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In this study we have applied an integrated system biology approach to characterize
the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential
metabolic engineering targets for the overproduction of the secondary metabolites in
this microorganism. We focused on an often overlooked growth period (i.e., post-first
rapid growth phase) and, by integrating constraint-based metabolic modeling with time
resolved RNA-seq data, we depicted the main effects of changes in gene expression
on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover,
through metabolic modeling, we unraveled a set of candidate overexpression gene
targets hypothetically leading to spiramycin overproduction. Model predictions were
experimentally validated by genetic manipulation of the recently described ethylmalonyl-
CoA metabolic node, providing evidence that spiramycin productivity may be increased
by enhancing the carbon flow through this pathway. The goal was achieved by over-
expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds
the first metabolic reconstruction of S. ambofaciens and the successful experimental
validation of model predictions and demonstrates the validity and the importance of
in silico modeling tools for the overproduction of molecules with a biotechnological
interest. Finally, the proposed metabolic reconstruction, which includes manually refined
pathways for several secondary metabolites with antimicrobial activity, represents a solid
platform for the future exploitation of S. ambofaciens biotechnological potential.
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INTRODUCTION

Constraint-based modeling is a widely adopted technique to
study microbial metabolic features at the system level. Indeed,
it has proven useful for addressing fundamental issues about the
metabolic landscape of a variety of microorganisms, including the
elucidation of non-trivial metabolic engineering strategies (King
et al., 2015; Zhang and Hua, 2016). Genome-scale metabolic
networks are formulated and reconstructed using genomic
information of the species to be modeled. Next, computational
methods (e.g., Flux Balance Analysis, FBA) can be adopted
to infer the flux distributions within the cell (Orth et al.,
2010), and, even more importantly, to study the metabolic
reprogramming following environmental perturbations and/or
changes in any of the possible cellular information layers
(e.g., gene expression). Many fields can benefit from this
technology including clinical microbiology (Sigurdsson et al.,
2012), metabolic engineering (Licona-Cassani et al., 2012),
environmental microbiology (Fondi et al., 2015), and microbial
ecology (Stolyar et al., 2007). A relevant (recent) achievement
in the field of constraint-based modeling is the possibility to
integrate gene expression data into the metabolic framework.
Indeed, by constraining the admissible flux across each reaction
in the model on the basis of the corresponding genes’ expression
level, metabolic flux predictions can be improved or context-
specific models created. Despite the fact that a recent work
showed that no method performs universally well, the integration
of transcriptomics data and constraint-based metabolic modeling
might still provide cues to guide the determination of the correct
phenotype among the space of solutions (Machado and Herrgard,
2014).

Streptomyces representatives’ metabolism has been extensively
studied (Baltz, 2016), in many cases using genome-scale
metabolic reconstruction and constraint-based modeling
(Borodina et al., 2005; D’Huys et al., 2012; Huang et al.,
2012, 2013). In particular, this computational approach has
disclosed potential metabolic engineering strategies (e.g.,
overexpression and knock-out targets) for daptomycin and
FK506 overproduction in S. roseosporus and S. tsukubaensis,
respectively. Furthermore, a comprehensive and system-
level understanding of the metabolic landscape of S. lividans
and S. coelicolor has been depicted using this methodology,
to predict flux changes that occur when the cell switches
from biomass to antibiotic production (Alam et al., 2010).
Interestingly, the potential of integrating gene expression data
and metabolic modeling for exploring Streptomyces biology (and
biotechnological potential) has been assessed in a recent work
focused on S. coelicolor (Kim et al., 2016). Besides benchmarking
currently available tools for transcriptomic data integration into
metabolic reconstructions and identifying the outperforming
tool among them (iMAT, Shlomi et al., 2008), this study has
identified a list of potential metabolic engineering targets for the
overproduction of the actinorhodin secondary metabolite in this
and other streptomycetes.

Our study offers a system biology approach to explore, from
a global point of view, the metabolic landscape of Streptomyces
ambofaciens, a prolific producer of bioactive compounds. The

reference strain S. ambofaciens ATCC 23877 (Pinnert-Sindico,
1954), whose genome sequence has been recently delivered
(Thibessard et al., 2015), has been known for the last 60 years
due to its ability to produce a wide range of secondary
metabolites including spiramycin, a macrolide used in human
medicine as antibacterial and antiparasitic agents (active against
Toxoplasma spp.) (Poulet et al., 2005; Chew et al., 2012) and
congocidine (netropsin), a pyrrolamide with a broad range of
biological activities but no medical applications (Cosar et al.,
1952). More recently, a genome mining-guided approach has
revealed the ability of this strain to produce, in addition
to spiramycin and congocidine, the antibiotic kinamycin, the
siderophores coelichelin and desferioxamines, the antifungals
antimycin and stambomycins, and novel polyketides with
antibacterial and antiproliferative activities (Thibessard et al.,
2015).

Here we have applied an approach that combines
physiological, transcriptomic and in silico modeling with the
aim to provide a system-level understanding of S. ambofaciens
metabolic features, and to identify a list of potential metabolic
engineering targets for the overproduction of the secondary
metabolites in this microorganism. Besides including the first
metabolic reconstruction of S. ambofaciens, the experimental
validation of model predictions presented herein underlines
the power of in silico modeling in the context of metabolic
engineering.

MATERIALS AND METHODS

Bacterial Strains, Media and Growth
Conditions
Streptomyces ambofaciens ATCC 23877 was obtained from the
American Type Culture Collection (ATCC). The identity of this
strain was verified by sequence analysis using the 16S rRNA genes
specific ‘universal’ primers 5′-CAGCAGCCGCGGTAATAC-3′
and 5′-CCGTCAATTCCTTTGAGTTT-3′ (Olsen et al., 1986).
The strain was stored in 1 ml cryotubes at −80◦C as frozen
mycelium in yeast starch (YS) medium containing 15% glycerol
at a biomass concentration of approximately 0.25 g dry cell
weight (DCW)/ml, or at −20◦C as spores in 20% glycerol at a
titre of approximately 5 × 108/ml. The composition (per liter)
of the media used in this study for S. ambofaciens growth and
manipulation is here reported. YS broth: 2 g yeast extract, 10 g
soluble starch, (18 g agar in YS agar) (pH 7.0); SMII (medium for
conjugation experiments): 15 g dextrose, 10 g soybean flour, 0.5 g
MgSO4 · 7 H2O, 5 g CaCO3, 15 g agar; 2XYT (medium for spore
resuspension): 16 g tryptone, 10 g yeast extract, 5 g NaCl.

Escherichia coli strain DH5α [F− 880d lacZ1M15 endA1
recA1 hsdR17 supE44 thi-1 λ− gyrA96 λ (lacZYA-argF ) U169]
was used in cloning procedures. This strain was cultivated in
Luria-Bertani broth supplemented with 50 µg/ml ampicillin
when required. Conjugation experiments were performed with
E. coli strain GM2929/pUB307::Tn7. Lennox Broth (LeB) was
used to grow, wash and resuspend this strain. The composition
(per liter) of the LeB is as follows: 10 g tryptone, 5 g yeast extract,
5 g NaCl, 1 g glucose.
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DNA Procedures and Construction of
Recombinant S. ambofaciens Strains
Streptomyces ambofaciens total genomic DNA was obtained as
described by (Kieser et al., 2000). Manipulation of E. coli DNA
was performed as indicated by Sambrook and Russell (2001).
PCR amplification conditions were 94◦C for 5 min followed by
34 cycles of 94◦C for 1 min, 65◦C for 1 min and 72◦C for 1 min,
and finally 72◦C for 10 min.

