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Abstract

A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into
biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost
within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at
a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of
these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic
networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every
additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon
source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from
each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for
networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of
biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related
molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study
can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we
identify prescribe broad boundary conditions that can help to guide synthetic metabolism design.
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Introduction

Among the most important goals of synthetic biology and

biotechnology is to engineer organisms with novel properties [1,2].

Most current efforts focus on designing subsystems of organisms,

such as regulatory circuits [1,3] or metabolic pathways [4,5].

However, recent advances in genomics and genome synthesis have

allowed synthetic biology to make great strides towards the

ultimate goal of designing new organisms from scratch [6–10].

To be able to synthesize new life, one needs to understand life’s

minimal needs. Considerable effort has thus focused on un-

derstanding and creating minimal organisms [9–15]. One line of

research studies organisms with very small genomes that comprise

only a few hundred genes, such as the gamma proteobacteria [14],

Blochannia floridanus [16] and Carsonella ruddii [17]. Such organisms

are typically endosymbionts or endoparasites, and receive sub-

stantial resources from their host [15]. Although valuable

knowledge has been gained by studying these organisms, this

property renders them of limited use in understanding minimal

requirements for a free-living organism.

A second, complementary line of research starts from a complex

genome, successfully eliminates genes from it without affecting

viability, and thus creates a genome that is (close to) minimal. This

is possible because free-living organisms have many genes that are

dispensable in any one environment [9–11,13,18]. Such systematic

gene deletion efforts not only provide insight into minimal

genomes, they can also help to eliminate the synthesis of undesired

molecules, avoid excessive waste production, and thus increase the

efficiency with which an organism synthesizes desired molecules

[19]. Based on both computational and experimental approaches

of genome reduction, several proposals for the gene complements

of minimal organisms have been made. They range in size from

100 genes to more than 300 genes in organisms such as

Mycoplasmas [9,11,13].

One indispensable feature of any living organisms is its

metabolism. A metabolism is a complex network of chemical

reactions, catalyzed by enzymes that are encoded in genes. It uses

sources of energy and chemical elements – nutrients – to

synthesize molecules that an organism needs, including precursors

of biomass and various secondary products, such as molecules for

defense and communication [14]. The manipulation of metabo-

lism for technological purposes is known as metabolic engineering

[19–22].

Metabolic engineering has multiple applications. They include

the large-scale, fast, and efficient synthesis of pharmaceuticals,

chemical reagents, and biofuels [2,19,23–26]. The latter class of

molecules is especially important given their importance in energy

security and in the reduction of greenhouse gas emissions

[20,21,27,28]. Another application is bioremediation, where

microbes with properly engineered metabolic pathways may be

able to clean hazardous waste in inaccessible places [28,29].

Current metabolic engineering approaches typically manipulate

one or a few enzyme-coding genes [1]. Because of the highly

interconnected nature of metabolism, and because of the

complexity of enzyme regulation, such manipulation faces several

challenges. The first is to ensure a high level of expression of the
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genes and the enzymes they encode. A second challenge is to

manipulate cells into selectively producing desired molecules at

high rates and yield. Cells can be quite recalcitrant to such

manipulations [30]. A third challenge is to ensure that a desired

product can be produced from one source of chemical elements

and energy, but from multiple sources, to ensure efficient

production. For example, yeast species are good candidate

organisms to synthesize ethanol, with the drawback that they are

not highly efficient at fermenting cellulosic biomass. (In addition to

glucose, which yeast strains can catabolize normally, cellulosic

biomass contains five carbon sugars, such as arabinose and xylose,

which yeast strains cannot catabolize.) Metabolic engineering can

create yeast strains that ferment not only glucose but also mixtures

of other sugars. [31]. A fourth challenge is to overcome the toxicity

of some desired products when they accumulate at high

concentrations in a cell. This holds especially for biofuels that

are produced in large amounts [27]. Finally, metabolic engineer-

ing needs to control ratios of metabolites such as ATP/ADP or

NAD+/NADH, which can influence product yields and lead to

synthesis of undesired byproducts through their global effects on

physiology [21].

While contemporary metabolic engineering focuses on altering

existing pathways, future engineering will design metabolisms and

minimal organisms de novo [1,21,32,33]. Ongoing technological

advances in sequencing and de-novo synthesis and declining prices

in these technologies [2,20,34,35] suggest that de-novo synthesis of

minimal organisms for biomass production will be feasible soon. A

small (synthetic) metabolism may also allow better control of

metabolic properties than a large metabolism [1,18].

To be able to design a metabolism, one needs to be able to

predict system-wide metabolic properties. In recent years great

strides have been made towards such prediction. Especially

noteworthy are constraint-based modeling approaches, which

can predict the spectrum of biosynthetic properties of a metabolism

from knowledge about the reactions that its enzymes catalyze, and

from the nutrients available in its environment [36–38]. One such

approach, flux balance analysis (FBA) [36,37,39,40], uses in-

formation about the stoichiometry of reactions in a metabolic

network to predict the rate at which a network can synthesize

a given spectrum of molecules, which we refer to as the network’s

biosynthetic flux. FBA makes two main assumptions. The first is

that a metabolism is in a steady state with a constant nutrient

supply. The second is that it maximizes some property, such as

biosynthetic flux [41]. While FBA faces challenges caused by

regulatory constraints [42,43], it is well suited to answer simple

qualitative and quantitative questions about important properties

of a metabolic system [44]. An especially important property is the

minimal number of reactions R needed to synthesize a given

number B of (biomass) molecules from a given spectrum N of

nutrients. The ideal network has few reactions and can synthesize

many molecules using a broad spectrum of nutrients. However

trade-offs between these properties exist, which do not allow all

these requirements to be met.

We here take a first step towards a quantitative understanding of

these and other trade-offs using constraint-based methods. To this

end, we study the properties of not just one metabolic network, but

of multiple networks that differ in these properties. Experimental

techniques are not yet suitable to do that, but computational

approaches are [45]. The approach we use starts with the

observation that any one metabolic network exists in a vast space

of possible metabolic networks. The approach uses recently

developed techniques [46,47] to create unbiased arbitrary large

samples of networks from this space, where each network of the

sample has a specific property, such as a given number of

reactions, a given number of carbon sources it can use, and a given

set of molecules that it can synthesize. The underlying sampling

technique, Markov Chain Monte Carlo sampling [48,49] is

a widely used approach with a well-developed statistical theory

[50–54]. We use it to quantify the trade-offs and thus the design

constraints imposed by important metabolic network properties.

Specifically, a first part of our analysis focuses on three main

properties. The first is nutrient flexibility N, that is, the number of

different carbon sources a metabolic network can utilize as sole

carbon sources. The second is a network’s biosynthetic ability B,

that is, the number of biomass molecules that it can synthesize.

The third is the number of reactions R in a network. We then

extend our analysis to further properties, such as the biosynthetic

flux S, the rate at which biomass molecules are synthesized, and

the amount W of waste produced.

