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A common interest in gene expression data analysis is to identify from a large pool of candidate genes the genes that present
significant changes in expression levels between a treatment and a control biological condition. Usually, it is done using a statistic
value and a cutoff value that are used to separate the genes differentially and nondifferentially expressed. In this paper, we propose
a Bayesian approach to identify genes differentially expressed calculating sequentially credibility intervals from predictive densities
which are constructed using the sampled mean treatment effect from all genes in study excluding the treatment effect of genes
previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on
the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression
data analysis. Results obtained report evidence that the proposed approach performs better than standard ones, especially for cases
with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a
well-known publicly available data set on Escherichia coli bacterium.

1. Introduction

The DNA array technology is capable of providing gene
expression levels measurements for thousands of genes
simultaneously under different biological experimental
conditions. In these experiments, total RNA is reverse-
transcribed to create either radioactive or fluorescent-labeled
cDNA which is hybridized with a large DNA library of gene
fragments attached to a glass or membrane support [1].
After this, a scanner of high resolution is used to obtain the
color intensity from each spot. So, the color intensities are
normalized in order to obtain the expression level of genes.
For further discussion and additional references on DNA
array technology see [2–9].

Obtaining the expression levels, a common objective is
to identify genes that present significant changes in gene

expression levels between treatment and control experimen-
tal condition. The identification of these genes is important
because it may bring to light new biological discoveries,
such as which genes may be involved in the origin and/or
evolution of the same disease of genetic origin or which genes
react to a drug stimulus. Thus, we aim to establish the use of
these experiments as tools in medicine [10].

As the observed expression levels incorporate different
sources of variability present in the process of obtaining
fluorescent intensity measurements [11], statistical methods
are important to identify the genes differentially expressed.
One of the first approaches proposed to identify genes
differentially expressed was the fold-change approach [2,
3]. In this approach, a gene is considered differentially
expressed if the average of the logarithm of the observed
expression levels in treatment and control varies more than a
cutoff point, Rc, which is previously prefixed. This approach
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Table 1: True positive rate, nc = nt = 4, p = 5% (3% over and 2% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.067 0.072 0.120 0.189 0.308 0.410 0.532 0.653 0.738

TT 0.040 0.046 0.072 0.122 0.198 0.290 0.386 0.507 0.601

CT 0.031 0.037 0.056 0.092 0.160 0.243 0.323 0.442 0.533

BTT 0.041 0.046 0.073 0.122 0.200 0.295 0.388 0.507 0.604

2

PA 0.220 0.229 0.258 0.308 0.363 0.425 0.492 0.560 0.630

TT 0.050 0.049 0.063 0.089 0.107 0.136 0.182 0.221 0.277

CT 0.038 0.042 0.050 0.073 0.092 0.118 0.155 0.199 0.250

BTT 0.053 0.054 0.064 0.092 0.114 0.145 0.194 0.239 0.299

3

PA 0.357 0.370 0.367 0.397 0.424 0.454 0.486 0.530 0.584

TT 0.049 0.057 0.059 0.067 0.081 0.102 0.112 0.145 0.170

CT 0.045 0.051 0.050 0.058 0.074 0.094 0.106 0.138 0.162

BTT 0.060 0.063 0.068 0.077 0.094 0.116 0.133 0.164 0.195

Table 2: True positive rate, nc = nt = 4, p = 10% (7% over and 3% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.063 0.076 0.110 0.181 0.257 0.359 0.447 0.538 0.631

TT 0.043 0.054 0.074 0.121 0.191 0.286 0.379 0.493 0.613

CT 0.032 0.040 0.054 0.096 0.154 0.233 0.321 0.426 0.545

BTT 0.043 0.055 0.074 0.123 0.193 0.286 0.384 0.497 0.616

2

PA 0.208 0.211 0.237 0.275 0.316 0.367 0.434 0.497 0.556

TT 0.045 0.052 0.064 0.085 0.103 0.141 0.184 0.233 0.286

CT 0.036 0.042 0.050 0.070 0.086 0.120 0.156 0.205 0.259

BTT 0.048 0.054 0.067 0.090 0.108 0.150 0.195 0.253 0.312

3

PA 0.317 0.314 0.337 0.346 0.365 0.407 0.434 0.473 0.510

TT 0.049 0.058 0.056 0.071 0.080 0.099 0.118 0.144 0.173

CT 0.042 0.051 0.049 0.060 0.072 0.090 0.110 0.134 0.165

BTT 0.056 0.065 0.065 0.080 0.091 0.111 0.136 0.166 0.200

Table 3: True positive rate, nc = nt = 4, p = 20% (5% over and 15% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.066 0.077 0.117 0.176 0.241 0.322 0.411 0.510 0.610

