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Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique

nature due to its ability to regulate both glucose and lipid metabolic pathways. It is

characterized as an important molecular player of insulin induced nutrient storage and

utilization pathway during fasting to re-feeding metabolic transition. Several studies

have contributed to increase our knowledge regarding its function and mechanism of

action. Moreover, its altered expression levels have been observed in Insulin Resistance,

Diabetes Mellitus (Types I & II) and Non Alcohlic Fatty Liver Disease emphasizing its

assessment as a drug target. However, there is still a great deal of information that

remains to be investigated including its associated biological processes, partner proteins

in these processes, its regulators and its association with metabolic pathogenesis.

In the current study, the analysis of a transcriptomic data set was performed for

functional assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network

Analysis coupled with pathway analysis tools was performed to identify genes that

are significantly co-expressed with ANGPTL8 in liver and investigate their presence in

biological pathways. Gene ontology term enrichment analysis was performed to select

the gene ontology classes that over-represent the hepatic ANGPTL8-co-expressed

genes. Moreover, the presence of diabetes linked SNPs within the genes set co-

expressed with ANGPTL8 was investigated. The co-expressed genes of ANGPTL8

identified in this study (n = 460) provides narrowed down list of molecular targets

which are either co-regulated with it and/or might be regulation partners at different

levels of interaction. These results are coherent with previously demonstrated roles and

regulators of ANGPTL8. Specifically, thirteen co-expressed genes (MAPK8, CYP3A4,

PIK3R2, PIK3R4,PRKAB2, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2,

and RAPGEF1) are also present in the literature curated pathway of ANGPTL8
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(WP39151). Moreover, the gene-SNP analysis of highly associated biological processes

with ANGPTL8 revealed significant genetic signals associated to Diabetes Mellitus

and similar phenotypic traits. It provides meaningful insights on the influencing genes

involved and co-expressed in these pathways. Findings of this study have implications

in functional characterization of ANGPTL8 with emphasis on the identified genes and

pathways and their possible involvement in the pathogenesis of Diabetes Mellitus and

Insulin Resistance.

Keywords: ANGPTL8, Co-expression network analysis, transcriptomics data analysis, diabetes mellitus,

wikiPathways

1. INTRODUCTION

Diabetes Mellitus (DM) is a pathological condition which is
often characterized by hyperinsulinemia and hyperglycemia and
has become a global health challenge for both developed and
developing countries (Nanditha et al., 2016). It is estimated to
affect 642 million people by 2040 according to the International
Diabetes Federation (Zimmet et al., 2016). The underlying
pathogenic mechanisms are well studied and encompass
deregulated glucose and lipid homeostasis involving inter-organ
crosstalk of substrates and hormones (Samuel and Shulman,
2016). However, the suboptimal effectiveness of current diabetic
therapies to control pathological glycemic conditions necessitates
the identification of novel molecular players involved in
regulation of lipid and glucose homeostasis for the development
of better pharmacological interventions (Rines et al., 2016). To
this end, Angiopoietin like protein 8 (ANGPTL8) is emerging
as a novel molecular target for the treatment of DM and related
metabolic disorders due to its unique nature in regulating both
lipid and glucose metabolism (Siddiqa et al., 2017). Recent
studies have demonstrated the upregulation of ANGPTL8 gene
expression in various related metabolic disorders including
insulin resistance, obesity, DM (type I and II), Metabolic
Syndrome, Non Alcoholic Fatty Liver Disease (NAFLD) and
Hepatocellular Carcinoma (HCC) emphasizing its assessment as
a potential drug target (Chen et al., 2014; Fu et al., 2014b; Hu
et al., 2014, 2017; Yamada et al., 2015; Abu-Farha et al., 2016; Guo
et al., 2016; Lee et al., 2016; Yin et al., 2017).

ANGPTL8 is a newly identified member of angiopoietin like

protein (ANGPTL) family and is also known as lipasin, refeeding
induced in fat and liver (RIFL), betatrophin, C19orf80 and
TD26 (Ren et al., 2012; Zhang, 2012; Yi et al., 2013). It is induced
upon feeding in liver and adipose tissue (both white adipose
tissue (WAT) and brown adipose tissue (BAT)) whereas fasting
suppresses its expression (Ren et al., 2012; Zhang, 2012; Yi et al.,
2013). It has been recognized as one of the essential molecular
players involved in the metabolic transition of fasting to re-
feeding through both in vivo and in vitro studies (Ren et al., 2012;
Zhang, 2012, 2016). It has been demonstrated to play a role in
triglyceride (TG) metabolism by regulating the postprandial lipid
traffic via inhibition of lipoprotein lipase (LPL) activity (Ren et al.,
2012; Zhang, 2012, 2016; Siddiqa et al., 2016). LPL is a hydrolytic

1https://www.wikipathways.org/index.php/Pathway:WP3915

enzyme which generates free fatty acids (FFA) from hydrolysis of
TGs for subsequent uptake by heart, skeletal muscles and WAT.
According to the molecular mechanism demonstrated by Zhang
(2016), ANGPTL8 inhibits the postprandial LPL activity of
cardiac and skeletal muscles which allows the uptake of FFA
by WAT for storage. On the other hand, fasting decreases the
expression of ANGPTL8 and in turn the LPL activity in cardiac
and skeletal muscles which allows the uptake of FFA by them
for energy expenditure. Thus, ANGPTL8 exhibits a significant
role in lipid metabolism being a part of lipid partitioning
machinery according to nutritional levels. ANGPTL8 has also
been demonstrated to play role in other lipid metabolic pathways
including adipogenesis and autophagy (Ren et al., 2012; Tseng
et al., 2014a). Its role in glucose metabolism was reported in
several studies individually (Yi et al., 2013; Fu et al., 2014b;
Guo et al., 2016). However, Guo and colleagues demonstrated
the mechanism of ANGPTL8 mediated glucose regulation via
AKT/GSK3beta and AKT/FOXO arms of insulin signaling
pathway (Guo et al., 2016). AKT/GSK3beta and AKT/FOXO
signaling regulates the activation of glycogen synthesis and
inhibition of gluconeogenesis, respectively.