Results

Each Additional Nutrient Requires on Average Two
Additional Reactions

Due to the presence of alternative metabolic routes that connect

many pairs of molecules, most metabolic systems are able to

tolerate genotypic changes, such as the deletion of enzyme coding

genes. For instance, 80% of single gene deletions in budding yeast

have no detectable phenotypic effect in standard laboratory

environments [55]. More specifically, metabolic systems are to

some extent robust against deletions of enzyme coding genes,

because the resulting elimination of metabolic reactions from

a metabolic network does not necessarily affect cell viability

[9,11,13,23–25,56].

We first wanted to explore how the minimally needed number

of reactions in a network depends on the network’s nutrient

flexibility and its biosynthetic abilities. For example, a network that

can synthesize biomass on an increasing number of different

carbon sources will require more metabolic reactions. But how

many more? To answer this question we created random minimal

networks (see Methods) with a given nutrient flexibility N, that is,

networks that can use N sole carbon sources to synthesize all

biomass components, but in which every single reaction is

essential, such that no reaction can be removed without abolishing

viability of the network on at least one of the carbon sources. More

specifically, we created 50 random viable networks that can use

N= 20, 40, 60, and 80 carbon sources as sole carbon sources (for

a total of 200 networks), and that could synthesize all B= 63 E. coli

biomass components. We then studied the relationship between N

and the number of reactions in these minimal networks (Figure 1a,

orange data points). Linear regression analysis showed that the

number of needed reactions increases by a number that is

statistically indistinguishable from two for every additional carbon

source that a network is required to be viable on. Specifically, we

found R to depend on N as R= (1.960.1)N +234, where the

number 0.1 indicates the 95 percent confidence interval of the

regression coefficient (see Text S1 for details). We then asked

whether the same relationship between N and R also holds if we

vary biosynthetic ability. To this end, we repeated the analysis just

described, but for networks that are able to synthesize B= 20,

B = 30, and B = 40 biomass components. The slope of the

regression line was indistinguishable from that of B= 63 in all

three cases (Figure 1a, green, purple, and blue data; see Figure S3

for distributions of R). In other words, regardless of a network’s

biosynthetic abilities, every additional carbon source that a network

is required to be viable on requires on average two additional

metabolic reactions.

Design Constraints on a Synthetic Metabolism
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Each Additional Biomass Molecule Requires Three
Additional Reactions on Average

We next analyzed the relationship between biosynthetic ability

and the numbers of reactions in greater detail. To this end, we

used the same set of random viable minimal networks that we used

in the previous analysis. First, we analyzed the number of reactions

in 50 random viable minimal networks with the ability to

synthesize B= 20, 30, 40, or 63 randomly chosen biomass

components, that is, we analyzed a total of 200 networks. Each

of these networks was required to be viable on N= 80 different sole

carbon sources. We found that the number of reactions needed for

viability under these conditions increased approximately linearly

with biosynthetic ability (Figure 1b, orange), such that every

additional biomass molecule required approximately 3 additional

reactions Specifically, R= (3.360.2)B +195. We then asked again

how this relationship between biosynthetic ability and number of

reactions depends on N, and thus repeated this analysis for

networks viable on N= 20, N= 40, and N= 60 sole carbon sources.

The slope of the regression line was indistinguishable for the

different values of N (Figure 1b, green, purple, and blue data), but

the intercept differed, as one might expect from the analysis of the

previous section.

The results of pairwise regression analysis are easy to display

graphically and to interpret intuitively, which is why we use it here.

However, where more than two quantities vary, pairwise re-

gression analysis is insufficient to study dependencies among all of

them. We thus also carried out a multiple regression analysis using

all 800 minimal networks, where nutrient flexibility and bio-

synthetic ability were independent variables, and where the

reaction number was the dependent variable. Not unexpectedly,

the pairwise regression coefficients estimated from the multiple

regression analysis were statistically indistinguishable from those

estimated from the pairwise analysis above (R= 2.0N+3.2B+171).

Overall, variation in the two independent variables explains 87

percent of the variation in the number of reactions of a metabolic

network.

Our analysis thus far was only concerned with the qualitative

question whether networks can synthesize a given number B of

molecules, not with the rates at which these molecules can be

synthesized. One would therefore expect that our observations are

not sensitive to variation in the proportions in which biomass

molecules are to be synthesized. An additional analysis (Figure S1)

confirms this expectation.

Network Size does Not Significantly Influence
Biosynthetic Flux

Engineered metabolic networks that produce one or more

desired products at a high rate are a key goal of biotechnology. For

our purpose, it is therefore important to ask whether the maximal

rate at which biomass can be synthesized by a network depends on

B and N. We here used the ability of FBA to predict the maximal

biosynthetic flux (S) of viable networks to answer this question (see

Methods).

Our analysis thus far was based on minimal networks, but it is

possible that biosynthetic flux depends on the number of reactions

in networks that are larger than minimal networks. We therefore

first analyzed 1.66104 random viable networks that are not

minimal and that differ in size between R= 400 and R= 800

reactions. (From here on, we will use the term random networks to

refer to those networks that are not minimal, unless stated

otherwise.) We found that network size does not influence

biosynthetic flux for networks able to synthesize all B= 63 E. coli

biomass molecules. That is, the regression coefficient describing

Figure 1. The number of required reactions increases with
nutrient flexibility and biosynthetic ability. The vertical axis
shows the number of reactions in minimal networks as a function of a)
nutrient flexibility and b) biosynthetic ability. Dots and length of error
bars correspond to means and one standard deviation based on
a sample of n = 50 minimal networks. Solid lines indicate linear
regression lines for different values of B in a) and N in b). Numerical
estimates of regression coefficients with 95% confidence intervals are
given in the inset, in the format y = (a6e)x+b, where a is the regression
coefficient, e the confidence interval, and b is the intercept of the
regression line with the vertical axis.
doi:10.1371/journal.pone.0039903.g001

Design Constraints on a Synthetic Metabolism
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their relationship is statistically indistinguishable from zero (f= rR,

with r = 3610256761025, n= 1000 networks). The same holds

for networks that can synthesize B= 20, B= 30, and B= 40

biomass molecules. (See Figure S2 for flux distributions.).

High Biosynthetic Flux is Usually Achieved by a Modest
Number of Active Reactions

We just showed that the number of reactions in a network does

not affect its biosynthetic flux. However, it is well-known that only

a subset of a network’s metabolic reactions are usually active in any

one environment, that is, they have nonzero flux [12]. We thus

wanted to know whether a relationship exists between biosynthetic

flux and the number of active reactions, RA. This is indeed the

case, based on an analysis of all our 1.66104 random networks

viable on glucose as a sole carbon source. More specifically, this

relationship is strongly negative (Pearson’s r = -0.65 for bio-

synthetic flux on glucose). That is, the greater the number of

active reactions, the lower the biosynthetic flux of a network.

We next used linear regression to ask whether network size R

itself influences the number of active reactions RA. The answer is

no. Network size has no statistically significant influence on the

number of active reactions for any combination of values of N and

B. This observation is in agreement with earlier results by

Nishikawa et al. [12], which showed that the number of active

reactions in a network is not sensitive to the size of the network.

