). 
Gene Ontology (GO) enrichment analysis of DEGs was implemented by 
using the clusterProfiler package, and GO terms with FDR less than 0.05 
were considered significantly enriched. The online KOBAS 3.0 program 
(http://kobas.cbi.pku.edu.cn/genelist/) was used to test the statistical 
enrichment of DEGs in KEGG pathways. The ggplot2 package was used 
to visualize the results in R. The KEGG terms with FDR <0.05 were 
considered significantly enriched. 

2.17. Statistical analysis 

Data were analyzed using GraphPad Prism 7 and presented as the 
mean ± standard deviations (SD). Statistical significance was deter
mined by one-way analysis of variance and the student’s t-test for the 
comparisons between groups. A value of p < 0.05 was considered sta
tistically significant. 

3. Results 

3.1. The iMEF cells exhibit the highest proliferative activity, while 
imBMSC cells express the highest levels of stemness and mesoderm markers 

While we previously demonstrated that iMAD, iMEF, iCAL and 
imBMSC cells are individually capable of differentiating into osteo
blastic, chondrogenic, and adipogenic lineages [24–28], these MSCs 
derived from different tissues have never been compared directly for 
their progenitor characteristics and differential potential. Here, we first 
compared their morphologic characteristics and found their overall 
cellular morphology was rather similar (Fig. 1A). Cell proliferation 
assessed with crystal violet cell viability (Fig. 1B, panels a & b) and 
WST-1 assay (Fig. 1C) revealed that iMEF cells were most proliferative 
among the four MSC lines. TqPCR quantitative analysis revealed that, 
while the stemness markers, such as CD90, CD105, Sox9, Tcl1(Fig. S1A, 
panel a), and mesoderm markers, especially Hand1, and Acta2 (Fig. S1A, 
panel b), were highly expressed in all four MSC lines, the stemness and 
mesoderm markers were significantly higher in imBMSC cells than that 
in other three MSC lines (Fig. 1D, panels a & b). Interestingly, IF staining 
revealed CD105 and HAND1 were highly expressed only in imBMSC 
cells. NANOG was highly expressed in all four MSC lines, whereas 
ACTA2 was only highly expressed in iMEF cells (Fig. 1E & S1B). NC 
controls are shown in Fig. S1B. Collectively, these results demonstrate 
that the order of proliferation rate (from high to low) is iMEF > imBMSC 
≥ iMAD > iCAL, whereas the expression levels of stemness and meso
derm markers (from high to low) were imBMSC > iMEF > iMAD > iCAL 
cells. 

3.2. The iMAD cells exhibit the strongest osteogenic potential when 
induced by osteogenic medium or BMP9 in vitro 

We first compared the osteogenic capacity of iMAD, iMEF, iCAL and 
imBMSC cells that were stimulated by osteogenic medium. ALP assay 
showed iMAD cells exhibited strong ALP staining at day 2, significantly 
earlier than other three MSC lines, although they also showed significant 
basal level of ALP staining (Fig. S2A). Quantitative ALP results also 
showed ALP activity in iMAD cells significantly increased at day 2, while 
peak ALP activities were shown for iCAL and imBMSC cells at day 7. 
Interestingly, iMAD and iCAL cells still had high ALP activity at day 12 
(Fig. S2B). Alizarin red staining results revealed apparent matrix 
mineralization of iCAL at day 21, and for iMAD and imBMSC at day 28 
(Fig. S2C). Through TqPCR analysis, early osteogenic marker (Alp), late 
osteogenic markers (Ocn, Spp1 and Col1a1), and key regulators (Runx2 
and Sp7) were up-regulated in iMADs and imBMSCs by osteogenic me
dium for 3 days, especially for iMAD cells at day 1, while relatively weak 
up-regulation was found in iMEFs, and to lesser extent in iCALs (Fig. S3). 