Recently, we have designed and published an up-to-date
literature curated pathway of ANGPTL8 regulation based on its
reported regulators and pathways in liver (Siddiqa et al., 2017).
The pathway model is available onWikiPathways1 (Siddiqa et al.,
2017). The pathway allows to clearly visualize the regulatory
interactions between different regulators of ANGPTL8 including
insulin in presence of glucose, thyroid hormone receptors (THR-
alph/beta), sterol regulatory element-binding protein (SREBPs),
carbohydrate response element binding protein (ChREBP),
mitogen-activated protein kinases (MAPKs), and 5′ AMP-
activated protein kinase (AMPK) for its regulation (reviewed in
Siddiqa et al., 2017). Moreover, the presence of ANGPTL8 can
be visualized in a broader spectrum with respect to other linked
pathways including insulin signaling pathway (Ren et al., 2012;
Yi et al., 2013; Fu et al., 2014b; Guo et al., 2016), postprandial
TG partitioning (Zhang, 2016), adipogenesis (Ren et al., 2012),
autophagy (Tseng et al., 2014a), and CD45+ hematopoietic-
derived cell proliferation (Cox et al., 2016).

Despite new insights, there is still a great deal of information
that remains to be investigated regarding ANGPTL8’s functions,
regulation and physiological mechanism of action. For example,
different studies have indicated the biological processes (such
as autophagy, adipogenesis and CD45+ hematopoietic-derived
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cell proliferation) in which ANGPTL8 is involved but the
underlying mechanism of action, associated receptors and the
signaling molecules (genes/proteins/metabolites) still remain
elusive (Ren et al., 2012; Tseng et al., 2014a; Cox et al., 2016).
Besides, the role of ANGPTL8 might not be limited to the
already associated biological processes and transcription factors
and hence needs further investigation from this point of view
as well. Moreover, already identified transcription factors of
ANGPTL8 and their coordinated role in initiating its expression
during refeeding/fasting metabolic transition also needs further
investigation because they have been reported in individual
studies.

Briefly, the investigation of predominant functional roles,
biological processes, and associated signaling molecules
(receptors/cofactors/genes) of ANGPTL8 is of immense
importance for its assessment as a molecular target for the
treatment of DM and related metabolic disorders. Therefore, the
current study was specifically aimed to identify the significantly
co-expressed genes with ANGPTL8 and their presence in known
pathways (present inWikiPathways) in order to gain mechanistic
insights regarding its function. This is because the genes
exhibiting similar expression pattern have been demonstrated
to be involved in similar functions and/or biological processes
besides being co-regulated in previous studies (Oldham et al.,
2008; Zhao et al., 2010; Rosen et al., 2011; Konopka et al.,
2012). We further explored the co-expressed genes present in
a selection of identified pathways to scrutinize their significant
Single Nucleotide Polymorphism (SNP) based association
with DM and/or other metabolic disorders. The investigation
of the effect of SNPs associated with DM can enhance and
redefine the gene role in the identified pathways (Cirillo et al.,
2017).

Weighted gene co-expression network analysis (WGCNA)
is an established method for identification of modules (cluster
of genes with similar co-expression patterns) of biologically
related genes (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008; Zhao et al., 2010). In the present study, we
performed WGCNA utilizing a human liver transcriptomics
data set retrieved from Gene Expression Omnibus (GEO). The
selection of the gene expression data is based on the facts
that ANGPTL8 is a predominantly liver expressed gene in
humans besides being up-regulated in insulin resistance (Yi
et al., 2013; Fu et al., 2014a; Guo et al., 2016), obesity (Fu
et al., 2014b) and DM type II (Yamada et al., 2015). Overall,
the data set consisted of 21 human liver samples from
lean, obese and type II diabetic patients. WGCNA (Zhao
et al., 2010) coupled with pathways analysis (Kutmon et al.,
2014, 2015; Slenter et al., 2017) as demonstrated in sections
below was performed to: (i) identify the genes that are
significantly co-expressed with ANGPTL8 in liver, (ii) select Gene
Ontology classes that over-represent the hepatic ANGPTL8-
co-expressed genes, (iii) identify biological pathways in which
the hepatic ANGPTL8-co-expressed genes are present and
(iv) investigate whether the DM linked SNPs are present in
the ANGPTL8 co-expressed genes. The study focused on the
analysis of ANGPTL8 co-expression genes module to increase
our knowledge regarding its functions, its pathways based

interactions (with co-expressed genes) and its relationship with
the other DM related genes. To the best of our current
knowledge, this is the first instance to perform a transcriptomics
data based analysis for functional assessment of ANGPTL8 in
liver.

2. METHODOLOGY

The complete work flow employed in the current study is
illustrated in Figure 1.

2.1. Selection of Transcriptomics Data Set
Liver is the predominant expression site of ANGPTL8 that is
also over-expressed during insulin resistance (Yi et al., 2013; Fu
et al., 2014a; Guo et al., 2016), obesity (Fu et al., 2014b) and DM
type II (Yamada et al., 2015). Therefore, the selection of a data
set in which all of these conditions are present could aid in the
identification of highly correlated genes with ANGPTL8 based
on similar expression pattern observed across all the samples.
A systematic and thorough check of GEO database (Barrett
et al., 2012) was performed for the selection of a suitable data
set as described above. The gene expression profiles of human
liver samples with GEO ID: GSE64998 was selected out of the
identified data sets (GSE15653, GSE23343, and GSE64998) based
on the best quality and appropriate sample size for performing
co-expression network analysis. It consists of six healthy control
samples, eight obese non-diabetic and seven type 2 diabetic
patient samples and was performed in GPL11532 (Affymetrix
Human Gene 1.1 ST Array Platform). This data set had been
already analyzed with a different approach and aim than ours by
Kirchner et al. (2016). Several clinical parameters associated with
the samples are also provided comprehensively by Kirchner et al.
(2016).

2.2. Quality Control Check and Statistical
Data Analysis
The raw data of GSE64998 was downloaded and reanalyzed
using ArrayAnalysis.org (Eijssen et al., 2013). ArrayAnalysis.org
is a web server to perform quality control, preprocessing and
statistical analysis of microarray data. We selected Entrez IDs for
gene annotation of microarray probe IDs via ArrayAnalysis.org.
The quality control and preprocessing report obtained is
provided as Supplementary Presentation 1. The data was
normalized using Robust Multi-array Average (RMA) method
and is provided as Data Sheet 1. All the samples of GSE64998
were included for the subsequent analysis as there were no
outliers. Average expression of less than 5 was selected as
cutoff value to remove the genes with low expression values
from the data set which resulted in selection of 10869 genes
(Data Sheet 2).