We subsequently asked whether synthesis of each additional

biomass molecule also needs more active reactions. The answer is

yes, as shown by linear regression analysis (3.6–4 additional

reactions, on average, per biomass molecule).

The More Biomass Molecules a Network Synthesizes, the
Smaller is its Biosynthetic Flux

We next wanted to explore why the number of active reactions

is negatively correlated with biosynthetic flux. Our observations so

far show that the number of active reactions increases with

biosynthetic ability. We thus hypothesized that increased bio-

synthetic ability entails smaller biosynthetic flux, because bio-

synthetic flux should decrease as the number of biomass molecules

to be synthesized grows, given a constant nutrient supply. To test

this hypothesis, we computed the correlation between the number

of molecules synthesized and biosynthetic flux in multiple

environments for all 16000 networks we had generated (see

Methods). This correlation is significantly negative (Pearson’s r = -

0.60; P,102300). Each molecule to be synthesized decreases

biosynthetic flux by 0.05 mmoles per g DW per hour, equivalent

to a 6 percent decline relative to E.coli’s computed biosynthetic

flux. Next, we analyzed networks viable on 80 different sole carbon

sources that were able to synthesize B= 20, 30, 40, or 63 randomly

chosen biomass components (1000 networks each, for a total of

4000 networks). Biosynthetic flux under these conditions also

decreased approximately linearly with biosynthetic ability

(Figure 2a, orange data). Specifically, every additional biomass

molecule that a network needs to synthesize decreases the

biosynthetic flux by approximately 0.05 mmoles of biomass per

g DW per hour (6 percent; S= -(0.0560.001)B +3.5). Similar

relationships also hold for networks viable on N= 20, N= 40, and

N= 60 sole carbon sources (Figure 2a, green, purple, and blue

data). They show that, every additional biomass molecule to be

synthesized reduces biosynthetic flux by 3–6 percent. Taken

together, these observations help explain the negative relation

between the number of active reactions and biosynthetic flux.

Networks that can synthesize more biomass molecules need more

active reactions. Given a constant nutrient supply, the total

Figure 2. Biosynthetic flux decreases with biosynthetic ability
and increases with nutrient flexibility. The vertical axis shows
biosynthetic flux in mmoles per g DW per hour in random networks as
a function of a) biosynthetic ability and b) nutrient flexibility. Dots and
lengths of error bars correspond to means and one standard deviations
based on a sample of n = 1000 minimal networks. Solid lines indicate
linear regression lines for different values of B. Numerical estimates of

Design Constraints on a Synthetic Metabolism
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biosynthetic flux that can be realized by these networks must

decrease as the number of molecules that they can synthesize

increases. The negative correlation between the number of active

reactions and biosynthetic flux is a by-product of the latter two

correlations.

Biosynthetic Flux Increases Weakly with Nutrient
Flexibility

We next explored how the nutrient flexibility of a network

affects its biosynthetic flux. To this end, we analyzed 1000

networks each that can use N= 20, 40, 60, and 80 carbon sources

(a total of 4000 networks) and that can synthesize B= 63 biomass

molecules. (Figure 2b, orange data points). We found that

biosynthetic flux increases weakly but significantly with nutrient

flexibility (S= (0.0160.0001)N +0.6 mmoles of biomass per g DW

hour, n = 1000 networks) for every additional carbon source that

a network is viable on. This is equivalent to 1 percent of increase

relative to E. coli’s biosynthetic flux on glucose. Quantitatively

similar relationships hold for networks able to synthesize B= 20,

B= 30, and B= 40 biomass components (Figure 2b, green, purple,

and blue data). We next turn to a variable that can help explain

this association: waste production.

High Biosynthetic Flux Means Less Waste
Some 300 transport reactions are described in E. coli [57], many

of which transport waste products either from the periplasm or the

cytoplasm to the extracellular space. Metabolic networks may

differ in the extent to which they produce waste products that are

excreted from cells. Waste products may include molecules that

are not biomass molecules (such as carbon dioxide or acetate), as

well as excess biomass molecules [12,57]. Waste production

consumes resources, such as organic carbon, and will therefore

reduce biosynthetic flux. With these considerations in mind, we

next asked whether lower waste production might be responsible

for the differences in biosynthetic flux we observed in networks

with different nutrient flexibility.

Different metabolic networks may excrete different kinds of

molecules, but to compare their waste production, it is useful to

establish a common waste ‘currency’. Since our analysis is focused

on carbon metabolism, we use the moles of carbon per g DW per

hour as our unit of waste production. (Note that these moles of

carbon may well come from a broad spectrum of different

molecules.).

We first wanted to know if waste has any influence on

biosynthetic flux. The answer is yes, based on an analysis of all

our 1.66104 random viable networks on glucose as the sole carbon

source. This relationship is strongly negative (Pearson’s r = -0.66)

That is, the greater waste production is, the lower the biosynthetic

flux.

In the last section, we showed that for each additional carbon

source a network was required to be viable on, biosynthetic flux

increased by 0.01–0.02 mmoles of biomass per g DW and hour

(Figure 3B). If we express biomass synthesis instead as moles of

carbon (in synthesized biomass) per g DW and per hour,

biosynthetic flux increases on average by 0.1 mmoles of carbon

per g DW hour with increasing nutrient flexibility. We hypoth-

esized that this increase can be explained through the influence of

nutrient flexibility N on waste production W. To this end, we first

analyzed random viable networks that vary in N and that can

synthesize all B= 63 molecules E. coli biomass molecules (Figure 3,

orange data points). We found that waste production decreased by

a number that is statistically indistinguishable from 0.1 mmol of

carbon per g DW hour (W= (-0.0960.02)N +24, n = 1000

networks) for every additional carbon source that a network is

viable on. Statistically indistinguishable relationships exist for

networks with B= 20, B= 30, and B= 40 biomass components.

(Figure 3, green, purple, and blue data). These observations

suggest that the positive influence of nutrient flexibility on

biosynthesis flux comes from reduced waste production. We later

discuss experimental evidence supporting this observation.

In a final analysis related to waste production, we studied the

relationship between biosynthetic ability and waste production,

and found no significant such relationship.

The Variables We Considered can Explain 84 Percent of
the Variance in Biosynthetic Flux

Thus far, we have considered five variables and how they

influence biosynthetic flux. These are network size R, nutrient

flexibility N, biosynthetic ability B, waste production W, and

numbers of active reaction RA. To understand how biosynthetic

flux depends on not just one but all of these variables, we carried

out a multiple regression analysis with flux as the dependent

variable. This regression analysis showed that the variables we

regression coefficients with 95% confidence intervals are given in the
inset, in the format y = (a6e)x+b, where a is the regression coefficient, e
the confidence interval, and b is the intercept of the regression line with
the vertical axis.
doi:10.1371/journal.pone.0039903.g002

Figure 3. Waste production decreases with nutrient flexibility.
The vertical axis shows waste that is excreted carbon in mmoles per g
DW hour in random networks as a function of nutrient flexibility. Dots
and lengths of error bars correspond to means and one standard
deviation based on a sample of n = 1000 minimal networks. Solid lines
indicate linear regression lines for different values of B. Numerical
estimates of regression coefficients with 95% confidence intervals are
given in the inset.
doi:10.1371/journal.pone.0039903.g003
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analyzed explain 84 percent of the variation in biosynthetic flux

(R2 = 0.84).