Overexpression of S. ambofaciens ccr (srm4) (SAM23877_
RS26790 in S. ambofaciens ATCC 23877 genome) coding for
crotonyl-CoA carboxylase/reductase was achieved by cloning
the PCR-amplified coding region into an ad hoc engineered
expression vector, pNGEM/OriT/P, under the control of
groES promoter. To construct pNGEM/OriT/P we utilized the
E. coli–Streptomyces shuttle vector pN702GEM3. pN702GEM3
(Fernandez-Abalos et al., 2003) contains the pIJ702 origin
of replication (for Streptomycetes), the bifunctional Neo/Kan
resistance marker from Tn5 (for both E. coli and Streptomycetes),
the pUC origin of replication (for E. coli) and a polylinker
derived from pGEM3Zf(+) (Promega). This vector is replicative
but not conjugative in Streptomycetes. To transform it into
conjugative vector pNGEM/OriT a DNA fragment containing the
oriT determinant was amplified by PCR from plasmid pTYM18
(Onaka et al., 2003) using the primer pair OriTHindIII-for and
OriTHindIII-rev whose sequence is reported below (HindIII
restriction sites are underlined):

OriTHindIII-for: 5′-CCGACCAAGCTTCGCCCAACCTGCC
ATCACGAGATTTC-3′
OriTHindIII-rev: 5′-GAGCTGAAAGCTTCAGAAGCCACT
GGAGCACCTC-3′

The amplified fragment was treated with HindIII, and the
resulting 930 bp DNA fragment was cloned into pN702GEM3
using the HindIII restriction site of the polylinker.

To construct the pNGEM/OriT/P plasmid, the groES
gene promoter (PgroES) region was amplified by PCR using
S. ambofaciens ATCC 23877 genomic DNA as template, and the
primer pair groES-for and groES-rev (XbaI and NdeI restriction
sites are underlined):

groES-for: 5′-GGCCGTTCTAGACCGTCCGGCGTTTCGAG
GACGAGG-3′
groES-rev: 5′-GCTGGTTCTAGACATATGCCGACCTCCCC
CTTCGGAGATCTCACG-3′

The amplified DNA fragment was digested with XbaI, and the
resulting 325 bp DNA fragment was inserted into the polylinker
of pNGEM/OriT, generating pNGEM/OriT/P.

The crotonyl-CoA carboxylase/reductase (CRR) encoding
gene srm4 (locus tag: SAM23877_ RS26790) was amplified from
S. ambofaciens ATCC 23877 genomic DNA, using the primer
pair CCR-for and CCR-rev (NdeI and EcoRI restriction sites are
underlined):

CCR-for: 5′-GACCGTCATATGCCCGAAAGCCATGCGCA
GAGCGCG-3′

CCR-rev: 5′-CCGCACGGAATTCGGAGCACCTGGTGCC
GTCACCGGC-3′

The amplified 1475 bp DNA fragment was digested with
NdeI and EcoRI and then ligated to NdeI and EcoRI –
cleaved pNGEM/OriT/P, obtaining the resulting plasmid
pNGEM/OriT/P/CCR.

Plasmids pNGEM/OriT/P and pNGEM/OriT/P/CCR were
introduced into the S. ambofaciens strain by conjugation with
E. coli GM2929/pUB307::Tn7, as described previously Kieser
et al. (2000). To allow plasmid selection, conjugation medium
SMII was supplemented with kanamycin (25 µg/ml).

Overproduction and Purification of CCR
(Srm4)
To overproduce and purify His6-tagged S. ambofaciens CCR
(Srm4) in E. coli, the entire ccr (srm4) gene was amplified by
PCR using the pNGEM/OriT/P/CCR construct as template, and
using the primer pair CCR-for (above reported) and pETCCR-rev
(HindIII restriction site is underlined):

pETCCR-rev: 5′-GAATTCAAGCTTGCGGAACCGGTTGA
TCGCGTCGA-3′

The amplified DNA fragment was digested with NdeI and
HindIII and then ligated to NdeI and HindIII –cleaved pET21b,
obtaining the resulting plasmid pET/Srm4. pET/Srm4 was then
introduced into E. coli BL21(DE3) competent cells.

Escherichia coli BL21(DE3) harboring pET/Srm4 was grown
in 1 l of LB medium supplemented with ampicillin (10 µg ml-
1) to A600 = 0.6 at 37◦C and 250 r.p.m. Culture was induced
by the addition of 0.4 mM IPTG and incubated for 16 h at
20◦C and 180 r.p.m. Cells were harvested by centrifugation at
5,500 RCF for 10 min, re-suspended in lysis buffer (20 mM Tris–
HCl pH 8.0, 200 mM KCl, 25 mM imidazole, 10% glycerol and
0.1 mg ml−1 DNase I). Cells were lysed by passing the suspension
through a French Press twice at 1000 psi, and the cell debris were
removed by centrifugation at 10,000 × g for 20 min at 4◦C. The
clarified cell lysate was bound to 1 ml of Ni-IMAC resin (Bio-Rad
Laboratories) for 1 h at 4◦C. The resulting slurry was transferred
to a gravity-flow column, and washed twice with 1 ml of lysis
buffer. The recombinant protein His6-Srm4 was then eluted with
0.2 ml of elution buffer (20 mM Tris–HCl pH 8.0, 500 mM NaCl,
500 mM imidazole and 10% glycerol), and frozen for storage at
−80◦C.

Spiramycin Production Assay
Spiramycin production by S. ambofaciens cultures grown in
YS broth was assessed by HPLC. At different time intervals,
supernatants were filtered through Phenex-RC membrane
(0.45 µm; Phenomenex). Four hundred microliter filtrated
samples were lyophilized and resuspended in a mixture
water-acetonitrile 70:30. The concentration of spiramycins was
determined by HPLC (Beckman System Gold Programmable
Solvent Module125) equipped with a UV detector (232 nm). The
column was a reverse phase LiChrospher R© RP-8 HPLC Column
(Supelco) and the mobile phase was a mixture of 100 mM
phosphate buffer (pH 2.3) containing 50 mM sodium perchlorate
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and acetonitrile 70:30 v/v with a flow rate of 0.8 ml/min. Purified
spiramycin (Sigma–Aldrich) freshly dissolved in phosphate
buffer (pH 7) was used as standard. Two-tailed paired Student’s
t-test was used to assess statistical significance of antibiotic titre
differences between bacterial strains during the time course.
Statistical significance was declared at p-value < 0.05.

Determination of Crotonyl-CoA
Carboxylase/Reductase (CCR) Activity
Streptomyces ambofaciens cultures (100 ml) were harvested by
centrifugation at 10,000 × g at 4◦C for 20 min. Supernatants
were discarded and mycelial pellets were washed twice in
homogenization buffer (50 mM potassium phosphate pH 7.5,
1 mM EDTA, 1 mM dithioerythritol (DTE), 10% glycerol,
0.1 mM phenylmethylsulfonyl fluoride). After resuspension
in homogenization buffer, mycelial extracts were prepared by
mycelial disruption at 2000 psi using a French Press and
subsequent centrifugation of the homogenates at 25,000 x g
for 5 min at 4◦C to remove debris. The supernatant was
collected and used for the enzyme activity measurement. Protein
concentrations were determined by using the colorimetric
Bio-Rad colorimetric assays for protein determination with
BSA as a standard. Protein extracts were analyzed by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
according to standard procedures.