TT 0.043 0.049 0.079 0.123 0.197 0.285 0.384 0.494 0.606

CT 0.031 0.035 0.060 0.098 0.157 0.232 0.322 0.430 0.540

BTT 0.042 0.049 0.080 0.124 0.197 0.287 0.387 0.501 0.613

2

PA 0.179 0.187 0.223 0.260 0.313 0.369 0.425 0.487 0.545

TT 0.049 0.051 0.063 0.083 0.103 0.142 0.184 0.236 0.286

CT 0.039 0.040 0.051 0.069 0.084 0.122 0.160 0.208 0.254

BTT 0.051 0.055 0.067 0.088 0.110 0.153 0.197 0.253 0.307

3

PA 0.274 0.276 0.303 0.328 0.356 0.383 0.428 0.464 0.511

TT 0.052 0.056 0.063 0.070 0.080 0.098 0.122 0.142 0.175

CT 0.045 0.049 0.055 0.063 0.073 0.090 0.113 0.135 0.167

BTT 0.059 0.064 0.071 0.079 0.093 0.113 0.138 0.165 0.201
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Figure 1: Treatment and control observed means and variances.
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Figure 2: Treatment and control observed means and variances and genes identified with evidence for difference by PA.

however is not adequate to yield good results, once a
cutoff value Rc may have different significance for different
observed expression levels. Besides, this approach does not
consider the variability of the observed expression levels from
treatment and control.

Another method commonly used for gene expression
data analysis is the so-called two-sample t-test (TT) for the
log transformed data [1, 8]. The problem with the applica-
tion of TT to this kind of data is the usual small size of treat-
ment and control samples in genetic studies, which may lead
to underestimated variances and small power of test. To avoid
such limitations, some TT modifications were proposed,
such as the Cyber-t (CT) proposed by [1] and the Bayesian
t-test (BTT) proposed by [12]. Basically, the main idea is

to consider modifications of the standard error estimate of
the two-sample difference present in the denominator of the
standard t-statistics.

In this paper, we propose a Bayesian approach to identify
genes differentially expressed by calculating sequentially
credibility intervals from predictive densities which are con-
structed using all treatment effects excluding the treatment
effect of genes previously identified with statistical evidence
for difference. This procedure avoids the small sample size
problem, usual in gene expression data analysis, and allows
us to use the normality assumption for observed data [9].

In order to verify the performance of the proposed
approach and compare it with the conventional ones based
on the use of the t-test and modified t-tests, we present a
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Figure 3: Treatment and control observed means and variances and genes identified with evidence for difference by TT, CT, and BTT.
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Table 4: True positive rate, nc = nt = 8, p = 5% (3% over and 2% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.061 0.084 0.179 0.323 0.489 0.636 0.787 0.879 0.939

TT 0.047 0.075 0.145 0.282 0.460 0.630 0.798 0.899 0.957

CT 0.038 0.057 0.120 0.242 0.415 0.580 0.765 0.873 0.944

BTT 0.047 0.073 0.144 0.283 0.459 0.630 0.798 0.897 0.958

2

PA 0.218 0.237 0.304 0.379 0.477 0.583 0.663 0.751 0.819

TT 0.051 0.059 0.088 0.136 0.211 0.301 0.403 0.510 0.621

CT 0.043 0.051 0.079 0.123 0.188 0.274 0.377 0.487 0.597

BTT 0.053 0.062 0.094 0.143 0.219 0.314 0.422 0.532 0.640

3

PA 0.352 0.365 0.387 0.433 0.481 0.547 0.607 0.671 0.731

TT 0.048 0.059 0.072 0.091 0.129 0.174 0.224 0.290 0.361

CT 0.043 0.053 0.066 0.086 0.124 0.166 0.218 0.280 0.354

BTT 0.055 0.068 0.077 0.104 0.145 0.192 0.247 0.318 0.393

Table 5: True positive rate, nc = nt = 8, p = 10% (7% over and 3% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.067 0.088 0.168 0.287 0.407 0.536 0.664 0.773 0.858

TT 0.052 0.071 0.146 0.282 0.443 0.626 0.785 0.894 0.957

CT 0.041 0.056 0.125 0.248 0.399 0.581 0.751 0.870 0.945

BTT 0.051 0.070 0.146 0.281 0.443 0.625 0.785 0.894 0.957

2

PA 0.204 0.224 0.267 0.332 0.416 0.494 0.579 0.648 0.728

TT 0.050 0.059 0.091 0.135 0.214 0.304 0.402 0.508 0.628

CT 0.042 0.050 0.080 0.122 0.193 0.280 0.378 0.485 0.604

BTT 0.052 0.063 0.095 0.143 0.223 0.316 0.419 0.525 0.647

3

PA 0.332 0.325 0.340 0.383 0.418 0.478 0.531 0.580 0.634

TT 0.050 0.056 0.071 0.093 0.127 0.171 0.223 0.285 0.356

CT 0.046 0.052 0.066 0.088 0.121 0.163 0.215 0.277 0.348

BTT 0.057 0.063 0.079 0.103 0.142 0.193 0.246 0.313 0.387

simulation study. The comparison is done in terms of the
true positive rate, false positive rate, and true discovery rate.
Results obtained report evidence that our proposed approach
performs better than t-test and modified t-tests, especially
for cases with mean differences and increases in treatment
variance in relation to control variance. We also apply the
methods to a real dataset, obtained from the experiment
carried through with Escherichia coli bacterium, described in
[5].