Synthesis of Biochemically Related Molecules Requires
Fewer Reactions, because it Produces Less Waste

In our analysis of how required reaction numbers depend on

a network’s biosynthetic abilities, we have purposely focused on

randomly chosen biomass precursors, as they give us an unbiased

view of this dependency. However, this relationship may change if

one considers biochemically related biomass molecules. To obtain

some insights how it changes, we next studied a group of molecules

whose known biosynthesis pathways share several reactions. These

are the 20 proteinaceous amino acids [58]. Figure 4a shows the

number of reactions in minimal networks that can synthesize all 20

proteinaceous amino acids (left panel), as well as the number of

reactions needed to synthesize 20 randomly chosen biomass

molecules (right panel). Amino acid synthesizing networks need

191610 (mean 6 one standard deviation) reactions, 27 percent

fewer than the 261624 reactions needed to synthesize 20 arbitrary

molecules. This difference is highly significant (P,10210, Mann-

Whitney U-test, n = 100) [59].

In minimal networks every reaction is active under the

conditions we study. Our observations in the last paragraph thus

also show that amino acid biosynthesis needs fewer active reactions

than biosynthesis of arbitrary biomass molecules. One of our

analyses above showed that fewer active reactions also imply

higher biosynthetic flux, which raises the question whether the 20

amino acids can be synthesized at higher rates. The answer is yes

(Figure 5b). Minimal networks that synthesize 20 arbitrary biomass

molecules synthesize them 35 percent more slowly than minimal

networks that synthesize 20 amino acids (P,10213, n= 80, Mann-

Whitney U-test) [59].

We next hypothesized that these dependencies might be

explicable as a by-product of a lower cost of amino acid synthesis.

If amino acids have fewer carbon molecules than the average

biomass molecule, both fewer steps would be needed to synthesize

them and a higher synthesis rate could be achieved. To test this

hypothesis, we computed the average carbon content of all 20

amino acids, weighted by each amino acid’s stoichiometry in

biomass, as 1.2860.60 mmoles of carbon per mmole biomass.

This molecular weight turned out not to be smaller but

significantly larger than the carbon content of 20 random biomass

molecules, also weighted by their stoichiometry in biomass

(0.8760.15 mmoles of carbon, P,2.2610216, one sample t-test,

for n= 105 sets of 20 random biomass molecules). This means that

low amino acid cost cannot explain a higher rate of amino acid

production.

We next asked whether lower waste production might be

responsible for the lower biosynthetic flux we observed. We

therefore analyzed the quantity of secreted waste products in 80

networks that synthesize 20 amino acids, and in 80 networks

that synthesize 20 random biomass compounds. Waste pro-

duction is indeed significantly lower in networks that synthesize

amino acids (P,10217, Mann-Whitney U-test) [59]. Specifically,

amino acid synthesizing networks produce 47 percent less waste

than networks that synthesize arbitrary molecules. They excrete

on average 22.8 mmoles of carbon waste per g DW hour

(Figure 5c).

To provide a concrete example of a prominent waste

molecule, consider the amount of secreted carbon dioxide. For

each mole of carbon entering a network in the form of glucose,

amino acid synthesizing networks excrete 0.1860.12 (mean 6

one standard deviation) moles of carbon per g DW hour as

carbon dioxide, whereas networks synthesizing 20 arbitrary

molecules excrete 0.3160.06 mmoles of carbon per g DW hour

as carbon dioxide (P,10225, Mann-Whitney U-test) [59]. In

sum, waste production is an important factor in explaining the

smaller costs of amino acid biosynthesis compared to arbitrary

biomass molecules.

Figure 4. Synthesis of biochemically related compounds
require less reactions, achieve higher biosynthetic flux with
less waste. Box-plot of a) number of reactions, b) biosynthetic flux in
mmoles per g DW hour, and c) waste in mmoles per g DW per hour in
minimal networks synthesizing twenty amino acids (left panel) and
synthesizing twenty random biomass molecules (right panel). Horizon-
tal lines in the middle of each box mark the median. The edges of the
boxes correspond to the 25th and 75th percentiles. Data is based on
a sample of n= 80 for each box.
doi:10.1371/journal.pone.0039903.g004
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Discussion

We here studied typical properties of metabolic networks with

recently developed techniques to create random and unbiased

samples of metabolic networks from a vast space of such

networks [46,47]. Specifically, we studied the quantitative

relationships between 6 different properties. These are the

number of alternative sole carbon sources N that a network can

use – its nutrient flexibility –, the number of (biomass) molecules

B it can synthesize, the rate S at which it can synthesize these

molecules, the number of reactions R in the network, the

number of active reactions RA, that is, reactions that have

nonzero metabolic flux, and the amount of waste W the

network produces.

We focused first on how the number of minimally needed

reactions R depends on N and B, because this number of reactions

is an important design variable. Smaller networks would be easier

to design and smaller genomes would be easier to synthesize [35].

More than that, biosynthetic processes are more controllable and

predictable in a small metabolism [1,18]. We found that for every

additional molecule to be synthesized, a network needs on average

three additional reactions.

In a related analysis, we focused on nutrient flexibility. The

ability of a metabolic network to sustain life on multiple sources of

Figure 5. Exploration of a metabolic network space. Metabolic networks can be viewed as subsets of enzyme-catalyzed metabolic reactions in
a global reaction set. Formally, they can be represented as binary vectors listing the reactions catalyzed by enzymes in an organism, as indicated for
two hypothetical metabolic networks (N1, N2) in the figure. Metabolic phenotypes are computed from metabolic networks using FBA. They can be
represented as binary vectors indicating the carbon sources (i.e.: alanine, glucose, melibiose,…) on which a network is viable, that is, on which it can
synthesize a given set of (biomass) molecules. Neighboring networks (blue circles linked by edges) differ by a single reaction swap (edges between
circles) that leaves the metabolic phenotype unchanged. A reaction swap consists of two changes: one random reaction addition (R4 in the example)
and one random reaction deletion (R3 in the example). A series of successful reaction swaps is called a random walk (indicated by red arrows). The
Markov Chain Monte Carlo (MCMC) technique allows one to randomly sample networks with a given phenotype by generating long random walks
through genotype space, where each step in a walk consists of a reaction swap. The advantage of using reaction swaps is that they leave the number
of reactions constant.
doi:10.1371/journal.pone.0039903.g005
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chemical elements and energy is highly desirable in industrial

production processes [31]. Examples include biofuel production

from cellulosic biomass. Cellulosic biomass contains both hexoses

(e.g., glucose) and pentoses, whose major constituent is xylose

[31,60]. Many yeast species, for instance, do not consume

pentoses, and need to be engineered to have greater nutrient

flexibility to make biofuel production more efficient [60]. In our

analysis, we found that for every additional carbon source to be

utilized, a network needs on average two additional reactions.