The crotonyl-CoA carboxylase/reductase (CCR) activity was
determined as described (Erb et al., 2007) in a reaction mixture
containing 50 mM phosphate buffer (pH 7.5), 1 mM EDTA,
1 mM DTE, 1 mM crotonyl-CoA, 30 mM NaHCO3 and
0.1–0.3 mg of mycelial extract proteins, or 0.10–0.2 µg of purified
CCR protein. Upon equilibration at 30◦C for 5 min, 6 mM
NADPH was added to initiate the reaction. CCR activity was
measured spectrophotometrically by following the decrease in
absorbance at 340 nm (εNADPH = 6.22 mM−1 cm−1), which
corresponds to the oxidation of the NADPH. Specifically, the
decrease in the absorbance due to CCR-independent NADPH
oxidation was excluded from the calculation of CCR activity, by
performing an analogous reaction in the absence of crotonyl-
CoA. A unit (U) of enzyme activity is the amount of enzyme
catalyzing the oxidation of 1 µmol NADPH min−1.

RNA Extraction, Real-Time qPCR and
RNAseq Experiments
Total bacterial RNA was extracted from S. ambofaciens growing
in YS medium at 28◦C on a rotary shaker at 200 rpm, by using
the RNeasy Mini kit according to the manufacturer’s instructions
(QIAGEN). RNase-free DNase I was used to eliminate traces of
DNA in the samples, in accordance with the instructions of the
manufacturer (Promega, Madison, WI, USA).

Semi-quantitative analyses of the ccr-specific transcripts,
normalized to 16S rRNA, were carried out by Real-Time qPCR.
Total RNAs (1 µg) were reverse-transcribed by using random
hexamer (2.5 µM) with Superscript RT (Invitrogen). About
0.1–1% of each RT reaction was used to run real-time PCR on
a SmartCycler System (Cepheid) with SYBR R© Green JumpStart
Taq ReadyMix (Sigma–Aldrich) and the oligonucleotide

primer pairs 16Suniv-1/16S-univ-2 (specific for 16S rRNA
gene) and ccr-rtF/ccr-rtR (specific for ccr). The primer
sequences (and names) were: 5′-CAGCAGCCGCGGTAATAC-3′
(16Suniv-1); 5′-CCGTCAATTCCTTTGAGTTT-3′ (16Suniv-2);
5′-CGATCGTCACCTGCGCCTCCAC-3′ (ccr-rtF); 5′-CGAAG
TGGGTGCCGACGATAC-3′ (ccr-rtR). Primers were synthesized
as a service by MWG-Biotech AG Oligo Production. RT-PCR
product lengths were 185 bp for 16Suniv-1/16S-univ-2 and
96 bp for ccr-rtF/ccr-rtR. Real-Time qPCR samples were run in
triplicate. The Real-Time qPCR conditions were: 30 s at 94◦C, 30 s
at 60◦C, 30 s at 72◦C for 35 cycles; detection of PCR products was
performed at 83◦C. The relative transcript levels were calculated
using the 211ct method (Livak and Schmittgen, 2001).

For RNAseq experiments ribosomal RNAs were depleted
starting from 1 µg of total RNA from each of the time points
and biological replicates by using the RiboZero Gram positive
kit (Epicentre, Illumina), strand specific RNA-seq libraries
were prepared by using the ScriptSeqTM v2 RNAseq library
preparation kit (Epicentre, Illumina) starting from 50 ng of
previously rRNA depleted RNA from each biological replicate
and for all the time points analyzed. Then each library was
sequenced on a MiSeq Illumina sequencer and 76 bp reads were
produced.

RNAseq Data Analysis
Bowtie 2 (v2.2.6) (Langmead and Salzberg, 2012) was used
to align raw reads to S. ambofaciens ATCC 23877 genome
(GCF_001267885.1). Multi-mapping reads alignment was forced
using non-deterministic option to obtain a single mapping
locus for the reads located on the terminal arm region (nt 1-
202694/8101246-8303940), which is known to be duplicated.
High quality reads were selected imposing the following criteria:
mapping quality for uniquely mapping reads MAPQ greater than
30 and alignment score greater than −15; for multi-mapping
reads the alignment score was set equal or greater than −15.
These criteria define high quality reads only those showing a
maximum of three variations (mismatches or short indels): the
sum of penalty scores assigned to mismatches and short indels
should not be greater than−15.

rRNA depletion, strand specificity and gene coverage were
evaluated using BEDTools (v2.20.1) (Quinlan and Hall, 2010)
and SAMtools (v0.1.19) (Li et al., 2009) to verify the library
preparation and sequencing performances (see Supplementary
Data Sheet 7 and Table S1). To obtain the raw read counts of
protein coding genes on unique chromosomal regions and on the
pSAM1 plasmid, strand specific reads overlapping for at least 50%
of their length to the genes present in S. ambofaciens ATCC 23877
RefSeq annotation were considered in each sample. For protein
coding genes located in duplicated regions it was impossible
to determine the exact chromosomal origin of the reads. To
overcome this problem we reported only one of the two homologs
in the final list of genes and the relative raw count is the sum
of all the reads aligning to both loci (strand specificity was not
considered). The R (R Development Core Team, 2012) package
DESeq2 (v1.6.1) (Love et al., 2014) was then used to normalize
the counts basing on the median-of-ratio method to estimate the
scaling factors.

Frontiers in Microbiology | www.frontiersin.org 4 May 2017 | Volume 8 | Article 835

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00835 May 10, 2017 Time: 15:0 # 5

Fondi et al. S. ambofaciens Time-Resolved Transcriptomics and Modeling

Time course analysis was performed with maSigPro (Conesa
et al., 2006; Nueda et al., 2014). To find the genes whose
expression was significantly altered during the time-course, we
considered only those expressed in at least five over eight samples.
The regression parameters were left to default values (α = 0.05;
Q = 0.05) in both the two steps of the analysis, in particular a
forward step regression model was adopted in the second step.
Significant genes lists were obtained by imposing R-square >0.7,
in order to select genes correctly fitting the model as suggested by
Conesa et al. (2006). Finally hierarchical clustering was applied
to the expression values of the significant genes to individuate 9
time-dependent patterns of gene expression.

The enrichments of functional categories were calculated
using Fisher test and BH correction for multiple testing, the
categories with an adjusted p-value ≤ 0.05 were considered
significantly enriched (see next paragraph for functional
categories definition).

Raw data are publicly available at Sequence Reads Archive
under accession number BioProject PRJNA342588.

Metabolic Reconstruction and Modeling
The Refseq S. ambofaciens ATCC 23877 genome annotation
was manually refined by using RAST (Overbeek et al., 2014)
and antiSMASH (Weber et al., 2015): functional categories were
defined according to RAST classification, and the genes encoding
secondary metabolites, annotated by antiSMASH, were manually
added to the category of secondary metabolism. This version
of the genome annotation is reported in Supplementary Data
Sheet 1. A draft metabolic reconstruction of S. ambofaciens
ATCC 23877 was initially assembled using RAST annotation
system with default parameters and then downloaded from
the ModelSEED database (Henry et al., 2010). Afterward, this
reconstruction was extensively curated by manual inspection
following the main steps listed in Thiele and Palsson (2010).
Several additional information sources were interrogated,
including KEGG (Kanehisa and Goto, 2000), BRENDA (Scheer
et al., 2011) and MetaCyc (Caspi et al., 2006). In addition, models
of more/less related organisms (S. coelicolor and M. tuberculosis)
were used as reference in a comparative genomics workflow for
identifying potentially missing reactions. BLAST (Altschul et al.,
1990) searches (adopting the Bidirectional Best Hit criterion)
on the S. ambofaciens ATCC 23877 genome were carried out
to confirm/reject the inclusion of further genes/reactions from
related organisms to the S. ambofaciens model. The list of
S. ambofaciens cellular transporters was refined probing the
Transporter Classification Data Base (TCDB, Saier et al., 2014).
Biosynthetic pathways leading to specific antibiotics known to
be produced by S. ambofaciens were not initially included in the
draft reconstruction. For this reason, extensive bibliographical
data mining was carried out to include spiramycin (Richardson
et al., 1990; Karray et al., 2007; Nguyen et al., 2010), stambomycin,
antimycin, and congocidine into the reconstruction.