2.3. ANGPTL8 Co-expression Network
Construction
The weighted gene co-expression network analysis (WGCNA)
is an established systems biology method for construction of
correlation networks based on similar gene expression patterns
observed across microarray samples (Zhang and Horvath, 2005).
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FIGURE 1 | Integrated workflow deployed for functional assessment of ANGPTL8: The steps and the tools/softwares used for the the quality control assessment,

construction of ANGPTL8 co-expression network, Gene Ontology analysis, pathway analysis and variant effect prediction analysis (through SNPs identification) are

described.

It allows the identification of co-expression genes modules
(set of genes observed with similar correlation pattern) from
gene expression data through unsupervised learning methods.
The method was implemented using the R package “WGCNA”
(Langfelder and Horvath, 2008) in order to identify the
ANGPTL8 co-expression genes module. The preprocessed
normalized data of all samples (Data Sheet 2) obtained in
previous step was used as an input. We selected automatic
network construction and module detection method to perform
WGCNA (Langfelder and Horvath, 2008). The complete R code
utilized to perform the analysis is provided inData Sheet 3.

As a first step, a similarity matrix was constructed by
measuring Pearson’s correlation for all gene pairs. Next, an
adjacency matrix was constructed by raising the similarity matrix
to the soft thresholding power beta (Equation 1) Zhao et al.
(2010).

a(i, j) = |cor(x(i), x(j)|β (1)

where x(i) and x(j) corresponds to expression values of gene
i and gene j, respectively. The soft thresholding power beta
is selected in order to achieve the approximate scale-free
network topology as described in Langfelder andHorvath (2008).
We selected power of beta = 14 to fulfill the scale free

topology criterion. This adjacency matrix was converted into a
Topological Overlap Measure (TOM) matrix where TOM is a
highly robust network proximity measure (Zhang and Horvath,
2005; Langfelder and Horvath, 2008) (Equation 2). Next, TOM
matrix was converted into a dissimilarity TOMmatrix (Equation
3) which was subsequently used to create a dendrogram through
average hierarchical clustering method. Lastly, the dynamic
branch cutting algorithm was applied on the dendrogram in
order to obtain the clusters (modules) of highly correlated genes.

TOMij =

∑
u aiuauj + aij

min(ki, kj)+ 1− aij
(2)

where aiu, auj and aij represents the adjacency function based
values between gene pairs (i,u) (u,j) and (i,j). ki, kj represents the
connectivity of genes i and j, respectively.

DistTOMij = 1− TOMij (3)

The co-expression genes module identified with the presence
of ANGPTL8 was selected for further analysis and it was
exported in Cytoscape (Shannon et al., 2003) network format
using the WGCNA R function “exportNetworkToCytoscape.”
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This function allows to remove the edges with lower TOM
values based on the value of the parameter named “threshold.”
We used a threshold value equal to 0.02 for removing the low
weighted edges from the ANGPTL8 genes co-expression module.
The module-trait relationship was not assessed because we were
not interested to relate the modules with a single phenotype as
already described in section 2.1.

2.4. Identification of Hub Genes of
Co-expression Genes Module of ANGPTL8
Next, the co-expression genes module of ANGPTL8 (identified
in the previous step) was visualized as a network using the
network visualization and analysis software Cytoscape (version
3.4.0) (Shannon et al., 2003).

For the identification of hub genes in the ANGPTL8
related co-expression genes module, we used the connectivity
(degree centrality) as described by Langfelder and Horvath
(2008). In an undirected network, the degree centrality of
a node (gene/protein/metabolite etc) can be defined as the
total number of the edges incident on the node. Genes
of ANGPTL8 co-expression module with a degree greater
than or equal to 80th percentile were considered as the hub
genes (Barabási et al., 2011). The hub genes are the most
representative genes in a co-expression network due to the
maximum number of co-expressed genes linked with them
(Langfelder and Horvath, 2008).

2.5. Gene Ontology (GO) Analysis of
Co-expression Genes Module of ANGPTL8
Gene Ontology (GO) analysis aids in inferring the gene
properties from the controlled vocabulary (defined terms)
maintained by GO project (Botstein et al., 2000). Every gene
product is classified based on three types of ontologies i.e.,
biological process (BP), molecular function (MF) and cellular
compartment (CC). We used GO-Elite (Team, 2017b) version
1.2.5 to perform GO analysis (Zambon et al., 2012). GO-
Elite is a software which identifies minimal non-redundant
set of GO terms describing a given set of genes. We
compared the genes present in the genes module identified
with ANGPTL8 with all the measured genes. We used the
following settings for GO analysis: (i) 2000 permutations,
(ii) Z-score threshold > 1.96, (iii) p-value threshold < 0.05
and (iv) minimum number of changed genes is three. We
used Cytoscape (version 3.4.0) (Shannon et al., 2003) for
intuitive visualization of the results in order to analyze the
connections between the genes and identified GO terms
(Figure S1).

2.6. Pathway Analysis of Co-expression
Genes Module of ANGPTL8
We investigated the presence of genes identified within the
ANGPTL8 co-expression network in the complete curated
human pathway collection (n = 710) of WikiPathways (Slenter
et al., 2017). All pathways were scrutinized for the presence
of at least one of the ANGPTL8 co-expression module
genes. PathVisio, was used for the visualization of the

selected pathways (Kutmon et al., 2015). The pathway
analysis was performed in order to allow us to (i)
determine the biological processes that might be the part
of physiological mechanisms associated with ANGPTL8 and
the significant genes co-expressed with it; (ii) determine
the unknown genes/proteins co-expressed with ANGPTL8
from biological processes already known or associated
with it.

2.7. Single Nucleotide Polymorphism (SNP)
Analysis of Selected Co-expressed Genes
With ANGPTL8
We identified SNPs associated with DM and other metabolic
disorders that are present in 72 ANGPTL8 co-expressed genes in
a selection of 10 pathways found with the highest number of co-
expressed genes. The analysis was performed using DisGeNET
database (Team, 2017a) version 4.0. The names of 72 genes were
provided as input in the gene search panel of the DisGeNET
website, in which the top 10 disease-association list and the top
10 disease-associated variants list for each gene, were further
consulted. We extracted the names and IDs of the diseases
associated to the genes that reported the highest DisGeNET score
(Data Sheet 4). However, if in the top 10 disease-associations, a
disease related to DM and other metabolic disorders was listed
with a lower score, its name, ID and score was also included
in Data sheet 4 . Moreover, in this table SNPs associated to
DM and other metabolic disorders are also reported for several
genes, with the name and ID of the associated disease and the
DisGeNET score related to the strength of the association. The
DisGeNET score ranges from 0 to 1 and it ranks the gene-
disease associations taking into account the number and type
of sources (level of curation, organism), and the number of
publications supporting the association. The effect of the variants
in the genes and the pathways were further investigated with
literature search in Google and consultation of several databases
such as: Ensembl (Fernández and Birney, 2010) and SNPedia
(Team, 2017c).