Thus, it is more expensive, in terms of the number of needed

reactions, to synthesize additional molecules than to synthesize the

same molecules but from a larger number of alternative carbon

sources.

Anecdotal evidence for the tendency that increased nutrient

flexibility requires larger networks is provided by two networks for

which nutrient flexibility is experimentally known [57,61]. These

are E. coli where N= 54 and R= 1396 and Bacillus Subtilis where N

is smaller (N= 41) and so is R (R= 769). We also compared the

computationally predicted number of carbon sources that can be

utilized by metabolic models of seven organisms (Column 4 of

Table 1). Although based on few data points, this analysis suggests

that there is a significant correlation (Pearson’s r = 0.9, P = 0.005)

between the in silico nutrient flexibilities and networks sizes of these

model organisms.

As a result of dependencies between N and R, the minimally

needed number of reactions varies widely among the networks we

study. For example, for networks that can use 20 alternative

carbon sources, it ranges from an average of 260 reactions (which

would correspond to, for comparison, 19% of the whole E. coli

network) needed to synthesize B= 20 molecules to an average of

381 reactions (29% of the E. coli network) to synthesize all B= 63

biomass molecules of E. coli. For networks that can use 80

alternative carbon sources, the largest number we studied, it

increases from 398 (27%) to 518 reactions (37% of the E. coli

network) as B increases from 20 to 63.

N and B can explain the vast majority (87%) of the variance in

R, in a relationship that is close to linear. Note that the proportions

in which biomass molecules are to be synthesized are immaterial,

as long as the metabolic reactions to synthesize each required

molecule are present. This is why the stoichiometry of biomass

composition would not influence the relationships we observe. The

remaining 13% of variance is unexplained by linear relationships

among the variables we considered. Such unexplained variance

could have multiple sources, and especially nonlinear relationships

among the variables. For example, as the number of biomass

molecules to be synthesized increases, fewer and fewer additional

reactions might be required, because most precursors of the

additional biomass molecules may already be synthesized by

existing reactions.

We showed that the reactions needed to utilize an additional

carbon-containing molecule or to synthesize an additional biomass

molecule typically involve the additional molecule. For example,

the utilization of an additional carbon source requires a reaction

that catabolizes that molecule. The synthesis of an additional

molecule requires a reaction that produces that molecule. We

emphasize that the numbers of reactions required for an additional

carbon source or biomass molecule reflect statistical patterns,

averages over multiple networks. Some additional carbon sources

or biomass molecules need more reactions than the average we

identified, whereas others need fewer. (For some examples see

Table S3, Table S4, Text S2 and Text S3.).

We also studied the number of active reactions – reactions with

nonzero flux on a given carbon source. Quantitatively, we found

that the number of active reactions increases by 3.6–4 reactions for

each additional biomass molecule to be synthesized. Qualitatively,

this tendency – increasing synthetic ability requires more active

reactions – is not surprising, it is also corroborated by empirical

data. Table 1 shows several well-known organisms with known

metabolic network sizes R and biosynthetic abilities B. Note that,

with exceptions, the number of active reactions RA tends to

become higher as B increases for these organisms. Albeit based on

few species, a regression analysis of the data in Table 1 shows that

the relationship between RA and B is similar to what we find in our

much larger samples of random networks (RA = 3.4B+120). Our

approach has the advantage of allowing us to make quantitative

statements about the number of active reactions required to

synthesize additional molecules that are not just based on few, well

studied organisms, as in Table 1, but on arbitrarily large and

random samples of metabolic networks.

The identity of active metabolic reactions can depend strongly

on the nutrient environment [12,46,62]. A reaction active in one

environment may be inactive in another. Organisms would cope

with such variation by regulating the activity of reactions, for

example by regulating the expression of enzyme-coding genes or

by regulating the enzymes themselves [63]. The importance of

reaction activity in our analysis thus points towards the importance

of regulating metabolic flux in response to the environment.

Optimal regulation of enzymes is a key challenge in metabolic

engineering [64,65]. It will be an even greater challenge in

a synthetic metabolism, especially if such a metabolism is to

function efficiently in multiple chemical environments.

A second major set of analyses focused on how metabolic

network properties influence biosynthetic flux S. These analyses

are motivated by the fact that high synthesis rates of one or more

target molecules are important goals of metabolic engineering

[19–21]. Our first major observation in this regard concerns the

number of reactions in a metabolic network. This number has

virtually no influence on the attainable biosynthetic flux S. In stark

contrast, the number of active reactions – reactions with nonzero

flux – shows a strong negative association with biosynthetic flux.

That is, the higher the biosynthetic flux is, the smaller is the

number of active reactions. (This analysis is based on networks

Table 1. Biosynthetic ability B, number R of metabolic
reactions (size of metabolic networks), number RA of number
of active reactions, and number N of carbon sources predicted
to be catabolized in computational metabolic models of
various organisms.

Organism B R RA N References

Buchnera Aphidicola 43 205 183 2 [97]

Helicobacter pylori 52 394 298 35 [98]

Staphlococcus aureaus 58 534 286 41 [99]

Bacillus Subtilis 59 769 327 97 [61]

Methanosarcina barkeri 63 531 352 6 [100]

Escherichia coli 67 1396 388 175 [57]

Mycobacterium tubeculosis 93 836 408 39 [101]

We took the number of synthesized molecules B, and the number of metabolic
reactions R from the genome scale metabolic network reconstructions of these
organisms, as listed in the column ‘References’. Active reactions are reactions
that have non-zero flux as determined by FBA. We computed nutrient
flexibilities by testing the viability of metabolic models on all known carbon
containing metabolites that are educts or products of reactions in the global
network by FBA, and assumed a metabolite to be a carbon source if the
metabolic model can utilize it.
doi:10.1371/journal.pone.0039903.t001
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that have more than the minimally necessary number of reactions

in a given environment. In minimal networks, all reactions must be

active.) This observation is consistent with earlier work based on

four microbial metabolic networks [12].

A second important influence on biosynthetic flux S is the

number of biomass molecules to be synthesized. Specifically, every

additional such molecule reduces S by approximately 5 percent.

This influence is stronger than the influence of nutrient flexibility,

where each additional carbon source changes biomass synthesis

flux by 1 percent. That nutrient flexibility influences biosynthesis

rates is known from experiment [31,66–69]. For example,

engineered yeast strains capable of growing on more carbon

sources achieve higher product yields [31].