We next compared the osteogenic capacity of iMAD, iMEF, iCAL and 
imBMSC in response to osteogenic factor BMP9. Adenovirus-mediated 
overexpression of human BMP9 (Ad-B9) was confirmed by TqPCR 
analysis (Figs. S4A and B). Strong ALP staining in iMADs appeared at as 
early as day 2, and kept increasing at days 3 and 5 (Fig. 2A). For iCALs, 
apparent ALP staining was found at days 3 and 5, while robust ALP 
staining was detected at day 5 in iMEFs and imBMSCs (Fig. 2A). 
Consistent with the ALP staining results, quantitative ALP analysis 
showed ALP activities of all 4 lines significantly increased from days 
2–5, most notably in iMAD cells (Fig. 2B). Alizarin red staining revealed 
apparent matrix mineralization nodules were formed in iMAD cells at as 
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early as day 9, in iMEF and iCAL cells at day 21, and in imBMSC cells at 
day 28 (Fig. 2C). TqPCR analysis also indicated that the osteogenesis- 
related marker genes were mostly upregulated by BMP9 to varying de
grees at the tested timepoints (Fig. S5). Clustering analysis showed that 
osteogenesis-related genes were most significantly up-regulated by 
BMP9 in iMAD cells as early as at day 1, while the gene expression levels 
were least affected by BMP9 in iMEFs at day 3 (Fig. 2D). Collectively, 
these results strongly suggest a ranking order of in vitro osteogenic 
capability induced by osteogenic medium or BMP9: iMAD > iCAL >
imBMSC ≥ iMEF. 

3.3. The iMAD cells are most adipogenic upon BMP9 stimulation in vitro 

We further compared the adipogenic capacity of iMAD, iMEF, iCAL 
and imBMSC cells induced by BMP9. Adenovirus-mediated over
expression of mouse BMP9 (AdR-B9) were verified in all 4 cell lines 
(Figs. S6A and B). Oil red O (Fig. 3A, panel a) and Bodipy 493/503 
staining (Fig. 3A, panel b) showed that AdR-B9 effectively induced the 
formation of lipid droplets in iMAD and imBMSC cells at day 3, and in 
iMEF and iCAL cells at day 5. TqPCR analysis of the key adipogenesis 
regulatory genes (Pparγ and Cebpa) and the late adipogenic gene Lpl 
were mostly upregulated in the four cell lines, although Pparγ in iMAD, 
Cebpa in imBMSC and iMEF, and Lpl in iCAL were not significantly up- 
regulated (Fig. S7A). Clustering analysis indicated the expression pat
terns of these adipogenesis markers are significantly different in iMAD at 
day 1, iMEF at day 2, and iMAD and imBMSC at day 3 (Fig. 3B). IF 
staining also revealed that the expression of PPARγ was increased in all 4 
MSC lines, especially in iMAD and imBMSC cells (Fig. S7B), compared 
with that in the negative control (Fig. S7B). Collectively, the above re
sults strongly suggest that the ranking order of adipogenic capability 
induced by BMP9 may be iMAD ≥ imBMSC > iMEF ≥ iCAL cells in vitro. 

3.4. The iMAD cells exhibit the strongest osteogenic and adipogenic 
capability in subcutaneous ectopic bone formation model 