3. RESULTS

3.1. Identification of ANGPTL8
Co-expression Genes Module and
Visualization of Hub Genes
WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath,
2008; Zhao et al., 2010) was applied to gain insights into the
functional organization of ANGPTL8 and its associated co-
expressed genes in human liver utilizing a transcriptomics data
set of lean, obese and DM type II subjects (available online
at2) (Kirchner et al., 2016). ANGPTL8 is a predominantly liver
expressed gene in humans which has been found up-regulated
in insulin resistance (Yi et al., 2013; Fu et al., 2014a; Guo et al.,
2016), obesity (Fu et al., 2014b) and DM type II (Yamada et al.,
2015). Therefore, a data set expressing all these conditions was
selected in order to allow the selection of highly correlated

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64998
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FIGURE 2 | The dendrogram of dissimilarity TOM Matrix constructed using hierarchical clustering. Each vertical line corresponds to the gene. Module colors are

provided at the bottom. Each color corresponds to the separate genes module.

genes with ANGPTL8 across all the samples and conditions.
The expression profile of 10869 unique genes (Data Sheet 2)
obtained after normalization and filtering off the probes with
low intensities were used to construct the gene co-expression
network by applying the steps described in the section 2. Twelve
gene modules (clusters of highly co-expressed genes) other than
gray module (unclustered genes) were obtained by applying
automatic module detection and dynamic tree cutting algorithm
with minimum cluster size of 30. The graphical illustration of the
resultant dendrogram, obtained from the hierarchical clustering
based on the dissimilarity TOM matrix, is given in Figure 2.
The number of genes in the corresponding modules with the
respective color codes are provided in Table 1. The complete list
of the genes (with respective Entrez ids) identified in eachmodule
is provided inData Sheet 5.

The red module was identified with ANGPTL8 and 460 other
genes and was then exported in cytoscape (Shannon et al., 2003)
network format for subsequent visualization and analysis. This
network is composed of 447 nodes and 1781 interactions due
to the filtering criteria used for removing the edges with the
lower TOM values. It will be referred as co-expression network
of ANGPTL8 from here onwards. The graphical illustration

TABLE 1 | Modules resulted from the hierarchical clustering: Module names are

assigned colors and module size corresponds to the number of genes clustered in

each module.

Module name Module Size Module name Module Size

Turquoise 999 Black 371

Blue 783 Pink 314

Brown 600 Magenta 183

Yellow 498 Purple 76

Green 462 Greenyellow 64

Red 461 Tan 43

of the entire co-expression network is provided as Figure S2.
The topological analysis of this network revealed that 97 genes
were greater than or equal to 80th percentile according to the
degree (Figure S2). These genes are classified as hub genes and
represent the most highly connected nodes in the entire network.
The hub genes in a co-expression network are important to
gain insights into the associated functional roles (phenotypic
outcomes) related to majority of the genes. It is because these
genes show highly similar co-expression patterns and often are
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TABLE 2 | Neighbors of ANGPTL8 in its co-expression network.

Gene Symbol Full Gene Name Degree

TFPI Tissue factor pathway inhibitor 42

IGFBP1 Insulin like growth factor

binding protein 1 21

YKT6 YKT6 v-SNARE homolog 10

PPARGC1A PPARG coactivator 1 alpha 6

MID1IP1 MID1 interacting protein 1 4

C10orf10 chromosome 10 open reading frame 10 3

BHLHE40 basic helix-loop-helix family member e40 3

VPS18 VPS18, CORVET/HOPS core subunit 3

SDF2L1 stromal cell derived factor 2 like 1 2

Degree represents the number of connected nodes (genes) with respective genes in the

ANGPTL8 co-expression network.

part of similar biological functions, biological process and/or are
co-regulated (Langfelder and Horvath, 2008).

Ubiquitin protein ligase E3 component n-recognin 2 (UBR2)
is the gene with the highest degree in the entire co-expression
network of ANGPTL8. It is a part of the N-end rule pathway
which regulates proteolysis of intracellular proteins on the basis
of identity of their N-terminal amino acids (Gibbs et al., 2014).
This pathway is found conserved from yeast to eukaryotes
and is important determinant of half-life of diverse set of
proteins. It has been previously demonstrated to serve various
developmental and physiological processes including fidelity of
chromosome segregation, apoptosis, autophagy, cardiovascular
development in animals, regulation of cellular check point
controls (by degradation of regulatory proteins involved in
cellular differentiation, division and programmed cell death)
quality control of cytosolic proteins, controlling the redox
dynamics of stress related cellular compounds (such as nitric
oxide, thiols, heme, oxygen, and others) and leaf senescence
in plants (reviewed in Lee et al., 2015). Additionally, it
has been demonstrated to play an inhibitory role in mTOR
signaling pathway (Kume et al., 2010). It is interesting to
observe that ANGPTL8 is a part of insulin and glucose mediated
signaling pathway which also includes downstream regulators
of mTOR signaling arm (Siddiqa et al., 2017). Moreover, one
of the outstanding questions that remained elusive regarding
ANGPTL8 was the identity of its degradation pathway pointed
out by Zhang (2016). The results of current analysis demonstrate
the possible involvement of N-end rule pathway (through UBR2)
in degradation of ANGPTL8which should be further investigated
through wet-lab studies.

Other top nine hub genes based on the degree are KANSL1L,
ORC2, AGL, BNIP2, MET, MBTD1, TFPI, ALDH6A1, and
SLC16A4 (Figure S2). The role of KANS1L, ORC2, MBTD1,
BNIP2, MET, TFPI is mainly associated with DNA replication
and/or cellular division; AGL and ALDH6A1 are enzymes
involved in metabolic pathways and SLC16A4 is a solute
transporter protein (Naldini et al., 1991; Bao et al., 1996;
Carpenter et al., 1996; Luo et al., 2013; Norling et al., 2014; Espada
et al., 2017).