The amount of waste W that a network produces is a third, and

the most important influence on biosynthetic flux S. Metabolic

networks generally excrete waste, for example, in the form of

carbon dioxide [12], acetate [12,70], pyruvate [70] or glycerol

[60,66]. Not only does this mean wasted resources, some waste

products may also be toxic and interfere with goals of metabolic

engineering [27]. We found that biosynthetic flux S shows a strong

negative correlation with waste production W in the form of

excreted carbon. This observation is in qualitative agreement with

experimental observations [60,66,70]. For example in E. coli,

Weber et al [70] demonstrated that excretion of methylglyoxal, D-

and L-lactate, pyruvate, and acetate decreases growth rates. We

also observed that networks with higher nutrient flexibility

produce less waste, such that for each additional carbon source,

networks produce 0.1 mmoles less in excreted carbon waste. This

relationship can help explain the positive influence of N on flux S.

Experimental support for this observation exists as well. For

example, Wisselink et al. [31] observed that increased ethanol

production in engineered yeast with higher nutrient flexibility is

caused by reduced production of the waste products xylitol and

arabinitol. Relatedly, the elimination of glycerol formation

increases the yield of ethanol up to 10 percent in yeast [66]. Ho

et al. [60] report similar observations.

We also found that an analogous association does not exist for

B. Networks seem to produce indistinguishable amounts of waste

products regardless of how many biomass molecules they

synthesize.

Overall, the quantities we examined can explain 84 percent of

the variance in biosynthetic flux S we observed. This means, that

these quantities account for most of the variation in the

biosynthetic flux, and are thus important factors in the design of

a synthetic metabolism.

In our final analysis, we showed that the nature of the molecules

to be synthesized can influence biosynthetic flux. For example, in

biotechnological applications, a metabolic network may need to

synthesize molecules that are closely related, and whose bio-

synthetic pathways are therefore similar, in the sense that they

share many reactions. Examples include vitamins and coenzymes

[71], taxols and related taxoids [72], hydrocarbons and related

ether lipids [73], as well as amino acids [74]. We examined the

influence of biochemical relatedness by studying metabolic

networks that synthesize all 20 amino acids, and by comparing

them with networks that synthesize 20 arbitrary biomass

molecules. In this analysis, we found that amino acids could be

synthesized with fewer reactions, which reflects their biosynthetic

relatedness. They can also be synthesized at a rate that is 35

percent higher, because their biosynthesis produces 47 percent less

waste as excreted carbon. These differences are substantial, given

that metabolic engineering in biotechnological processes typically

increases synthesis rates of desired products by 5–10 percent

[66,75–77].

We conclude with some caveats and limitations of our analysis.

First, we are well aware that there is still a gap between current

metabolic engineering and synthetic biology experiments on the

one hand, and theoretical studies such as ours on the other. We see

the value of studies like ours as providing quantitative reference

points for future experimental work in this area.

Second, flux balance analysis, on which our approach rests,

assumes a metabolic system that is in a steady-state, such as might

be achieved by a microbial population growing under a constant

nutrient supply. This assumption ignores possible additional

constraints that regulation and enzyme kinetics exert on a metab-

olism [78,79]. While achieving proper regulation remains a big

challenge in synthetic biology, we note that some of our

observations are unlikely to be affected by this assumption. For

example, relaxing this assumption would not reduce the minimal

number of reactions needed for a given biosynthetic task.

Third, we focus on typical network properties, that is, properties

of metabolic networks sampled at random from a large space of

such networks. Optimization procedures that search metabolic

networks space systematically may be able to identify individual

networks whose properties deviate from those we identified as

typical. For example, they may identify networks that are able to

synthesize biomass with even fewer reactions or at higher rates.

Such procedures have been successful in other combinatorial

optimization problems. They include simulated annealing [80,81],

bi-level optimization [82,83], OptFlux [84], convex optimization

[85] and evolutionary optimization [86,87]. The extent to which

they can identify networks with superior design remains an

important subject of future work.

Fourth, the expression of enzymes itself has a metabolic cost.

This cost may be reduced by regulating enzyme expression

depending on the nutrient environment (through a regulatory

machinery whose expression may itself be costly.) We did not

consider costs like these here, because they are poorly understood

on a quantitative level. Their analysis also remains an important

goal for future work.

Finally, we note that an organism’s genome encodes more than

metabolism. Nonmetabolic genes, even in small genomes serve

roles in systems that allow cell motility, signaling, secretion, and

defense [14]. The heterogeneity of these systems will make

general, quantitative statements about design constraints for entire

genomes more difficult to obtain. In this regard, we note that the

proportion of a gene’s genome devoted to metabolism increases in

small genomes. For example, in the free-living E. coli with a large

genome, fewer than 75 percent of genes exert metabolic functions

[88]. In contrast, in some endosymbionts including Buchnera,

Wiggleswothia glossinidia and Thiomicrospira crunogena more than 80

percent of genes are devoted to metabolic functions, and in yet

others, such as the gamma proteobacteria, Blochmanni floridanus and

Wolbachia pipientis more than 95 percent have metabolic functions

[14]. Thus, the constraints we identified here would affect the

majority and perhaps the vast majority of a synthetic minimal

organism’s genome.

Methods

The metabolic genotype of an organism comprises all genes that

encode metabolic enzymes. This genotype can be compactly

represented through a list of reactions that can take place in the

organism and that are catalyzed by enzymes [36,37,89–92]. Each

metabolic genotype exists in a vast metabolic genotype space that

contains all possible metabolic networks – all possible combina-

tions of reactions drawn from a set of biochemically feasible

reactions – that could take place in a living system. According to
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our current knowledge, there are more than 5000 such reactions,

which means that metabolic genotype space comprises 25000

possible metabolic networks. The metabolic genotype or metabolic

network of any one organism can be viewed as a point in this

space. Two genotypes differing from each other in a single

reaction are neighbors in this space. We refer to a network’s

metabolic phenotype as the spectrum of chemical environments –

defined by nutrients these environments contain – on which the

network can synthesize a predetermined spectrum of molecules, as

well as the rate at which it can synthesize these molecules. We call

a network viable in a given environment if it can synthesize all these

molecules in the environment.

Flux Balance Analysis
Flux balance analysis (FBA) is a constraint-based modeling

approach that predicts steady state metabolic fluxes – rates of

substrate to product conversion – for all metabolic reactions in

a metabolic network. It can thus also predict the biomass yield and

other complex metabolic attributes of a metabolic network

[78,79]. Because FBA does not need kinetic information, but only

stoichiometric information about the reactions involved, it is

a widely used approach for analyzing the metabolism of well-

studied organisms such as E. coli and S. cerevisiae [40,78,79]. The

needed stoichiometric information comes from experimental

biochemical analysis, as well as from comparative analyses of

enzyme-coding genes in different, completely sequenced genomes.

This information is encapsulated in a stoichiometric matrix S of

dimensions m6n, where m denotes the number of metabolites, and

n is the number of reactions in a network [40,79]. FBA assumes

that a metabolic network is in a metabolic steady-state, such as

may occur in a microbial population that proliferates in an

unchanging environment. Because mass needs to be conserved

under these conditions, any vector v of metabolic fluxes – the rates

at which a network’s metabolic reactions convert substrates into

products – must satisfy the equation.