Subconfluent iMAD, iMEF, iCAL and imBMSC cells were infected 

with Ad-B9 or Ad-GFP, and injected subcutaneously into the flanks of 
athymic nude mice. After 4 weeks, the mice were euthanized; and 
subcutaneous masses were retrieved in the Ad-B9 groups. Consistent 
with our previous reports [24–28], no bony masses were detected in 
Ad-GFP groups. The μCT imaging analysis revealed that, while all 4 
types of MSC lines formed bone subcutaneously, but the sizes of the 
masses varied significantly (Fig. 4A, panel a & b). The μCT quantitative 
analysis showed that the mean bone density, tissue volume (TV), bone 
volume (BV), BV/TV of iMAD, iCAL, and imBMSC cells were higher than 
those of iMEF, except BV and BV/TV of iMAD, BV and TV of iCAL. The 
trabecular number (Tb. N) was increased in iMAD cells, compared to 
iMEF cells. Compared with iMAD, the trabecular thickness (Tb. Th) of 
iCAL and imBMSC cells was increased, while trabecular separation (Tb. 
Sp) of iMEF was decreased; and Tb. Sp of iCAL and imBMSC decreased to 
a greater extent and were much lower than iMEF (Fig. 4A, panel c). H & 
E staining showed that apparent bone and/or cartilage formation was 
found in all 4 types of MSCs (Fig. 4B, panel a). Masson trichrome 
staining revealed that significantly mature bone matrix was formed in 
the iMAD and iCAL groups, as well as in imBMSC group, but noticeably 
weak or absent in iMEF group (Fig. 4B, panel b). Safranin O and fast 
green staining revealed that significantly mature bone formation was 
presented in iMAD and iCAL groups, compared with a much lesser extent 
in iMEF and imBMSC groups (Fig. 4B, panel c). IHC staining of collagen 
II showed that cartilage formation was found in all 4 types of MSCs, 
especially in iMEF group (Fig. 4B, panel d). Alcian blue staining showed 
that apparent cartilage formation was observed in imBMSC and iMEF 
groups, but to a much lesser extent in iMAD and iCAL groups (Fig. S8A). 
Furthermore, Oil red O staining indicated that lipid droplet accumula
tion was mostly pronounced in iMAD group, to a much lesser extent in 
iMEF and imBMSC groups, but almost absent in iCAL group (Fig. S8B). 
Collectively, these in vivo results demonstrate that, while all 4 types of 
MSC lines have osteogenic, chondrogenic and adipogenic differentiation 
upon BMP9 stimulation, these lines exhibited distinctly different oste
ogenic and adipogenic potential. Our in vivo results indicate that the 
ranking of osteogenic ability is iMAD ≥ iCAL > imBMSC > iMEF cells, 
while the ranking of adipogenic capability is iMAD ≥ imBMSC > iMEF 

Fig. 1. Proliferative activity and the expression of characteristic stemness and mesoderm markers in the four types of MSC cells. (A) Morphological 
characteristics of iMAD, iMEF, iCAL and imBMSC cells (x100). Representative images are shown. (B) Crystal violet cell staining (a) and quantitative analysis (b) were 
used to assess cell viability of iMAD, iMEF, iCAL and imBMSC cells at Days 0, 1, 2, 3, 4 and 5. “**” p < 0.01, iMEF group vs. iCAL group, “##” p < 0.01, imBMSC group 
vs. iCAL group at the indicated time point. Representative images are shown. (C) WST-1 assay was used to assess cell proliferation of iMAD, iMEF, iCAL and imBMSC 
cells at 0, 24, 48, 72, and 96 h. “*” p < 0.05, “**”p < 0.01, iMEF group vs. iCAL group; “##”p < 0.01, imBMSC group vs. iCAL group. (D) Heatmap visualization of the 
expression of characteristic stemness genes (a) and mesoderm genes (b) in iMAD, iMEF, iCAL and imBMSC cells. (E) Immunofluorescence (IF) staining was used to 
assess the expression of NANOG (FITC-green), CD105 (APC-red), HAND1 (APC-red), ACTA2 (APC-red) in iMAD, iMEF, iCAL, and imBMSC cells, while cell nuclei 
were counterstained with DAPI (blue) (x400). Representative positive stains are indicated with white arrows. Representative images are shown. 
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≥ iCAL cells. 

3.5. The iMAD cells provide the most optimal repair of mouse cranial 
defect among the four types of MSC lines transduced by BMP9 

Using one of the most rigorous bone repair animal models [27,78], 
we further tested the cranial defect healing effect of the 4 types of MSC 
lines transduced with BMP9. In order to provide a 3D environment for 
effective bone regeneration, we employed the GelMA hydrogels that 
were shown to support the survival, proliferation, and osteogenic dif
ferentiation of stem or progenitor cells [88,89]. We tested different 
GelMA concentrations, cell numbers (105 or 106 cells), and 
UV-crosslinking duration (Fig. S9A, panels a & b) and found that 5 % 
GelMA and 30 s UV-crosslinking provided optimal cell viability 
(Fig. S9B, panels a-c), leading to the 5 % GelMA+106 cells mixture 

preparations of iMAD, iMEF, iCAL, and imBMSC cells transduced with 
Ad-B9 or Ad-GFP for implantation into the calvarial defects of athymic 
nude mice (Fig. S9C). 