ANGPTL8 itself is connected with nine other genes in its co-
expression network which means they are the most strongly co-
expressed genes with it (Table 2). Two of these genes are also
identified as hub genes i.e., tissue factor pathway inhibitor (TFPI)
and insulin-like growth factor-binding protein 1 (IGFBP1). TFPI
plays an important role in the regulation of blood coagulation
pathway (Dong et al., 2011). It is an inhibitor of tissue factor
(TF) which is a glycoprotein present on surface of macrophages
and other extravascular cells. TF is involved in positive induction
of inflammatory cytokines (such as TNFα, IL-1 and IL-6) and
coagulation signaling cascade. Thus, TFPI plays a protective role
in maintaining cellular and systemic homeostasis of immune
system. Additionally, TFPI has been demonstrated to be involved
in three interdependent biological processes that is coagulation,
angiogenesis and lipid metabolism (Holroyd and Simari, 2010).
Excess cellular lipid forms lipotoxic metabolites (such as
cholesterol crystals) which on one hand induce inflammatory
cytokine production and on the other induce TFPI (Holroyd
and Simari, 2010; Espada et al., 2017).TFPI not only regulates
the inflammatory processes through their inhibition but also
reduces cholesterol concentration (through stimulation of
internalization and degradation of VLDLs through HSPG-
dependent pathway) (Holroyd and Simari, 2010). ANGPTL8 has
also been previously demonstrated as an integral component
of lipid metabolism. Therefore, these results imply that TFPI
and ANGPTL8 represent interesting multifunctional molecular
players which might be mutually involved in maintaining
the interconnected physiological feedback mechanisms between
angiogenesis, coagulation and lipid metabolism. These feedbacks
should be investigated further to understand the role of these
genes in the integrated physiological pathways for maintaining
homeostasis.

IGFBP-1 is a plasma carrier protein which binds to insulin-
like growth factors (IGFs) I and II and increases their half-
life (Firth and Baxter, 2002; Forbes et al., 2012). IGFI and IGFII
are ligands of IGF signaling system involved in cell proliferation,
differentiation, migration and metabolic processes. These ligands
(IGF I and II) can bind with IGF-I and II receptors, isoforms
of insulin-receptors and their hybrid receptors (Belfiore et al.,
2009). IGFBP-1 has also been demonstrated to improve whole
body glucose regulation through its role in integrin mediated
signaling cascade (Haywood et al., 2017). IGFBP1 can bind to
integrins (transmembrane cellular adhesion proteins/receptors)
through its Arg-Gly-Asp (RGD) domain and activate focal
adhesion kinase (FAK) (Lebrun et al., 1998; Haywood et al.,
2017). FAK signaling converges with insulin/insulin like growth
factors signaling at IRS-1 phosphorylation signaling point.
Previous studies have shown that IGFBP-1 induced improved
glucose regulation and increased insulin sensitivity is a part
of protective mechanism induced upon insulin resistance in
the body (Haywood et al., 2017). These results are crucial
for further investigation with reference to the similar role
of ANGPTL8 demonstrated for improved glucose tolerance
in insulin resistance condition by Guo et al. (2016). Their
data indicated that ANGPTL8 is increased in the presence
of both glucose and insulin which subsequently induces the
phosphorylation of AKT involved in improving glucose tolerance
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through inhibition of gluconeogenesis (via phosphorylation of
FOXO) and induction of glycogen synthesis (via phosphorylation
of GSK3beta). The signaling events leading to induction of
ANGPTL8 were verified in several other studies as well and
can be visualized in the recently curated ANGPTL8 regulatory
pathway present inWikiPathways (Siddiqa et al., 2017). However,
the mechanism of action of phosphorylation induced activation
of AKT via ANGPTL8 being direct or indirect (involving other
genes/proteins than ANGPTL8) is still a quest. Therefore, it
would be interesting to investigate the connection between
IGFBP-1 and ANGPTL8 in improving glucose tolerance in
insulin resistance since both are higly co-expressed with each
other and are part of overlapping signaling pathways (focal
adhesion pathway and insulin/IGF signaling pathway).
Among other neighbors, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PPARG- C1A) is a key
regulator of mitochondrial biogenesis. It integrates vast set
of physiological stimuli (including growth factors, stress, cold
exposure, cytokines, exercise etc.) into respective metabolic
responses involving fat and glucose metabolism (Jornayvaz
and Shulman, 2010). It is a key co-activator of several
transcription factors including NRFs, peroxisome proliferator-
activated receptor (PPAR), thyroid hormone, glucocorticoid,
estrogen and estrogen-related receptors (ERRs) alpha and
gamma (Ventura-Clapier et al., 2008). This result is in line
with previously demonstrated regulators of ANGPTL8 including
thyroid hormone receptor alpha and beta, Liver X receptor (LXR)
and PPAR (reveiewd in Siddiqa et al., 2017). Synaptobrevin
homolog YKT6 (YKT6) and vacuolar protein sorting-associated
protein 18 homolog (VPS18) are two other neighbors of
ANGPTL8 in the co-expression network which are involved
in vesicular transport of cytoplasmic proteins within different
cellular locations. VPS18 is specifically involved in the vesicles
transport of endosome/lysome pathway (Huizing et al., 2001).
ANGPTL8 itself is a secreted protein which was demonstrated to
reside in lysosomal vesicles like compartments in cytoplasm and
these proteins (YKT6 and VPS18) might represent its associated
partnermolecules during vesicular transport process (Tseng et al.,
2014a). Among other neighbors, MID1 Interacting Protein 1
(MID1IP1) is involved in hepatic lipogenesis (Tsatsos et al., 2008)
and microtubule stabilization during cell division (Berti et al.,
2004), stromal cell-derived factors 1-alpha and 1-beta (SDF2L1)
is a chemokine protein playing role in hematopoiesis (Bleul
et al., 1996; Ara et al., 2003), Class E basic helix-loop-helix
protein 40 (BHLHB2) plays role in cell differentiation and control
of circadian rythm, and chromosome 10 open reading frame
10 (C10orf10) plays role in regulation of autophagy (Salcher
et al., 2017). These results (identified co-expressed genes) are
in line with the roles associated with ANGPTL8 including
lipid metabolism (Zhang, 2012, 2016), hematopoiesis (Cox
et al., 2016), autophagy (Tseng et al., 2014a), and circadian
rhythm (Dang et al., 2016). Overall, the results of the co-
expression network analysis revealed the genes with similar
roles observed for ANGPTL8 in previous studies. Therefore,
these genes represent a focused and tremendous knowledge
body for further investigations regarding functional insights of
ANGPTL8.