Sv~0:

This equation typically has a large solution space of allowable

fluxes. The size of this space can be reduced somewhat by placing

biochemically motivated constraints on the irreversibility of some

reactions and on maximal flux magnitudes [93]. In the (reduced)

solution space, FBA then uses linear programming to identify

regions in the space that maximize a quantity of interest, which

can be represented by a linear objective function Z [40,79]. More

specifically, the linear programming formulation of an FBA

problem can be written as:

maxZ~maxfcTvDSv~0,aƒvƒbg ð1Þ

where the vector cT stands for a transposed (T) array c of scalar

coefficients that define the objective function. Vectors a and

b contain lower and upper limits of reaction fluxes in the flux

vector v, respectively. A particularly important quantity to be

maximized is the rate of synthesis of a given set biomass

molecules. We refer to this quantity as the biosynthetic flux (in

units of mmol per g DW per hour) of a metabolic network. We

used the software packages CPLEX (11.0, ILOG; http://www.

ilog.com/) and CLP (1.4, Coin-OR; https://projects/coinor.

org/Clp) to solve all linear programming problems that arise in

this study.

Biomass Molecules
The starting point of our analysis was a set of 67 biomass

molecules from E. coli [57]. We used these molecules, because E.

coli’s biomass composition is well studied, and many of its

components – amino acids, nucleotides, etc. – also occur in most

other free-living organisms. In addition, E. coli and its biomass

molecules are highly relevant to biotechnological applications

[18,19,21]. For some of our analyses, we needed to vary the

spectrum of metabolites that a metabolic network needs to

synthesize. Among the 67 E. coli biomass molecules, we allowed all

but four molecules to vary. These four molecules are the ‘‘currency

metabolites’’ adenosine 59-diphosphate (ADP), phosphoric acid

(Pi), pyrophosphoric acid (PPi), and hydrogen ions. A complete list

of the biomass molecules we used can be found in Table S1.

Carbon Sources
Any one metabolic network can only synthesize biomass if its

chemical environment contains specific nutrients [94]. In FBA,

these nutrients are represented by special exchange reactions that

reflect transport of nutrients into the cell. The environments we

study are minimal chemical environments that contain a single

molecular source for each essential chemical element. These

sources are oxygen, ammonium, inorganic phosphate, sulfate,

sodium, potassium, cobalt, iron, protons, water, molybdate,

copper, calcium, chloride, magnesium, manganese and zinc, as

well as a single source of carbon. We study how variation in

carbon sources constrains the composition of metabolic networks

that needs to synthesize a given spectrum of molecules. We chose

to vary carbon sources for this purpose, because of carbon’s

centrality as a chemical element in biomass. A complete list of the

carbon sources we used is given in the Table S2.

We computed the biomass growth of a network by taking the

average of its biomass growth rates on each carbon source that the

network is required to be viable on, except where mentioned

otherwise.

Global Network
Some of our analyses use a ‘‘global reaction network’’. This

global network contains a comprehensive set of known bio-

chemical reactions from multiple organisms, and it has universal

biosynthetic abilities. We are fully aware that no such network is

likely to exist in any one organism. We use this global network

merely as a starting point for successive elimination of reactions, as

described in the next section. We generated this global network by

merging reactions from two sources, as described in more detail in

[47]. The first is the LIGAND reaction database of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [36,37,89–92].

The second is the complete metabolic reaction set of E. coli

(iAF1260), which contains 1397 non-transport reactions [57]. We

excluded from this network (i) all reactions involving polymer

metabolites of unspecified numbers of monomer units, (ii) general

polymerization reactions with uncertain stoichiometry, (ii) reac-

tions involving glycans, due to their complex structure, (iv)

reactions with unbalanced stoichiometry, and (v) reactions in-

volving complex metabolites without chemical information about

their structure [47]. After these procedures the global network

contained 5906 internal (non-transport reactions) and 5030

metabolites.

Essential Reactions and Minimal Networks
A gene whose deletion abolishes the viability of an organism

is called an essential gene. Analogously, an essential reaction in

a metabolic network is a reaction that cannot be removed
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without abolishing the organism’s viability in a given environ-

ment. A minimal metabolic network is a network from which not

a single reaction can be removed without abolishing viability in

a given environment. In other words, all reactions of a minimal

network are essential in that environment. We emphasize that

a minimal network is not the smallest possible viable network,

which would be difficult to find in a vast space of metabolic

networks. We note that there may be multiple minimal

networks, which contain different pathways among a set of

possible alternate pathway from a nutrient to a biomass

precursor. These networks need not have the same size. We

also note that the number of essential reactions in any one non-

minimal network may be smaller than the size of a minimal

network, because non-minimal networks may contain alternate

pathways able to by-pass any one reaction.

Generation of Minimal Networks
To analyze the smallest number of reactions that a network

needs to have in order to (i) synthesize a given number B of

biomass molecules on (ii) each of N different carbon sources, we

created and analyzed many minimal networks with different values

of B and N. Because there are astronomically many combinations

of different values of B and N, and because the FBA approach we

use is computationally expensive, we focused on subsets of such

combinations, which we created as follows.

First, we created 10 different sets each of B= 40, B= 30, and

B= 20 randomly chosen biomass molecules from the set of 63 E.

coli biomass molecules (excluding the four ‘currency’ metabolites

mentioned above in the Section ‘Biomass Molecules’, which are

found in all of the sets) [57]. These sets served as the basis for our

analysis of networks that vary in their biosynthetic ability B. To

arrive at identical sample sizes for subsequent analyses, we also

included 10 ‘‘sets’’ with B = 63, that is, each of these sets contained

all 63 biomass molecules. In total, we thus created a total of 40

(1064) sets of biomass molecules.

Second, for each of these 40 sets we determined 4 different sets

of nutrients, where each set contained a different number of

randomly chosen carbon sources from the list of carbon sources we

used (see Section Carbon Sources). Specifically, these sets of

nutrients contained N= 20, N= 40, N= 60, and N= 80 carbon

sources. Thus, up to this second step we had generated a total of

160 (4064) combinations of sets of biomass molecules and

nutrients.

Finally, for each of these 160 combinations, we created 5

minimal metabolic networks. To create each minimal network, we

used the following procedure. We started from the global network

and sequentially removed individual randomly chosen reactions

from it. After each reaction removal we verified that the network

was still viable – able to synthesize all B biomass molecules in the

set – when each of the N nutrients was provided as the sole carbon

source, that is, the network was required to be viable on each

carbon source. If that was not the case, we reversed the reaction

elimination and removed a different, randomly chosen reaction,

until the resulting network was viable. We continued this

procedure until no further reactions could be removed from the

network without abolishing viability. In this fashion, we generated

800 (16065) minimal networks. Note that carrying out this

procedure repeatedly may not arrive at the same minimal

network, because reactions are removed at random. That is,

different minimal networks may contain different numbers and

different sets of reactions. What unites them is that all their

reactions are essential.