Using the above optimized conditions, we implanted the Ad-B9 or 
Ad-GFP transduced MSCs mixed with 5 % GelMA hydrogel into the 
mouse calvarial defects. The animals were sacrificed after 4 weeks, and 
the retrieved cranial samples were subjected to microCT imaging. As 
shown in Fig. 5A panel a, the cranial defects in the iMAD and iCAL 
groups were almost completely repaired, while significant defects 
remained in the iMEF and imBMSC groups. Quantitative analysis of the 
μCT data showed the bone mineral density(BMD), BV and BV/TV of 
iCAL and iMAD groups were in general higher than that in iMEF and 
imBMSC groups. Furthermore, the Tb.N of the iMAD and iCAL groups 
were also higher than that in the iMEF and imBMSC groups, in which the 
iMEF group had the least number, and Tb.Sp was significantly lower in 

Fig. 2. Osteogenic activities of the four types of MSC cells induced by BMP9 in vitro. Subconfluent iMAD, iMEF, iCAL and imBMSC cells were infected with Ad- 
B9 or Ad-GFP, respectively. (A) ALP staining was determined at days 2, 3 and 5, respectively. Representative images are shown. (B) ALP activity was tested at days 2, 
3 and 5 respectively. “*” p < 0.05, “**” p < 0.01, Ad-B9 group vs. Ad-GFP group at the indicated time point. (C) Alizarin red staining was done at days 9, 21 and 28, 
respectively. Representative images are shown. (D) Heatmap visualization of the expression of osteogenic markers and regulatory genes induced by BMP9 at days 1, 
2,and 3, respectively. Representative images are shown. 

Y. Gou et al.                                                                                                                                                                                                                                     



Bioactive Materials 34 (2024) 51–63

57

iCALs compared with that in iMEFs and imBMSCs (Fig. 5A, panel b). As 
expected, no significant bone healing of the cranial defects was found in 
the four MSC lines transduced with Ad-GFP (data not shown). 

H & E histologic analysis showed that the iMAD and iCAL groups 
exhibited significant new bone formation that almost covered the cra
nial defect area from edge to edge, while fibrous tissue formation at the 
defect site was observed in the iMEF group, and cartilaginous repair was 
found in the imBMSC group (Fig. 5B, panel a). Masson trichrome 
staining analysis indicated that robust and mature bone was found in the 
iMAD group, and a lesser extent, in the iCAL group, whereas fibrous and 
cartilaginous tissues were observed in the iMEF and imBMSC groups, 
respectively (Fig. 5B, panel b). Safranin O and fast green staining 
revealed that, at the center of the healing site, more mature bone was 
found in the iMAD and iCAL groups, to a lesser extent in the imBMSC 
group, but least extent in the iMEF group (Fig. 5B, panel c). IHC staining 
of collagen II and Alcian blue staining further showed that cartilage 
formation was found at the center of the healing sites in all 4 types of 
MSCs (Fig. S9D). Taken together, these results demonstrate that the 
ranking of bone regeneration ability to repair calvarial defect may be 
iCAL and iMAD > imBMSC > iMEF cells in vivo. Given the fact that iCAL 
cells are not readily available due to limitations in processing and yield, 
iMAD cells may represent one of the best sources of MSC progenitors for 
bone tissue engineering. 