Overall, at the end of the manual refinement process, 112
reactions, 80 metabolites and 81 genes were added to the initial
reconstruction.

To date, no detailed information on the biomass composition
of S. ambofaciens ATCC23877 is available in scientific literature.

Accordingly, the biomass forming reaction from the S. coelicolor
A3(2) metabolic model (Borodina et al., 2005) was used to include
a reaction accounting for biomass assembly in S. ambofaciens
ATCC23877 reconstruction.

The FBA method was employed to simulate flux distribution
in different conditions. Briefly, FBA is a constraint-based method
relying on the representation of the biochemical system under
investigation in the form of a stoichiometric matrix S (m × n),
where m is the number of metabolites and n the number of
reactions. FBA is based on the assumption of the cellular pseudo-
steady state, according to which the net sum of all the production
and consumption rates of each internal metabolite within a cell is
considered to be zero. Under this assumption, the system can be
described by the set of linear equations:

dXi

dt
=

M∑
j=1

Sijvj= 0, ∀i ∈ N

in which Xi is the concentration of metabolite i, Sij is the
stoichiometric coefficient of the ith metabolite in the jth reaction,
vj is the flux of the jth reaction, N the entire set of metabolites and
M the entire set of reactions.

Upper and lower bounds of flux through each reaction act as
further constraints and are expressed as:

lb< vj< ub

where lb and ub are the lower and upper limits for reaction
j, respectively. Finally, FBA exploits linear programming to
determine a feasible steady state flux vector that optimizes a given
objective function (e.g., biomass production).

The reconstructed model was analyzed using
COBRAToolbox-2.0 (Hyduke et al., 2011; Schellenberger
et al., 2011) in MATLAB R© R2009b (Mathworks Inc.). Gurobi 5.61

and GLPK 4.322 solvers were used for computational simulations
presented herein.

Pareto Optimality Calculation
We calculated the growth dependencies between biomass
and antibiotics biosynthesis using Pareto optimality as
described in Heinken et al. (2013). We built Pareto optimum
curves by (i) determining the minimal and maximal flux
through biomass assembly reaction, (ii) fixing the flux
through this reaction at different steps spanning minimal
to maximal flux and (iii) maximizing the flux through each
antibiotic synthesis reaction for each step. The procedure
was repeated with biomass and antibiotics assembly reactions
exchanged.

In Silico Identification of Overexpression
Targets for Spiramycin Overproduction
The FSEOF algorithm for flux scanning based on enforced
objective flux was implemented for the selection of gene
targets to be amplified as described in Choi et al. (2010).

1http://www.gurobi.com
2http://www.gnu.org/software/glpk/
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Briefly, initial fluxes were calculated by constraint-based flux
analysis using the objective function of maximizing biomass
formation and setting (i) upper and lower boundaries to
exchange reactions as to simulate growth in complex medium,
(see below) and (ii) the spiramycin production rate to the
experimentally measured value of 0.0017 mmol∗h−1g−1. Next,
the objective function was set to spiramycin production and
the theoretical maximum product formation rate was calculated.
Afterward, FSEOF was performed under the objective function
of maximizing cell growth while the spiramycin production
rate is gradually enforced from the flux value used in
the first simulation to the theoretical maximum production
rate obtained with the second simulation (i.e., performing
ten different model optimizations). Candidate target genes
were then collected identifying those fluxes that increased
upon the application of the enforced objective flux without
changing the reaction’s direction. More specifically, we selected
those reactions (and corresponding coding genes) showing an
increased flux in at least one of the 10 simulations, without
changing the reaction’s direction. Please refer to Choi et al.
(2010) for a detailed and formal explanation of the FSEOF
algorithm.

RESULTS AND DISCUSSION

Growth of S. ambofaciens ATCC 23877
and Spiramycin Production Kinetics
Mycelial growth and spiramycin production were measured
during S. ambofaciens ATCC 23877 growth in shake flask
batch cultivation using complex YS medium (Figure 1 and
Supplementary Data Sheet 2). Biomass data displayed the
typical two-stage growth curve of actinomycetes consisting of
an initial stage of rapid growth (RG1) (12–40 h), a transition
phase of stalled growth (T) (40–60 h), a secondary growth
phase (RG2) (60–72 h) and a stationary (S) phase (72–120 h)
(Figures 1A,B). The analysis of growth kinetics also showed
that during RG1 specific growth rates (µmax) were not constant
over time but exhibited three distinct peaks at 12, 18, and
24 h, respectively (Figure 1B). Spiramycin production started
at 18 h and reached the highest titre in the medium at 48 h
(Figure 1A). Then its concentration decreased progressively
till 78 h and afterward it remained nearly constant till 117 h
(Figure 1A). The evaluation of specific production rates (qp) led
us to distinguish three distinct phases of spiramycin production
(Figure 1B and Supplementary Data Sheet 2): a brief pulse of
antibiotic production culminating at 18 h (phase I) during RG1,
a robust and prolonged phase of production (between 27 and
51 h) (phase II) starting during RG1 and lasting over almost
the entire T phase, and a third phase of production (between 81
and 108 h) (phase III) starting after RG2 and lasting over almost
the entire S phase. Notably, production phases II and III seem
to be preceded by growth rate peaks and are characterized by
either growth rate decline (phase II) or no growth (phase III)
demonstrating a strict interconnection between growth pulses
and activation of spiramycin production (Supplementary Data
Sheet 2).

FIGURE 1 | Streptomyces ambofaciens ATCC 23877 growth curve and
spiramycin production kinetics. (A) Biomass, pH and spiramycin
production curves. Growth phases (RG1, T, RG2 and S) and the four sampling
points for RNA-seq analysis is indicated (T1 to T4). (B) Growth rate and
spiramycin specific productivity. Phases with high specific spiramycin
production rates are shown (I, II, III).

Time-Resolved Transcriptomics of
S. ambofaciens ATCC 23877
To gain a better insight into the physiological and genetic
mechanisms governing mycelial growth and antibiotic
production, after RG1, global transcriptional analysis was
carried out by RNA-Seq technology. For RNAseq experiments,
samples were collected from shake flask batch cultures in YS
medium at four different time points (T1 = 48 h, T2 = 72 h,
T3 = 96 h, and T4 = 120 h) for RNA extraction. Two biological
replicates were analyzed for each time point.

The maSigPro bioconductor package (Conesa et al., 2006)
was adopted to analyze the RNA-Seq time series dataset
starting from the normalized gene counts obtained after DESeq2
(Love et al., 2014) standard normalization (see Material and
Methods). maSigPro was initially developed for the analysis
of single and multi-series time course microarray experiments,
and was recently adapted to deal also with Next Generation-
Sequencing (NGS) series of data (Nueda et al., 2014). This
package follows a two-step regression strategy to find genes
with significant temporal expression changes and/or significant
differences between experimental groups. Following the first
step of regression the software individuated 3551 significant
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FIGURE 2 | maSigPro analysis of RNA-Seq time series dataset. The median profile of each cluster was inferred from the expression patterns shown in
Supplementary Data Sheet 7 and Figure S1.

genes in our dataset and then, in a second step, it refined this
number to a total of 1186 variable genes, 598 upregulated and
588 downregulated during the time course. Among them we
found 30 upregulated genes coding for biosynthetic enzymes for
secondary metabolites, most of which involved in butyrolactone,
stambomycin, and alpomycin/kinamycin production; while
among the downregulated genes 37 participate in spiramycin
production. Moreover 34 genes were positioned on the
duplicated arm region where the cluster of genes coding for
alpomycin and kinamycin production is located, while 32
genes were expressed by the extrachromosomal plasmid pSAM1
(Supplementary Data Sheet 3).