Minimal Networks with Isostoichiometric Biomass
Composition

We asked whether the stoichiometric composition of biomass,

that is, the relative amounts of different biomass molecule in

biomass, influences the relationships we explore here. To this end,

we generated minimal networks synthesizing given biomass

compounds, as described in the previous section, with the

difference that these networks synthesized these compounds in

equal molarities, that is isostoichiometrically. In other words, for

the purpose of this analysis we changed the stoichiometric

coefficients cT in the biomass growth function of Equation 1 to

a value of one. We used the same combinations of sets nutrients

and biomass molecules as described above, except that we

generated only 2 minimal networks (instead of 5) for each

combination, in order to reduce computational cost. In total, we

thus analyzed 320 minimal networks with isostoichiometric

biomass composition.

Minimal Networks Synthesizing 20 Amino Acids
To study examples of networks that synthesize biochemically

related biomass molecules, we studied minimal networks synthe-

sizing only the 20 proteinaceous amino acids. We generated these

networks as described in ‘Generation of Minimal Networks’,

except that we did not choose the biomass molecules to be

synthesized at random. More specifically, we created 10 sets each

of N= 20, N= 40, N= 60, and N= 80 randomly chosen carbon

sources, and analyzed 8 minimal networks for each set, for a total

of 320 networks.

MCMC Sampling and Random Networks
As we mentioned earlier, changing the genotype of a network

does not necessarily cause a change in its phenotype. One can take

advantage of this property to generate arbitrarily large and

unbiased random samples of metabolic networks with any desired

property (see Figure 5), such that viable networks with a given

number of reactions are sampled uniformly from the space of such

networks. Such samples are central to our analysis. To create them

we used a procedure built on Markov Chain Monte Carlo

(MCMC) sampling described previously [46,47]. This procedure

fulfills the important detailed balance condition for MCMC

sampling. Briefly, the procedure constructs a sequence of

metabolic networks, where the next network in the sequence is

created from the previous network through a reaction swap. Such

a reaction swap consists of the removal of a randomly chosen

reaction from the network, followed by the addition of a randomly

chosen reaction taken from the global network. We used such

reaction swaps, because they preserve the exact number of

reactions in a metabolic network, which is important for our

analysis. If a reaction swap preserves viability of the network in

a given environment, then the swap is accepted, otherwise it is

rejected, and a new swap is attempted until a viable genotype is

found. We note that subsequent networks in a sequence show

autocorrelation in their properties, and are thus not suitable for

random sampling. Past work has shown that after 56103 swaps,

the autocorrelation of two genotypes becomes negligible [46]. We

therefore started the random walk from E. coli metabolic network

and after 2.56106 reaction swaps, we sampled networks every

56103 steps in a sequence. Overall, the network samples we

created comprise 1000 networks for each condition we study. We

did not subject transport reactions to the reaction swap procedure.

To compare our observations from randomly sampled meta-

bolic networks to a reference from biology, it is useful to use

a network from a well-studied organism. For this purpose, we used
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the metabolic network of E. coli, because E. coli is able to survive in

multiple different environments [95,96].

Generation of Starting Networks for MCMC Sampling
To initiate the MCMC procedure that generates random

samples of networks with a given set of properties, we needed

starting networks that have these properties. Specifically, we

needed to create networks with a given number of reactions R,

nutrient flexibility N, and biosynthetic ability B. To this end, we

started with the same 160 sets of N nutrients and B biomass

molecules described in ‘Generation of Minimal Networks’. We

created for each set 5 viable networks that differ in their number of

reactions, that is, they had 400, 500, 600, 700 and 800 reactions.

To create these networks, we used the same procedure as for the

production of minimal networks, except that we stopped removing

reactions when a network with the desired number of reactions

had been reached. At the end of this procedure, we had 800

networks (16065) with various combinations of the 3 network

properties. We used each of these networks as starting networks for

MCMC sampling, and generated 20 random viable networks from

each of the 800 starting networks, for a total of 16000 random

networks. This amounts to 200 networks for each different

combination of N, B, and R.

We performed all our analyses using MATLAB (7.10.0, The

MathWorks Inc., Natick, MA, R2010a) and R (R Development

Core Team, 2008).

Supporting Information

Figure S1 Biomass stoichiometry does not affect the
number of reactions in a minimal network. The vertical

axis shows the number of reactions in minimal networks as

a function of a) biosynthetic ability and b) nutrient flexibility. Dots

and lengths of error bars correspond to means and one standard

deviation. Each blue dot of size 200 indicates networks with the

biomass stoichiometry of E. coli [57]. Each red dot of size 80

indicates networks with isostoichiometric biomass (see Methods).

Red and blue means do not differ from each other significantly

(P.0.40, Mann-Whitney U-test).

(TIF)

Figure S2 Biosynthetic flux distribution. The flux dis-

tributions in units of mmoles per g DW per hour are shown for

each combination of biosynthetic ability (B = 20 first row, B = 30

second row, B = 40 third row, B = 63 last row) and nutrient

flexibility (N = 20 first column, N = 30 second column, N = 40

third column, N = 63 last column) that we examined. Data are

based on 16,000 random viable networks, as described in methods

(1000 networks per panel).

(TIF)

Figure S3 Distribution of number R of reactions. The

distributions of R are shown for each combination of biosynthetic

ability (B = 20 first row, B = 30 second row, B = 40 third row,

B = 63 last row) and nutrient flexibility (N = 20 first column,

N = 30 second column, N = 40 third column, N = 63 last column)

that we examined, and for in total 800 minimal viable networks

(50 Networks per panel).

(TIF)

Table S1 List of E. coli’s Biomass Compounds [57].

(DOC)

Table S2 List of carbon sources used in this study.

(DOC)

Table S3 Examples of reactions required to synthesize addi-

tional biomass molecules. The table contains 20 arbitrary biomass

molecules (left), and a list of reactions that are required to

synthesize the molecule in a random minimal network (in addition

to the reactions that the network needed to synthesize other

biomass molecules). The analysis is based on minimal networks

that are required (i) to synthesize 62 E. coli biomass molecules and

(ii) to be viable on glucose. The Table illustrates that the number

of additional reactions needed depends on the biomass molecule.

(It may also depend on other reactions in a network, but for each

biomass molecule results from only one network are shown.)

(DOC)

Table S4 Examples of reactions required to utilize additional

carbon sources. The table contains arbitrary carbon sources (left)

and a list of reactions that are required to utilize the carbon source

in a random minimal network (in addition to the reactions that the

network needs to utilize other carbon sources). The analysis is

based on minimal networks that were required (i) to synthesize all

E. coli biomass molecules and (ii) to be viable on 30 other carbon

sources. The Table illustrates that the number of additional

reactions needed depends on the carbon source. (It may also

depend on other reactions in a network, but for each carbon

source results for only one network are shown.)

(DOC)

Text S1 Confidence Interval Calculation.

(DOC)

Text S2 Examples of reactions needed to metabolize new carbon

sources.

(DOC)

Text S3 Examples of reactions needed to synthesize additional

biomass molecules.

(DOC)
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