3.2. Gene Ontology Analysis
Gene Ontology (GO) analysis was performed to find the
significant GO terms associated with the genes present
in co-expression genes module of ANGPTL8 using GO-
Elite (Zambon et al., 2012). Thirty Two biological processes,
seven molecular function and six cellular components GO
terms were identified to be associated with co-expression genes
module of ANGPTL8 (Data Sheet 6 ). The graphical illustration
of the significant GO terms along with the associated genes
is provided as Figure S1. Overall, the significant GO terms
of biological processes were identified related to different
metabolic processes. Top five biological processes on the
basis of degree (number of connections of a node) include
carbohydrate metabolic process (GO:0005975), monocarboxylic
acid metabolic process (GO:0032787), regulation of small
GTPase mediated signal transduction (GO:0051056),
lipid modification (GO:0030258) and phosphatidylinositol
biosynthetic process (GO:0006661). ANGPTL8 is found
associated with carbohydrate metabolic process (GO:0005975),
that is the largest connected metabolic process in the entire
network (Figure S1). Previous studies have demonstrated the
role of ANGPTL8 in different metabolic processes including
carbohydrate and lipid metabolism (reviewed in Zhang and
Abou-Samra, 2013; Tseng et al., 2014b; Siddiqa et al., 2017).
Other than the metabolic processes, several other biological
processes were also identified including leukocyte migration
(GO:0050900), extracellular matrix disassembly (GO:0022617),
blood vessel development (GO:0001568), regulation of epithelial
cell migration (GO:0010632) and regulation of epithelial
to mesenchymal transition (GO:0010717). These biological
processes are especially relevant to a recently revealed role
of ANGPTL8 in stimulation and proliferation of CD45+
hematopoietic derived cells demonstrated by Cox et al.
(2016). CD45 is a glycoprotein also known as receptor-type
tyrosine-protein phosphatase C (PTPRC) which is present at the
surface of leukocytes and their progenitor hematopoietic stem
cells (Trowbridge and Thomas, 1994). It plays important role
in different hematopoiesis related processes including cellular
differentiation, migration and proliferation of hematopoietic
stem cells (HSCs). It is a key signaling component of B- and
T-cell activation. Since the underlying signaling pathways
and genes of ANGPTL8’s role in proliferation of CD45+
derived cells remained elusive, the co-expressed genes of
ANGPTL8 identified in these biological processes (provided in
Data Sheet 6) represent peculiar molecular targets for future
investigation. The associated cellular compartment related
GO terms includes mitochondrial matrix , (GO:0005759),
microtubule (GO:0005874), actomyosin (GO:0042641), cell-
cell junction (GO:0005911), cytoskeleton (GO:0005856)
and microtubule organizing center part (GO:0044450).
Mitochondrial matrix is a cellular site involving fatty acid
oxidation and other energy expenditure related processes
whereas the other identified compartments (microtubule,
actomyosin, cytoskeleton, microtubule organizing center part)
are involved in the cellular motility, maintaining cellular
shape and cell division. These results are in line with the
biological processes identified with the genes present in the
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co-expression module of ANGPTL8 as discussed above. Finally,
the main molecular functions identified in ANGPTL8 co-
expression network are phospholipase activity (GO:0004620),
monocarboxylic acid transmembrane transporter activity
(GO:0008028), ion channel binding (GO:0044325), protein
binding, bridging (GO:0030674), nucleoside-triphosphatase
regulator activity (GO:0060589), protein homodimerization
activity (GO:0042803), and transferase activity (GO:0016740).

3.3. Pathways Analysis
The genes in the ANGPTL8 co-expression network were
further investigated for their presence in the complete curated
WikiPathways collection. WikiPathways is a public repository
of curated and dynamic models of biological processes (Slenter
et al., 2017). A total of 474 human pathways were identified to
contain at least one of the genes from the co-expression network
of ANGPTL8. Whereas, 258 genes from co-expression network
of ANGPTL8 were identified to be present and 189 genes were
identified to be not present in any of these identified pathways.
The complete list of pathways along with the respective genes
found in them is provided as Data Sheet 7 and entire gene to
pathway network of these results is graphically illustrated in
(Figure S3).

Ten of these pathways identified with maximum (above 9)
number of genes are listed in Table 3 and represent highly
associated biological processes with ANGPTL8. The gene-
pathway network of these 10 pathways (subset derived from the
complete gene to pathway network in Figure S3) is graphically
illustrated in Figure 3. The network is composed of a total of
72 genes and 10 pathways connected with shared genes among
them. Twenty two hub genes identified in this network are
shown with large size as compared to non-hub genes in the
network. Two pathways including the angiopoetin like protein
8 regulatory pathway (WikiPathways ID: WP3915) and Focal
Adhesion pathway (WikiPathways ID: WP306) were identified
with the presence of thirteen genes (maximum number of genes
per pathway in this analysis) each. Both of these pathways
share several genes among them including PIK3R2, PIK3R4,
MAPK8, SHC1, RAPGEF1. Previous studies have demonstrated
the role of both of these pathways in improving glucose tolerance
and insulin sensitivity in insulin resistance condition (Lebrun
et al., 1998; Guo et al., 2016; Haywood et al., 2017). Besides,
IGFBPI has been identified as a highly co-expressed gene with
ANGPTL8 (as mentioned in sections above) which induces focal
adhesion pathway through its RGD domain (Lebrun et al., 1998;
Haywood et al., 2017). Therefore, further studies are required to
investigate the interdependence of ANGPTL8 signaling pathway
and focal adhesion signaling pathway in regulating glucose
homeostasis especially in pathological conditions like insulin
resistance and DM. These results emphasizes the association
of revealed molecular players with ANGPTL8 which should be
further investigated especially in these identified pathways.

Mainly Angiopoietin Like Protein 8 Regulatory Pathway,
Focal Adhesion pathway, VEGFA-VEGFR2 signaling
pathway and Focal Adhesion-PI3K-Akt-mTOR-signaling
pathway are part of overlapping signaling pathways. Other
five pathways (Amino Acid metabolism, Mesodermal
Commitment pathway, Metapathway biotransformation,

Chromatin modifying enzymes and Nuclear Receptors Meta-
Pathway) also share several genes among them and are in
line with the previously demonstrated roles of ANGPTL8
in metabolism and cell differentiation/division (Kristina
and Egon, 2018; Nathan et al., 2018; Pieter et al., 2018;
Reactome and Martina, 2018; Rianne et al., 2018). Overall, the
results of the pathway analysis identifies important signaling
pathways and associated co-expressed genes with ANGPTL8
which should be investigated further for their mutual and
individual role in pathogenesis of DM and related metabolic
disorders.