The 1186 variable genes were finally subdivided into
nine clusters according to their gene expression profiles
(Supplementary Data Sheets 3, 7 and Figure S1) and median
profile was then inferred for each cluster (Figure 2). Clusters

1, 4, 6, and 8 consist of genes whose expression levels increase
during the time course, although with distinct patterns and
basal expression levels. In particular the expression levels of
genes in cluster 8 has high basal expression at T1 (48 h),
rapidly increased from T1 (48 h) to T2 (72 h) and then
remained roughly constant throughout T3 (96 h) and T4
(120 h). Expression levels of genes in cluster 4 also exhibited
high basal expression at T1 (48 h), progressively increased
from T1 to T3 and remained high at T4. These two clusters
are significantly enriched in functional categories “cell division
and cell cycle” (cluster 4), “cell wall and capsule” (clusters 4
and 8), “DNA metabolism” (clusters 4 and 8), and “sulfur
metabolism” (cluster 8) (Supplementary Data Sheet 3). The
enrichment in these categories is consistent with growth kinetics
indicating a secondary growth phase (RG2) between 60 and 72 h
(Figure 1).
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Genes in clusters 1 and 6 showed low expression levels at T1
(48 h) and gradually reached their highest expression level during
T4, although with different kinetics. Cluster 1 is enriched in
the functional category “secondary metabolism” (Supplementary
Data Sheet 3). In particular, it contains five type I polyketide
synthase (PKS)-encoding genes involved in stambomycin
biosynthesis, and several regulatory genes (belonging to TetR
and SARP families) of the alpomycin/kinamycin gene cluster.
Genes involved in butyrolactone biosynthesis also belong to this
cluster (Supplementary Data Sheet 3). Cluster 6 is enriched in
the functional category “fatty acid, lipid, isoprenoids,” but it also
contains four type I PKS-encoding genes of the stambomycin
gene cluster (Supplementary Data Sheet 3). This result indicates
that all nine PKSs-encoding genes involved in the biosynthesis
of the large (51-membered) glycosylated macrolide stambomycin
(Laureti et al., 2011) achieve the highest expression levels in
the late stationary phase (S). This finding is of interest for
management of spiramycin production. In fact, the biosynthetic
pathways leading to spiramycin and stambomycin compete with
each other for common metabolic precursors (i.e., malonyl-CoA
and methylmalonyl-CoA) during the assembly of the macrolide
scaffold.

It is also noteworthy that the up-regulated clusters 1, 4,
6, and 8 contain more than 95% of the genes modulated on
pSAM1 indicating a global gene expression increase of this
extrachromosomal element during late growth.

Such a competition is possibly alleviated by differential
temporal expression patterns of the genes involved in spiramycin
and stambomycin biosynthesis (Supplementary Data Sheet 3)
as suggested by maSigPro analysis that assigned 4 spiramycin
biosynthetic genes to cluster 2, 16 genes to cluster 3, 5 genes
to cluster 7 and 2 genes to cluster 9. Indeed, although with
different kinetics, the spiramycin genes belonging to the clusters
2, 3, 5, 7, and 9 exhibited a general trend of down-regulation
during the time course while the stambomycin genes increased
their expression level during the time course (Figure 2 and
Supplementary Data Sheet 7 and Figure S1). Consistently with
growth kinetics (Figure 1), clusters 2 and 3 contains many genes
coding for ribosomal proteins and translation factors, and genes
involved in central carbon (and energy) metabolism. Indeed, all
these genes are expected to be strongly down-regulated beyond
the RG1. Cluster 2 is enriched in the functional categories
“membrane transport,” “virulence, disease and defense,” while
cluster 3 is enriched in genes involved in “secondary metabolism”
(essentially, spiramycin biosynthesis). Cluster 7 exhibits an
enrichment in the category “fatty acid, lipid, isoprenoids,” while
clusters 5 and 9 exhibit no significant enrichment in any
considered functional categories.

The Metabolic Reconstruction of
S. ambofaciens Is in Agreement With
Experimental Growth Data on Defined
Media
A S. ambofaciens ATCC 23877 draft reconstruction was obtained
from ModelSeed as described in “Material and Methods.” As
it is usually expected for automatically reconstructed metabolic

networks, this draft model failed in predicting S. ambofaciens
growth, both on known defined media and on an arbitrarily
complex one. Thus, the model underwent a manual refinement
process which led to the inclusion of 112 reactions, 80 metabolites
and 81 genes, the re-formulation of the biomass assembly
reaction (following the one available for S. coelicolor) and the
inclusion of gap-filling reactions (i.e., not gene-encoded) to
reconcile S. ambofaciens growth on defined minimum media
(see below). The obtained reconstruction was named iMF1244
according to the standard nomenclature and its main features are
reported in Table 1. The SBML-formatted version of iMF1244 is
available as Supplementary Data Sheet 4.

The reliability of the reconstructed S. ambofaciens model
was inferred by comparing the predicted growth rates on a
set of different minimal media against a set of experimentally
determined ones available from previous studies (Lounès et al.,
1995, 1996a,b; Colombie et al., 2005). Accordingly, in silico
minimal growth media were defined using exchange reactions
present in the model, and biomass optimization was selected as
the model objective function (O.F.). More in detail, lower bounds
of exchange reactions accounting for all the salts present in the
experimental medium were set to −10 mmol g−1

× h−1, in
order to mimic non-limiting conditions. The carbon source of
each available minimum growth medium was then chosen as the
unique carbon source of this in silico medium and its uptake flux
was set to the corresponding experimentally determined value.
The compositions of all the simulated in silico media are reported
in Supplementary Data Sheet 7 and Table S2. The growth rates
that were inferred by the in silico simulation were then compared
to those experimentally determined, revealing an overall good
agreement (Pearson’s product-moment correlation 0.97, p-value
0.02, Figure 3). This indicates that the model should be able to
reproduce a realistic picture of the S. ambofaciens ATCC 23877
metabolic landscape.

Afterward, we tested the response of the model in a simulated
complex medium. The assimilation of yeast extract (YE) amino
acids and its effect on the production of spiramycin in culture
of S. ambofaciens has been extensively analyzed by Benslimane
et al. (1995). In this work the authors showed that in a YE
medium a specific growth rate (µmax) of 0.15 h−1 was soon
established after setting up the culture. The specific growth rate
then decreased sharply to reach zero value at 24 h and rose up
again when a second growth phase with a µmax of 0.012 h−1

TABLE 1 | Main features of the Streptomyces ambofaciens ATCC23877
metabolic reconstruction.