3.6. MSC cells derived from four tissue sources exhibit an overlapping yet 
distinct transcriptomic landscape during BMP9-induced osteogenic 
differentiation 

To understand the underlying mechanisms of BMP9-mediated 

osteogenic differentiation among iMAD, iMEF, iCAL, and imBMSC cells, 
we conducted RNA-seq transcriptomic analysis upon BMP9 stimulation. 
PCA showed that, while the individual transcriptome varied signifi
cantly, they had a tendency to aggregate upon BMP9 stimulation 
(Fig. 6A), suggesting that BMP9 may induce overlapping transcriptomic 
responses in the MSC lines derived from four different tissue sources. We 
further identified a total of 2508 differentially expressing genes (DEGs) 
in the four MSC lines. Venn diagram analysis indicated that there are 26 
up-regulated DEGs and 24 down-regulated DEGs shared by the four MSC 
lines (Fig. 6B), which could be further clustered based on the DEGs’ 
expression changes (Fig. S10). Not surprisingly, several of the common 
DEGs, such as Hey1, Id1, Id2, Id4, Smad6, Fgfr3, Pparg, Dlx2, and Tgfb1, 
were previously identified as the downstream targets of BMP9 signaling 
in MSCs [90–93]. Among the four MSC lines, iCAL cells had the most 
numbers of DEGs, 826 up-regulated and 1125 down-regulated DEGs, 
while imBMSC cells had 237 up-regulated and 191 down-regulated 
DEGs; iMAD cells had 193 up-regulated and 216 down-regulated 
DEGs; and iMEF cells had 194 up-regulated and 207 down-regulated 
DEGs (Fig. 6B). These transcriptomic analysis results demonstrate that 
the four MSC lines undergo osteogenic differentiation by regulating 
overlapping but distinct target genes. 

Cluster analysis of the DEGs revealed that while iCAL cells exhibited 
a rather distinct pattern of DEGs during BMP9-induced osteogenic dif
ferentiation, iMAD, iMEF and imBMSC cells shared a significantly 
overlapping expression pattern of DEGs upon BMP9 stimulation 
(Fig. 6C). Gene ontology enrichment analysis of the top 50 biological 
processes (Fig. S11A) identified several top enriched processes that are 
associated with osteogenesis in all four MSC lines, including blood vessel 
morphogenesis, angiogenesis and vasculature development as well as 

Fig. 3. Adipogenic activities of the four types of MSC cells induced by BMP9 in vitro. Subconfluent iMAD, iMEF, iCAL and imBMSC cells were infected with AdR- 
B9 or Ad-RFP, respectively. (A) Oil red O staining (a) and Bodipy 493/503 staining (b) were done at day 3 and 5, respectively. Representative lipid droplets were 
indicated with arrows (x200). Representative images are shown. (B) Heatmap visualization of the expression of adipogenic regulatory and marker genes induced by 
BMP9 at day 1, 2, and 3, respectively. Representative images are shown. 
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more osteogenic differentiation processes enriched in iMAD, iMEF and 
imBMSC cells (Fig. 6D). KEGG pathway analysis of the top 35 enriched 
signaling pathways in the four MSC lines (Fig. S11B) revealed the 
enrichment of osteogenesis-related signaling pathways in most or all 
four MSC lines, including Wnt signaling pathways (except imBMSC), 
TGF-β signaling pathways (except iCAL), PI3K-AKT signaling pathways, 
MAPK signaling pathways, Hippo signaling pathways. Furthermore, the 
JAK-STAT signaling pathway was enriched in iMAD cells (Fig. 6E). 
Further clustering analysis of the DEGs enriched in the above 
osteogenesis-related KEGG pathways indicates that iMAD, iMEF and 
imBMSC cells shared a more closely related and overlapping expression 
profiles, whereas iCAL cells displayed a rather distinct expression profile 
from the other three MSC lines (Fig. 6F), which may underly potential 
fundamental differences related to tissue sources. Nonetheless, the 
above transcriptomic analyses demonstrate that MSC lines derived from 
the four tissue sources can undergo effective osteogenic differentiation 
by regulating a panel of overlapping yet distinct genes related to 
osteogenesis signaling pathways. 