3.4. Single Nucleotide Polymorphism (SNP)
Analysis
We performed a SNP identification analysis on the 72 genes
present in the 10 highly associated biological processes with
ANGPTL8. In Data Sheet 6 we listed both the gene names
queried in the DisGeNET database associated with the top
diseases, and the SNPs, located in those genes, that reported
the highest DisGeNET score with the disease association. Ten
genes were found associated with DM Non-Insulin Dependent
(ANGPTL8, BHMT, GATAD2A, GCLM, PIK3C2G, PPARGC1A,
PRKAB2, RAPGEF1, SLC19A2, and TADA1). In particular,
RAPGEF1 with the intronic SNP rs11243444 (Hong et al.,
2009) and PIK3C2G with the two intronic SNPs rs10841048
and rs12816270 (Daimon et al., 2008) reported association with
DMNon-Insulin Dependent, PPARGC1A has the upstream SNP
rs590183 associated with blood pressure (O’donnell et al., 2007)
and ANGPTL8 shows the missense variant rs2278426 associated
with high density lipoprotein measurement (Weissglas-Volkov
et al., 2013). In addition, the SHC1 gene does not show a gene
association with DM, but it has the SNP rs8191979 associated
to DM (Almind et al., 1999). Moreover, GYS2 with its missense
SNP rs121918420 (Orho et al., 1998), and G6PC with another
missense SNP rs1801175 (Froissart et al., 2011) are associated
with Glycogen storage disease type 1 (GSD1) that is a disorder
characterized by severe fasting hypoglycaemia. Although, GSD1
seems completely the opposite disorder of DM, they share
similar metabolic pathways leading to nephropathy and fatty
liver (Rajas et al., 2013).The genes involved in the control
of glucose and energy homeostasis are the same and for this
reason investigating their variants effect can help to a better
understanding of the role of these genes. In the Figure 3 10
genes reporting DM association and two genes associated with
GSD1 are highlighted in dark blue and light blue, respectively.
Moreover, when they present a SNP associated with DM or
related phenotypic condition, the genes nodes are represented
with triangles. The network in the Figure 3 visualizes the
gene-pathway relationships, allowing to investigate deeply the
roles of the seven genes already mentioned with a relevant
SNP-disease association. We observed that those seven genes
were grouped around five processes: Angiopoietin like protein
8 regulatory pathway (WP3915), Insulin signaling pathway
(WP481), Focal adhesion-PI3K-Akt-mTOR signaling pathway
(WP3932), VEGFA-VEGFR2 signaling pathway (WP3888) and
Nuclear receptor meta-pathway (WP2882). The first three
pathways not only contain at least one of the seven genes, but
also share one or more of them. This is also due to the fact
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TABLE 3 | Top 10 pathways in gene-pathway co-expression network: The maximum number of ANGPTL8 associated co-expressed genes identified in WikiPathways

along with respective gene symbols are listed.

PID PathwayName Gene

Count

Genes

WP3915 Angiopoietin Like Protein 8

Regulatory Pathway

13 MAPK8, CYP3A4, PIK3R2, PIK3R4,

ANGPTL8, PRKAB2, G6PC, MAP3K11,

FLOT1, PIK3C2G, SHC1, SLC16A2,

RAPGEF1

WP306 Focal Adhesion 13 MAPK8, COL1A1, ACTN1, COL5A1,

MET, PIK3R2, PIK3R4, ZYX,

SHC1, COL3A1, PIP5K1C, ARHGAP5,

RAPGEF1

WP2882 Nuclear Receptors

Meta-Pathway

12 FGD4, SLCO1B1, UGT1A9, CYP3A4,

ABCB11, BHLHE40, GCLM, PRDX6,

BAAT, PPARGC1A, SLC19A2, IGFBP1

WP3888 VEGFA-VEGFR2

Signaling Pathway

11 MAPK8, FRS2, ATF6, PFN1, SHC1,

PLCG1, PIK3R2, MYH9, GIPC1,

RAPGEF1, CYP2C8

WP481 Insulin Signaling 10 PIK3C2G, MAPK8, INPP4A, SHC1,

GYS2, PIK3R2, PIK3R4, RAPGEF1,

MAP3K11, FLOT1

WP3362 Chromatin modifying

enzymes

10 KDM6A, CARM1, SETD1A, SMARCA4,

ELP2, TADA1, SMARCD1,CHD4,

GATAD2A, JADE3

WP702 Metapathway

biotransformation

10 UGT1A10, UGT1A9, CYP3A4, FMO4,

GLYAT, BAAT, CYP4V2, HNMT,

CYP2C8, NAA40

WP2857 Mesodermal Commitment

Pathway

9 BMPR2, MBTD1, KDM6A, DIP2A,

BHLHE40, EPB41L5, C9orf72, HPRT1,

AXIN1

WP3932 Focal Adhesion-PI3K-Akt-

mTOR-signaling pathway

9 COL1A1, COL5A1, COL3A1, MET,GYS2,

PIK3R2, PIK3R4, GNG7,PPARGC1A

WP3925 Amino Acid metabolism 9 CTH, MAOA, FH, GCLM, MCCC1,

MUT, BHMT, HNMT, AUH

that Angiopoietin like protein 8 regulatory pathway diagram
present subpaths of the other two processes, confirming the
tightly biological interconnectivity within the three pathways.

4. DISCUSSION

Several studies have demonstrated the role of ANGPTL8 in lipid
metabolism through LPL inhibition, regulation of autophagy and
adipogenesis (Ren et al., 2012; Zhang, 2012, 2016; Tseng et al.,
2014a). It has also been demonstrated to regulate a crucial gene
circuit required for maintenance of glucose homeostasis (Guo
et al., 2016). These unique features of ANGPTL8 in regulation
of different aspects of metabolism is driving the notion of its
potential as a molecular target for treatment of DM. However,
due to the lack of knowledge regarding its gene/protein partners,
the associated biological processes and its mechanism of action,
it has remained elusive to understand its role in pathogenesis of
DM and subsequent assessment as molecular target. In this study,
an integrated network analysis work flow especially suitable for
such problems was designed to allow the extraction of relevant
information with several regulatory levels. It helped us to identify
the co-expressed genes with ANGPTL8, their identification as

hub/nonhub genes, their presence in pathways and their co-
occurrence in DM.