S. ambofaciens ATCC23877 genome

Genome size (bp) 8099129

N. of protein encoding genes 7208

iMF1244 model

N. of genes (% of coding genes) 1244 (17%)

N. of reactions 1473

Gene-associated 1210

Non gene-associated (Exchange reactions) 263 (144)

N. of metabolites 1283
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FIGURE 3 | Growth Rates. Comparison between model-predicted growth
rates and experimentally determined ones on four minimum growth media
providing different Carbon (C) and Nitrogen (N) sources (glucose and
ammonium, glucose and valine, glycerol and ammonium, glycerol, and valine).
The values reported by the blue bars correspond to measurements obtained
from previously published works (Lounès et al., 1995, Lounès et al., 1996a,b;
Colombie et al., 2005)

was observed. During this second growth phase, spiramycin
biosynthesis was observed, with a specific production rate (qp)
of 1.46 mg−1h−1g−1 (corresponding to 0.0017 mmol∗h−1g−1).
The growth on YE of S. ambofaciens was characterized by the
consumption of all the amino acids available in the medium
(Benslimane et al., 1995). Accordingly, to account for such
behavior, we added to the model all the 20 amino acids exchange
and transport reactions. Since no detailed information is available
concerning the single amino acids uptake rates in the second
growth phase on YE, each uptake flux was arbitrary set to the
value of 0.015 mmol∗h−1g−1. In such conditions, setting the
growth rate exactly to the measured value of 0.012 h−1, the model
predicts a spiramycin production rate of 0.0016 mmol∗h−1g−1,
which resembles the one experimentally determined (0.0017
mmol∗h−1g−1).

In a typical scenario, the metabolic pathways for the
production of secondary products (such as antibiotics) should
compete for the pool of available metabolic intermediates with all
the other cellular biosynthetic processes (e.g., biomass formation
and/or homeostasis maintenance). This is typically accounted for
by the so-called Pareto front between the two objectives (Marler
and Arora, 2004). Pareto front refers to the set of resources
allocation that is Pareto efficient, i.e., the situation in which
it is impossible to make any one objective better off without
making at least one individually worse. In other words, a pair of
objective functions (such as a biomass and antibiotic assembly
reactions) can be balanced to find the set of optimal solutions for
which one objective can only be improved at the expense of the
other. Recently, it has been shown that cells’ metabolism operates

close to the Pareto-optimal (Schuetz et al., 2012) and that the
calculation of Pareto fronts represents a technique that is more
effective than weighting the objectives (Gevorgyan et al., 2011),
especially when genetic algorithms are used to approximate the
front (Boghigian et al., 2010; Angione and Lió, 2015).

Accordingly, we computed (see Materials and Methods for
details) Pareto optimality for each of the four antibiotics that
were included in the reconstruction. As shown in Supplementary
Data Sheet 7 and Figure S2 the maximum theoretical yields were
observed in the condition of µ = 0 and were 0.0052, 0.0105,
0.00012 and 0.00086 mmol∗h−1g−1 for spiramycin, antimycin,
stambomycin and congocidine, respectively. Afterward, the
model (correctly) predicts a decrease in the production rates
of each antibiotic as a consequence of an increase of the
growth rate. These results, together with the consistence of
growth rates prediction, support the iMF1244 as being a reliable
reconstruction of the metabolism of this S. ambofaciens ATCC
23877.

Expression Data Integration With
Metabolic Modeling Identifies
System-Level Metabolic Trends
Here we used our reconstruction to provide a global description
of S. ambofaciens metabolism in the analyzed time points, by
integrating gene expression data with constraint-based metabolic
modeling. In general, many methods to achieve this task have
been developed to date (Machado and Herrgard, 2014). However,
a recent work (Kim et al., 2016) showed that, among them,
iMAT (Shlomi et al., 2008) led to more accurate predictions in
the analysis of Streptomyces coelicolor metabolic model. Briefly,
iMAT uses gene expression values to divide reactions into two
groups: highly and lowly expressed. The algorithm next seeks to
find the flux distribution that maximizes the consistency with
this classification. Accordingly, we first computed the first and
third quartiles for RPKM values in each time point to define
down- and up-regulated genes, respectively (obtained values are
reported in Supplementary Data Sheet 7 and Table S3). Next, we
performed four different FBA optimizations (one for each of time
points analyzed) using iMAT to constrain fluxes across reactions
according to gene expression values. For each optimization
the flux through biomass assembly and spiramycin production
reactions was set to the values experimentally determined (see
Figure 1 and Supplementary Data Sheet 7 and Table S4) and
the resulting fluxes distribution analyzed. To account for the
cellular maintenance cost, an arbitrary cellular growth rate of
1e−10 h−1 was set in those cases in which no growth had been
experimentally observed. Results obtained, however, were not
affected when this arbitrary cellular growth rate was replaced by
a simulated ATP maintenance cost. In this case a distribution of
overlapping fluxes was observed. Figure 4A shows the flux across
each reaction for every time step and the number of flux-carrying
reactions.

Our model predicts that, on average, 392 reactions are active
across all the time points (standard deviation, SD = 63.4).
Accordingly, around 1000 reactions are predicted to be inactive
in each time point (73% of the model reactions, on average).
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FIGURE 4 | Distribution of metabolic fluxes. (A) Heatmap showing the predicted flux carried by each reaction in the model across each of the time points. Also,
the number of flux-carrying reactions for each point is shown. (B) The number of active reactions (i.e., reactions predicted to carry flux) is reported for the major
pathways in the reconstruction, for each of the four time points analyzed.

This is in agreement with the fact that the bacterium is growing
in a complex medium and thus can find in the surrounding
environment most of its cellular building blocks. Interestingly,
the second time point is the one displaying the highest number
of flux-carrying reactions (475), in agreement with the fact
that, unlike the other time points, S. ambofaciens is actively
producing biomass in this moment of the growth phase. After
this time point, S. ambofaciens experiences a decreasing trend in
the number of flux-carrying reactions (Figure 4) reflecting with
both the reduced growth rate and lower spiramycin productivity
observed in vivo in last phases of the growth.

From a functional viewpoint, our modeling predicts that the
set of active pathways is largely shared by the four time points
(Figure 4B). Indeed, a similar scheme of reactions is apparently
carrying flux across all the time points, including the main central
routes of S. ambofaciens metabolism (e.g., purine and pyrimidine
metabolism, glycolysis, TCA cycle). This suggests the absence
of a massive metabolic reprogramming in the four time points
analyzed, i.e., the final part of S. ambofaciens growth. The most
evident exception to this general trend is represented by the
second time point, the one also showing the highest number
of active reactions. Our functional annotation of reactions
predicted to be carrying flux suggests that this difference is
due to the activation of four main pathways i.e., amino-sugar
metabolism, steroid biosynthesis, phenylalanine, tyrosine and
tryptophan biosynthesis, riboflavin metabolism (Figure 4B).
Thus, according to our simulations, these pathways (or part

thereof) play a role when the cell is trying to achieve two objective
functions simultaneously, i.e., biomass and antibiotic synthesis.
The activation of riboflavin metabolism and a consequent
increase in FAD cofactor availability, for example, is consistent
with an increased cellular demand of acetyl-CoA (a substrate for
the synthesis of many spiramycin intermediates) that, in turn,
can be obtained through the FAD-dependent degradation of fatty
acids. Similarly, the use of amino sugar metabolism might be
propaedeutic to the recycling of nucleotide hexoses (e.g., glucose-
1P), valuable precursors for the sugar moieties of the spiramycin
molecule.

All these data show how changes in gene expression may
redirect the cellular metabolic fluxes within the cell, leading to
activate specific routes that, in turn, may represent key nodes
in the utilization of intermediates that are common to multiple
cellular objectives (biomass formation and spiramycin synthesis
in this case). The hypothetical scenario depicted here indicates
both FAD production and nucleotide sugars recycling as key
factors in allowing the cell to achieve the imposed double
optimization.