4. Discussion 

While autogenous bone graft remains the gold standard to promote 
bone healing, bone tissue engineering based on bone progenitor cells 

with osteogenic factors represents a promising approach [2–4]. Since 
embryonic stem cells (ESCs) and iPSCs are not widely used due to ethical 
issues and challenging genetic manipulation, other sources of bone 
progenitor cells or MSCs are highly sought after. Numerous studies 
focused on the use of bone marrow-derived stem cells or adipose-derived 
stem cells (ADSCs) in bone regeneration [5–8,94], while calvarial 
suture-derived stem cells were reported that have intrinsic bone repar
ative potential [95]. Nonetheless, the osteogenic activity and bone 
defect repair efficiency have never been compared among different 
sources of MSCs. 

In this study, we conducted a comprehensive comparative analysis of 
the bone regeneration potential for MSCs derived from four different 
tissue sources, including prototypical MSCs: mouse embryonic fibro
blasts (iMEFs), mouse bone marrow-derived mesenchymal stem cells 
(imBMSCs), mouse adipose-derived mesenchymal stem cells (iMADs), 
and mouse calvarial suture-derived mesenchymal stem cells (iCALs) 
[24–28]. While the four MSC lines were immortalized, we previously 
demonstrated that the immortalization is reversible; and all four lines 
retain MSC multipotency and can undergo osteogenic, chondrogenic and 
adipogenic differentiation under proper stimuli [24,29–34]. Thus, these 
lines provide a unique platform to compare the optimal osteogenic ca
pacity of different tissue-derived MSCs in a comprehensive fashion. 
Ultimately, this line of investigation can enable us to use the optimal 

Fig. 4. Osteogenic and chondrogenic activities of the four types of MSCs induced by BMP9 in vivo. Subconfluent iMAD, iMEF, iCAL and imBMSC cells were 
infected with Ad-B9 for 36 h, collected and injected into the flanks of athymic nude mice subcutaneously. (A) At 4 weeks after implantation, the subcutaneous masses 
were retrieved (a), and subjected to μCT imaging (b). Representative images are shown. The bone formation quantitative parameters of the ectopic bone masses were 
analyzed (c). “*” p < 0.05, “**” p < 0.01, iMEF vs. iMAD, iCAL and imBMSC, respectively. “#” p < 0.05, “##” p < 0.01, iMAD vs. iMEF, iCAL and imBMSC, 
respectively (c). (B) Subcutaneous masses were subjected to H & E staining (a), Masson Trichrome staining (b), Safranin O and fast green staining (c) and anti-type II 
collagen staining (d)(100x and 200x or 400x). Representative images are shown. 
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progenitor sources for bone tissue engineering. 
In this study, we demonstrated that the iMEF cells had the highest 

proliferative activity, compared with that of iMAD, iCAL and imBMSC 
cells. Nonetheless, all four lines expressed high levels of mesoderm and 
stemness markers, such as CD90, CD105, Sox9, Tcl1, Hand1,and Acta2. 
Interestingly, our results indicate that imBMSC, but not iMEF, cells 
exhibited the highest expression levels of stemness and mesoderm 
markers, compared with other three MSC lines. 

While all four MSC lines could differentiate into multiple lineages, 
we compared the osteogenic and adipogenic capacities of the four lines 
induced by osteogenic medium or BMP9 through in vitro osteogenic 
assays, subcutaneous ectopic ossification model, and a critical-sized 
mouse calvarial defect repair model. Our results indicated that iMAD 
and iCAL cells had stronger osteogenic ability, and iMAD and imBMSC 
cells were prominent in adipogenesis. Considering the accessibility and 
availability, our findings strongly suggest that adipose-derived iMAD 
cells may be a preferred progenitor source for cell-based bone tissue 
engineering. It is noteworthy that we utilized GelMA hydrogel as a cell 
delivery vehicle in the calvarial defect repair study as GelMA hydrogel, 
also called photo-cross-linkable gelatin, is known to exhibit excellent 
biocompatibility, biodegradability and moldability, and has been used 
in biomedical applications such as wound dressings, cartilage regener
ation, and bone regeneration [76,88,89]. 