The current study provides the first instance of identification
of co-expressed genes of ANGPTL8 by utilizing a liver
transcriptomics data set with the outcomes which are in line with
previous literature (Figure 4) and also unfolds several regulatory
findings which could present an important resource for future
investigations (Figure 3). The co-expressed genes of ANGPTL8
identified in this study (n = 460) provides narrowed down list
of molecular targets which are either co-regulated with it and/or
might be regulation partners at different levels of interaction.
Current analysis revealed the co-expression of thirteen genes
with ANGPTL8 in the literature curated pathway of ANGPTL8
(WP3915) which was designed in our previous work (Siddiqa
et al., 2017). These findings provides support to the current
analysis and also emphasizes the association of the thirteen
revealed molecular players with ANGPTL8 in its pathway due to
shared co-expression pattern (Figure 4).

Previous studies demonstrated the role of ANGPTL8 in
several biological processes such as carbohydrate and lipid
metabolism, adipogenesis, autophagy and CD45+ hematopoietic
cell proliferation with none and/or partially identified partner
proteins. The GO analysis performed in this study revealed
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FIGURE 3 | Gene-pathway network with information of genes and variants associated to DM and other metabolic disorders. The top ten pathways identified with

maximum number of genes in WikiPathways human curated collection are illustrated as green diamonds. The pathways are connected with seventy two genes

(circles and triangles) and the size of the gene nodes indicate that the gene is either a hub gene (large nodes) or not (small nodes) in the co-expression network of

ANGPTL8. The dark blue nodes indicate genes associated with DM. The aqua color nodes are the genes associated with GSD1. The triangle shapes represent the

genes with a SNPs associated to DM or other metabolic disorders. ANGPTL8 gene is highlighted in red.

several biological processes (in line with these previous
literature findings) and the associated genes from co-expression
network of ANGPTL8. Thus, the revealed genes in each
biological process have implications for future investigation
as being co-regulated with ANGPTL8 or mutual engagement
in these processes. The findings of the pathway analysis in
the current study provides another level of information on
the role of ANGPTL8 in the identified biological processes.
It allows us to view the interactions between ANGPTL8 and
the co-expressed genes based on the previously identified
pathway diagrams present in WikiPathways. The gene-pathway
network represented in Figure 3 helped to identify visually the
relationships between significant pathways and co-expressed
genes with SNPs associated to DM and similar phenotypic traits.
It is remarkable how the seven genes identified with a relevant
SNPs association, happen to be clustered around processes
linked with the Angiopoietin like protein 8 regulatory pathway.
Although in some studies the variants-disease associations were
detected in different populations than the Caucasian, such as
Korean (Hong et al., 2009) and Aborigen (Daimon et al.,
2008), the literature regarding the gene-disease associations
of those genes included Caucasian individuals as well. The
effect of the SNPs is not always well characterized except
for the missense variant of the ANGPTL8 (Weissglas-Volkov

et al., 2013). For this reason exploring the possible SNP
effects in the pathways identified by those genes is not
feasible with the literature information retrieved. However,
from this genetic investigation it is possible to observe that
there are significant genetic signals associated to DM and
similar traits, influencing genes involved and co-expressed
in ANGPTL8 pathways. Thus, further experimental studies
on those genes need to take the genetic background into
account or under control in case of mice studies. Moreover,
upcoming or existing GWAS studies for DM, could be checked
for signals related to the co-expressed ANGTPL8 genes, to
properly assess their relevancy in the pathophysiology of the
disease.

The key findings of this study provide focused information on
molecular players co-expressed with ANGPTL8 and associated
pathways with implications for follow up experimental studies
which could aid in identifying the exact mechanism of action and
signaling events leading to pathogenesis of DM and metabolic
disorders. Moreover, the integrated systems biology workflow
deployed in this study provides a way to assess the gene-centric
insights and to elucidate different levels of regulation from
a transcriptomics data, in contrast to the typical -omics
workflows which less directly target the systems level
knowledge.

Frontiers in Physiology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 1841

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Siddiqa et al. ANGPTL8 Co-expression Network Analysis

FIGURE 4 | Presence of co-expressed genes of ANGPTL8 in the ANGPTL8 Regulatory Pathway (pathway id:WP3915 (www.wikipathways.org/instance/WP3915)).

Thirteen genes in the ANGPTL8 regulatory pathway which are also identified to be co-expressed with it are marked with red color. These genes (MAPK8, CYP3A4,

PIK3R2, PIK3R4, PRKAB2, ANGPTL8, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, RAPGEF1) belong to different signaling arms of the pathway. Among

these genes, SHC1 and PIK3C2G are also identified as hub genes.

5. CONCLUSION

In this study, an integrated systems biology workflow is
deployed to analyze a hepatic transcriptomics data set. The
co-expression network analysis coupled with pathways analysis
of this data aided in identification of the genes associated
with ANGPTL8 at different levels of regulation. The findings
of GO analysis provided the complete annotation of the
ANGPTL8 co-expression genes module. Moreover, the genes
already associated with DM in ANGPTL8 genes co-expression
network were identified which increased our knowledge
regarding the possible mutual engagement of these genes in
the pathogenic mechanism. All of the findings of this study
have implications for follow up experimental studies which
could aid in identifying the exact mechanism of action and
signaling events leading to pathogenesis of DM and metabolic
disorders. Moreover, the integrated analysis workflow based on
different methods and tools employed in the current study
allows to assess a previously less characterized or uncharacterized
gene/protein in a systematic way which may aid future
studies.
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ArrayAnalysis.org for the microarray data before and after

normalization/preprocessing is provided.
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normalization without filtering for the low expression probes.

Data Sheet 2 | The normalized and preprocessed gene expressions used for

WGCNA.

Data Sheet 3 | The complete R Code used to perform WGCNA.

Data Sheet 4 | List of genes to SNPs analysis performed on the selection of

genes from ANGPTL8 genes co-expression module.

Data Sheet 5 | Lists of the genes in corresponding modules identified through

WGCNA.

Data Sheet 6 | The Gene Ontology analysis of the ANGPTL8 associated genes

co-expression module.

Data Sheet 7 | List of pathways enlisted with the WikiPathway IDs and

corresponding identified genes from ANGPTL8 co-expression genes module in

them.
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