Metabolic Modeling Identifies Potential
Overexpression Targets for Spiramycin
Overproduction
We next exploited the iMF1244 metabolic reconstruction
for the genome-wide identification of gene amplification
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targets potentially allowing spiramycin overproduction in
S. ambofaciens. To this purpose we used the FSEOF approach
described in Choi et al. (2010), as reported in Section “Materials
and Methods.” From the set of identified potential targets, we
excluded from further consideration those reactions that (i)
were added to the model for gap-filling, (ii) were involved
in the import (or export) of nutrients into the system for
modeling purposes (i.e., exchange reactions) and (iii) were either
encoded by multiple genes (enzymatic complexes) or, at least,
two alternative genes (paralogs) in the genome. In all these cases,
no sufficiently detailed clues on the gene(s) to be amplified for
spiramycin overproduction could be derived. Following these
selection criteria, our approach led to the identification of 65
potential reactions (corresponding to 54 genes) whose increased
flux may lead to an increased flow through spiramycin synthesis
pathway. The complete list of the reactions identified is reported
in Supplementary Data Sheet 5.

A large fraction of this set of reactions is involved
in the synthesis of precursors of the macrolactone
backbone of spiramycin. These include, for example,
glycerone phosphate (produced by sn-glycerol-3-phosphate:
NAD+ 2-oxidoreductase) involved in the biosynthesis of
methoxymalonyl-ACP, crotonoyl-CoA (the product of butanoyl-
CoA: oxygen 2-oxidoreductase) precursor of ethylmalonyl-CoA
and acetyl-CoA, the substrate of 3-oxopropanoate: NAD+
oxidoreductase for the generation of malonyl-CoA. Reactions
leading to the production of intermediates necessary for the
synthesis of the deoxyhexose sugars embedded in the spiramycin
molecule (e.g., alpha-D-glucose 1-phosphate 1,6-phosphomutase
responsible for the conversion of D-glucose 1-phosphate into
D-glucose 6-phosphate) were also identified.

Among the proposed targets, we selected the reaction carried
out by crotonyl-CoA carboxylase/reductase and presumably
involved in the synthesis of ethylmalonyl-CoA. The spiramycin
macrolactone backbone is synthesized by a PKS that, apart
from the most common polyketide precursors, malonyl-CoA
and methylmalonyl-CoA, was predicted to incorporate the less
common precursor, ethylmalonyl-CoA, and the functionalized
extender unit, methoxymalonyl-CoA (Kuhstoss et al., 1996;
Karray et al., 2007). In particular, the ethylmalonyl-CoA
is used as building block to assemble only a few known
polyketides, including the polyether antibiotic monensin A,
whose biosynthetic pathway was the first established pathway to
require ethylmalonyl-CoA (Liu and Reynolds, 1999).

Although there is more than one pathway to
ethylmalonyl-CoA, the pathway involving the crotonyl-CoA
carboxylase/reductase (CCR) (Erb et al., 2007) (commonly
referred to as “the ethylmalonyl-CoA pathway”) appears
to be the dominant source of this precursor for polyketide
biosynthesis (Wilson and Moore, 2012). This pathway was
originally described in purple non-sulfur bacterium Rhodobacter
sphaeroides and then discovered also in methylotrophic bacteria
such as Methylobacterium extorquens and in Streptomyces spp.
In the ethylmalonyl-CoA pathway a C4-compound, acetoacetyl-
CoA, derived from two molecules of acetyl-CoA, is converted to
the C5-compound mesaconyl-CoA (2-methylfumaryl-CoA) that
is then transformed to (2R,3S)-β-methylmalyl-CoA by hydration

and is finally cleaved to glyoxylate and propionyl-CoA. The
key enzyme of the pathway is CCR, which simultaneously
carboxylates and reduces the C4-compound crotonyl-
CoA, forming the C5-compound (2S)-ethylmalonyl-CoA
(herein indicated as “ethylmalonyl-CoA”). As illustrated in
Supplementary Data Sheet 7 and Figure S3, the ethylmalonyl-
CoA and its direct metabolic precursor crotonyl-CoA lies at the
crossroad between key metabolic pathways devoted to energy
metabolism and energy storage, lipid and amino acid metabolism
and secondary metabolism.

In S. ambofaciens the ethylmalonyl-CoA is used as a building
block to synthesize the polyketide backbone of spiramycin
and antimycin, and the full set of genes necessary for a
functioning ethylmalonyl-CoA pathway is clustered together
in the S. ambofaciens chromosome not very distant from
the spiramycin biosynthetic cluster. The cluster comprises
the ORFs: SAM23877_RS28800 coding for methylsuccinyl-
CoA dehydrogenase (msd gene); SAM23877_RS28805 coding
for mesaconyl-CoA hydratase (mcd gene); SAM23877_RS28810
coding for L-malyl-CoA/beta-methylmalyl-CoA lyase (mclA
gene); SAM23877_RS28815 encoding ethylmalonyl-CoA mutase
(ecm gene); SAM23877_RS28820 encoding the CCR (ccr gene);
SAM23877_RS28825 coding for a TetR family transcriptional
regulator; SAM23877_RS28830 coding for 3-hydroxybutyryl-
CoA dehydrogenase (Supplementary Data Sheet 7 and Figure S3).

As well as in other polyketides gene clusters, a secondary
copy of the CCR-encoding gene is located in both
spiramycin (SAM23877_RS26790, srm4) and antimycin
(SAM23877_RS01780) biosynthetic gene clusters. RNAseq
data showed that under tested experimental conditions
all three CCR-encoding genes were poorly expressed, the
gene RS26790 has an expression level higher than the gene
RS28820 which is more expressed than the gene RS01780
(RS26790 > RS28820 > RS01780), among them only the gene
SAM23877_RS26790 (srm4) shows an expression level above the
baseline threshold (RPKM > 10) in all the time points analyzed,
thus allowing us to consider it effectively expressed along the
growth curve (Table 2). Although the CCR enzymatic activity of
the ccr paralog gene products has not been proven so far, their
role is likely to synchronize ethylmalonyl-CoA synthesis from
acetoacetyl-CoA with polyketide assembly, and/or to increase
intracellular ethylmalonyl-CoA levels in order to ensure adequate
levels of the precursor during polyketide biosynthesis. Therefore,
the carbon flow through the ethylmalonyl-CoA pathway was
consistently associated with spiramycin productivity by our
metabolic model.

TABLE 2 | Expression of CCR-encoding genes as deduced by RPKM
values from RNAseq analysis.

Time
point

Time
(hours)

SAM23877_
RS26790

(RPKM value)

SAM23877_
RS28820

(RPKM value)

SAM23877_
RS01780

(RPKM value)

T1 48 13.5 8.5 3.5

T2 72 16 7 6

T3 96 16 10.5 6.5

T4 120 32 26.5 18.5
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Manipulation of the Ethylmalonyl-CoA
Metabolic Node Leads to Spiramycin
Overproduction
To validate this prediction, we planned to over-express the ccr
paralog srm4 of the spiramycin gene cluster in S. ambofaciens.
However, we first verified that srm4 actually codes for an
enzyme with CCR activity. To this purpose, the His6-tagged
S. ambofaciens CCR (Srm4) protein was overproduced in
E. coli BL21(DE3) strain and purified (Supplementary Data
Sheet 7 and Figure S4). Then its CCR enzymatic activity was
determined. The results demonstrated an enzymatic activity of
449 ± 11 U mg-1. To over-express ccr (srm4), the gene was
placed under the control of the PgroES promoter (Luo et al.,
2015) in pN702GEM3, a multicopy E. coli-Streptomyces shuttle
plasmid vector (Supplementary Data Sheet 7 and Figure S5). The
pNGEM/OriT/P/CCR or the control plasmid pNGEM/OriT/P
were then introduced into S. ambofaciens ATCC 23877 by
intergeneric conjugation with E. coli, and mycelial growth
(Figure 5A), spiramycin production (Figure 5B) ccr (srm4)
mRNA levels (Figure 5C), and CCR enzymatic activity in crude
cell extracts (Figure 5D) were analyzed in the trans-conjugant
strains grown in YS medium. With respect to growth kinetics,
compared to control strain (harboring pNGEM/OriT/P) the ccr-
over-expressing strain exhibited major differences during the
RG1 with about 14.6% lower final biomass values but similar
growth rates (0.0697 vs. 0.0622 between 24 and 48 h) (Figure 5A
and Supplementary Data Sheet 6b).