In addition to the four types of MSC lines, other types of MSCs have 
been investigated for bone regeneration. For example, periosteal cells, 

Gli1+ suture stem cells (SuSCs), dental pulp MSCs (DPSCs), gingival 
MSCs (GMSCs), human umbilical cord-derived stem cells (hUC-MSCs), 
and human amniotic mesenchymal stromal cells (HAMSCs) were shown 
to induce bone regeneration [65,74,96,97]. Interestingly, a significant 
number of studies were carried out to compare the bone regenerative 
capacity between BMSCs and ADSCs, and the outcomes were somewhat 
contradictory. Xu et al. compared the human BMSCs and adipose 
tissue-derived MSC (ATSCs), and reported that BMSCs possessed stron
ger osteogenic and lower adipogenic differentiation potentials 
compared to ATSCs [98]. Consistent with our findings, Zhou et al. re
ported that ADSCs showed lower transcriptomic heterogeneity and 
higher proliferative activity and senescent tolerance, meaning that 
ADSCs may be more suitable for cell transplantation treatments such as 
osteoarthritis treatment [99]. Li et al. focused on exosomes or small 
extracellular vesicles (EVs) of ADSCs, BMSCs, and synovial mesen
chymal stem cells (SMSCs) and found that the ADSC-EVs has stronger 
chondrogenic and osteogenic capacities in vitro and in vivo [100]. 
Nonetheless, contradictory findings have been reported, and no 
comprehensive comparative studies had ever been conducted prior to 
our current study. Furthermore, our findings provide valuable justifi
cation for the potential preclinical and clinical use of adipose-derived 
MSCs to treat non-unions or large bony defect [101–105]. 

To further understand the potential mechanism underlying the 
distinct osteogenic capability of the four MSC lines, we performed RNA 
sequencing and analyzed the transcriptomic landscapes of the iMAD, 

Fig. 5. Differential repair efficiencies of mouse calvarial defects among the four types of MSCs transduced by BMP9 laden in GelMA hydrogel. Subconfluent 
iMAD, iMEF, iCAL and imBMSC cells were infected with Ad-B9 or Ad-GFP for 36 h, collected and resuspended in 5 % GelMA hydrogel. Meanwhile, mouse calvarial 
defect model was created as described in the Methods. The cell-laden hydrogel was added to the defects, followed by photo-crosslinking. (A) At 4 weeks, the mice 
were sacrificed and the calvarial samples were retrieved and fixed for the μCT imaging (a), and the bone related parameter were analyzed (b). No apparent defect 
repair was observed in the Ad-GFP-transduced cells groups (data not shown). “*” p < 0.05, “**” p < 0.01, iMEF vs. iMAD, iCAL and imBMSC, respectively. “^” p <
0.05, “^^” p < 0.01, imBMSC vs. iMAD, iCAL and iMEF cells, respectively (b). (B) The calvarial defect repair sample were fixed, decalcified, and subjected to H & E 
staining (a), Masson trichrome staining (b), and Safranin O and fast green staining (c)(20x and 400x). Representative images are shown. 
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iMEF, iCAL, and imBMSC cells that were stimulated with BMP9. Our 
results revealed that the four lines shared extensively overlapping pat
terns of DEGs. Interestingly, several of the common DEGs, such as Hey1, 
Id1, Id2, Id4, Smad6, Fgfr3, Pparg, Dlx2, and Tgfb1, were previously 
identified as the downstream targets of BMP9 signaling in MSCs 

[90–93]. Clustering and pathway analyses indicated that iMAD, iMEF 
and imBMSC transcriptomes shared similar expression patterns and 
osteogenic differentiation processes, which were significantly different 
from that in iCAL cells. Nonetheless, all or most of the four MSC lines 
enriched multiple osteogenesis-related pathways, such as Wnt, TGF-β, 

Fig. 6. The transcriptomic landscape of the four types of MSCs stimulated by BMP9. Subconfluent iMAD, iMEF, iCAL and imBMSC cells were infected with AdR- 
B9 or Ad-RFP for 48 h. Total RNA was collected for RNA-seq analysis. (A) Principal component analysis (PCA) and 3D visualization. (B) Venn Diagram of the 
differentially expressed genes (DEGs). (C) Clustering analysis of 2508 genes with differential expression. (D) GO enrichment of top 12 biological processes related to 
osteogenesis. (E) KEGG analysis of top 10 signaling pathways associated with differentiation. (F) Clustering analysis of major signaling pathway genes enriched 
in Fig. 6E. 
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PI3K/AKT, MAPK, Hippo and JAK-STAT signaling pathways [11,15,16, 
93]. These transcriptomic results reveal that, upon BMP9 stimulation, 
the four MSC lines undergo osteogenic differentiation by regulating 
overlapping but distinct target genes. It is noteworthy that RNA-seq is a 
cross-sectional snapshot of the transcriptomic changes during the early 
stage of osteogenic differentiation. While it is conceivable that more 
meaningful data can be obtained if a multiple timepoint longitudinal 
RNA-seq analysis is conducted, we have demonstrated that upon oste
ogenic stimulations, iMAD cells exhibited highest abilities to induce 
early and late osteogenic markers in vitro, and induced most robust 
subcutaneous bone formation and cranial defect repair in vivo. There
fore, by taking the following features into account, easy access and 
availability, decent in vitro proliferative activity, and robust in vivo 
osteogenic capability, we conclude that adipose-derived MSCs represent 
a superior progenitor cell source for cell-based bone tissue engineering. 

In summary, we systematically compared the proliferative and 
osteogenic characteristics of MSC cells derived from four different tissue 
sources in order to identify an optimal progenitor cell source for cell- 
based bone tissue engineering. Our results indicated that adipose- 
derived MSCs (iMAD) and cranial suture-derived MSCs (iCAL) exhibi
ted highest osteogenic capability in heterotopic osteogenesis and cal
varial defect repair. Transcriptomic analysis revealed the similarities 
and distinct differences that underly molecular mechanisms governing 
osteogenic differentiation of the four MSC lines. Taking account of the 
abundance and accessibility, we believe adipose-derived MSCs represent 
the best cell choice for cell-based bone tissue engineering applications. 
Nonetheless, our current study has limitations. We need to conduct 
similar studies using primary MSCs, and more importantly to validate 
these findings using human MSCs. Ultimately, we will explore the po
tential use of human adipose-derived MSC-based bone tissue engineer
ing to treat nonunion and/or large bony defects in clinical settings. 

5. Conclusion 

To identify an optimal progenitor cell source for bone tissue engi
neering applications, we conducted a comprehensive comparative 
analysis of the proliferative activity and differentiation potential of four 
commonly used MSC sources including mouse embryonic fibroblasts 
(iMEF), mouse bone marrow stromal stem cells (imBMSC), mouse cal
varial mesenchymal progenitors (iCAL), and mouse adipose-derived 
mesenchymal stem cells (iMAD). Our results showed that iMEFs had 
the highest proliferation rate, while imBMSCs expressed the highest 
level of stemness and mesoderm markers in vitro. The iMAD exhibited 
the strongest osteogenic and adipogenic capabilities upon BMP9 stim
ulation in vitro. In vivo studies employing ectopic osteogenesis and 
critical-sized calvarial defect repair model revealed that iMAD and iCAL 
cells exhibited the highest osteogenic capability. Transcriptomic anal
ysis indicated that, while each MSC line regulated a distinct set of DEGs, 
all four MSC lines underwent osteogenic differentiation through several 
common signaling pathways including Wnt, TGF-β, PI3K/AKT, MAPK, 
Hippo and Jak-STAT signaling pathways. Collectively, our results 
demonstrate that adipose-derived MSCs represent the best seed cells of 
choice for cell-based bone tissue engineering applications. 
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