Strain manipulation did not alter significantly either
soluble protein content (expressed as mg protein/g DCW)
or electrophoretic pattern as determined, respectively, by
Bio-Rad colorimetric assays and SDS-PAGE (Supplementary
Data Sheet 7 and Figure S6). In each time point the ccr (srm4)
mRNA expression levels of the strain over-expressing ccr
(pNGEM/OriT/P/CCR), were compared at the same time
both with the expression levels of the wild type and of the
strain with control plasmid (pNGEM/OriT/P). As shown in
Figure 5C the strain over-expressing ccr (srm4) exhibited an
average maximum increase in the mRNA levels of 2–3-fold when
compared respectively with wild type or with the control plasmid
strain, thus indicating a moderate gene overexpression at each
time point (Figure 5C). It is noteworthy that during the time
course, in all the three strains ccr (srm4) mRNA levels reached
the highest values of expression at 48 h. So in the light of these
results we can infer that the percentage of the overexpressed
Srm4 protein in the total soluble S. ambofaciens proteome is
therefore almost negligible.

In the ccr-over-expressing strain spiramycin productivity
was enhanced during the RG1 and T phases. Compared to
control strain spiramycin specific production rates (qp) were
increased by a factor of 3.63 at 24 h (due to early triggering of
antibiotic biosynthesis) and 1.52 at 48 h (Supplementary Data
Sheet 6b), but antibiotic titres were only modestly increased by
a factor of 1.503 at 48 h (i.e., an average increase of 50.3%
with a standard deviation of 36.5%, p-value = 0.01078), when
spiramycin titres reached the highest values during the time
course. Antibiotic titres were instead significantly increased

by a factor of 4.336 at 72 h (i.e., an average increase of
333.6% with a standard deviation of 235.6%, p-value = 0.00024)
(Figure 5B and Supplementary Data Sheet 6a). In contrast,
no statistically significant differences were observed during
the late phase of antibiotic production (during RG2 and S
phases).

The achieved increase was rather limited when compared
to that obtained with similar metabolic engineering strategy
that resulted in about 2- and 1.8-fold increase in actinorhodin
production by S. coelicolorA3(2) strains overexpressing,
respectively, the ribulose 5-phosphate 3-epimerase and the
NADP-dependent malic enzyme (Kim et al., 2016). However,
the increase was comparable to those obtained in other
streptomycetes by genetic modification of single targets (Huang
et al., 2012, 2013). For instance, in Streptomyces tsukubaensis
35, 40, or 50% improvement in FK506 (a 23-membered
polyketide macrolide also known as tacrolimus) production
could be achieved, respectively, by overexpression of zwf2
(coding for glucose-6-phosphate dehydrogenase), accA2 (coding
for acetyl-CoA carboxylase) or dahp (coding for 3-deoxy-D-
arabino-heptulosonate-7-phosphate synthase). However, the
combined effect of gdhA-deletion and dahp-, accA2-, zwf2-
overexpression enhanced the concentration of FK506 up to
1.47-fold in fed-batch fermentations (Huang et al., 2013).
In another streptomycete, such as for example Streptomyces
roseosporus, co-overexpression of zwf2, dptI, and dptJ genes
resulted in a 34.4% higher daptomycin concentration compared
with the parental strain (Huang et al., 2012). These comparisons
indicate that the achieved increase may not be irrelevant, and
that spiramycin production may be further enhanced by the
combined effect of ccr-overexpression, and genetic manipulation
of other identified targets and/or improvement of fermentation
conditions. Preliminary data indicate very long-chain acyl-CoA
dehydrogenases, and several enzymes involved in glyoxylate
cycle and glycine, serine and threonine metabolism as further
good targets for strain improvement.

The results of biochemical assay with crude mycelial extracts
demonstrated that the increase in spiramycin productivity
paralleled with an increase in CCR activity (Figure 5D). In
particular, at 48 h of growth, the enzyme activity in the ccr-over-
expressing strain was about two-fold higher than in control strain
(harboring pNGEM/OriT/P). It should be noted also that the
order of magnitude of CCR activity that was determined in the
protein extracts from S. ambofaciens is similar to those assessed
in protein extracts from Rhodobacter sphaeroides (0.7 U mg−1),
Methylobacterium extorquens (0.8 U mg−1) and Streptomyces
coelicolor A3(2) (0.4 U mg−1) (Erb et al., 2007). Altogether these
results validate the metabolic model providing evidence that
spiramycin production may be increased by genetic manipulation
of the ethylmalonyl-CoA metabolic node.

CONCLUSION

In this study we have applied an integrated approach to explore
the metabolic landscape of Streptomyces ambofaciens with the
aim to provide a system-level understanding of its metabolic
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FIGURE 5 | Genetic manipulation of the ethylmalonyl-CoA metabolic node. (A,B) Mycelial growth (A), and spiramycin production (B) of wild type and
trans-conjugant strains harboring pNGEM/OriT/P/CCR or control plasmid pNGEM/OriT/P grown in YS medium. Values represent mean ± standard deviation (SD)
(bars) from seven independent experiments (biological replicates). In (B), each assay was carried out with triplicate samples (technical replicates). The variability
associated with the technical replicates (including extraction and analytic procedure with samples processed the same day) was less than 0.3%. (C,D) ccr (srm4)
mRNA levels (C) and CCR enzymatic activity (D) in wild type and recombinant strains. In (C), the expression levels of ccr (srm4) (means from three independent
experiments), compared with those of the wild type strain at 24 h arbitrarily assumed equal to 1, are reported. Bars represent standard deviations. The sheer gray
boxes delineate the expression levels of ccr (srm4) in the wild type strain for each time point; the gray dotted line marks the expression levels of ccr (srm4) of the wild
type strain at 24 h taken as calibrator for the histogram representation. In (D) the CCR enzymatic activity was determined in crude mycelial extracts of wild type and
trans-conjugant strains harboring pNGEM/OriT/P/CCR or control plasmid pNGEM/OriT/P grown in YS medium for 48 h. Values represent means from three
independent experiments. Bars represent standard deviations.

features, and to identify a list of potential metabolic engineering
targets for the overproduction of the secondary metabolites in
this microorganism (Figure 6).

Our work culminated in the construction of a metabolic
model that enabled us to identify key molecular targets for strain
improvement. In particular, we proposed a set of genes/reactions
that might be preferential targets for metabolic engineering
experiments aimed at the overproduction of spiramycin. Notably,
we selected one of these targets and we validated the model

predictions by providing evidence that spiramycin productivity
may be considerably increased by enhancing the carbon flow
through the recently described ethylmalonyl-CoA metabolic
pathway. This goal was achieved by over-expressing the ccr
paralog srm4 in an ad hoc engineered plasmid. In the future
this strategy will be valuable in reconstructing the genetic
and metabolic profiles of other streptomycetes, and of great
benefit to the development of industrial overproducers by genetic
engineering.
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FIGURE 6 | Schematic representation of the integrated approach Workflow herein proposed.
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