The paper is organized as follows. In Section 2, we
develop our Bayesian approach constructing the predictive
density and describing our criteria to identify the genes dif-
ferentially expressed. In Section 3, the method is compared
with the t-test and modified t-tests using simulated datasets
and a real dataset. In Section 4, we conclude the paper with
final remarks on the proposed method.

2. Predictive Modeling for Gene Expression

Consider a DNA array experiment with n genes and two
experimental conditions which we name by control (c)
and treatment (t). Suppose that control and treatment are
replicated nc and nt times, respectively. Denote by xigh the
ith observed expression level (or its logarithm) for gene g
in experimental condition h, h ∈ {c, t}, and g = 1, . . . ,n.
Let xgh = {x1gh , . . . , xnhgh} be realizations of independent
random variables Xgh = {X1gh , . . . ,Xnhgh}, for g = 1, . . . ,n
and h ∈ {c, t}.

Consider that

Yg = 1
nt

nt∑

i=1

Xigt −
1
nc

nc∑

i=1

Xigc (1)
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Table 6: True positive rate, nc = nt = 8, p = 20% (5 over and 15 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.066 0.092 0.162 0.263 0.381 0.513 0.658 0.768 0.864

TT 0.052 0.073 0.150 0.278 0.454 0.632 0.790 0.895 0.958

CT 0.040 0.060 0.125 0.243 0.407 0.589 0.754 0.872 0.945

BTT 0.051 0.072 0.149 0.277 0.453 0.632 0.790 0.896 0.957

2

PA 0.177 0.206 0.253 0.318 0.408 0.499 0.575 0.652 0.725

TT 0.051 0.061 0.088 0.139 0.212 0.303 0.404 0.507 0.627

CT 0.042 0.054 0.078 0.124 0.194 0.281 0.380 0.482 0.605

BTT 0.054 0.064 0.093 0.145 0.222 0.317 0.422 0.528 0.647

3

PA 0.271 0.294 0.322 0.370 0.417 0.468 0.526 0.587 0.630

TT 0.052 0.057 0.067 0.095 0.125 0.175 0.227 0.282 0.350

CT 0.049 0.053 0.062 0.091 0.119 0.169 0.220 0.275 0.343

BTT 0.060 0.066 0.077 0.108 0.140 0.194 0.252 0.310 0.383

Table 7: False positive rate, nc = nt = 4, p = 5% (3 over and 2 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.062 0.062 0.058 0.054 0.050 0.045 0.039 0.033 0.028

TT 0.040 0.041 0.042 0.041 0.040 0.042 0.042 0.041 0.040

CT 0.030 0.030 0.031 0.029 0.029 0.030 0.031 0.030 0.029

BTT 0.041 0.041 0.042 0.041 0.040 0.042 0.042 0.041 0.040

2

PA 0.051 0.051 0.050 0.045 0.041 0.037 0.031 0.027 0.023

TT 0.041 0.042 0.042 0.041 0.041 0.041 0.041 0.040 0.041

CT 0.030 0.031 0.030 0.030 0.029 0.030 0.030 0.029 0.030

BTT 0.041 0.042 0.042 0.041 0.041 0.042 0.042 0.040 0.041

3

PA 0.040 0.037 0.038 0.033 0.030 0.025 0.023 0.018 0.016

TT 0.040 0.041 0.040 0.041 0.043 0.040 0.041 0.042 0.040

CT 0.029 0.030 0.029 0.030 0.031 0.029 0.030 0.031 0.030

BTT 0.040 0.041 0.040 0.041 0.043 0.040 0.041 0.042 0.041

Table 8: False positive rate, nc = nt = 4, p = 10% (7 over and 3 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.061 0.060 0.056 0.048 0.039 0.031 0.023 0.017 0.012

TT 0.040 0.040 0.041 0.042 0.042 0.041 0.041 0.040 0.041

CT 0.029 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

BTT 0.040 0.041 0.041 0.042 0.041 0.041 0.041 0.040 0.041

2

PA 0.046 0.044 0.039 0.033 0.027 0.021 0.017 0.012 0.009

TT 0.041 0.040 0.042 0.042 0.040 0.041 0.041 0.041 0.041

CT 0.030 0.029 0.031 0.030 0.029 0.030 0.030 0.030 0.030

BTT 0.041 0.040 0.041 0.041 0.040 0.041 0.041 0.041 0.041

3

PA 0.029 0.026 0.023 0.020 0.016 0.013 0.010 0.007 0.005

TT 0.041 0.042 0.040 0.042 0.041 0.041 0.040 0.041 0.041

CT 0.030 0.030 0.029 0.030 0.029 0.031 0.029 0.030 0.030

BTT 0.041 0.042 0.040 0.042 0.041 0.042 0.041 0.041 0.042
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Table 9: False positive rate, nc = nt = 4, p = 20% (5 over and 15 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.062 0.062 0.055 0.046 0.036 0.027 0.020 0.014 0.011

TT 0.040 0.040 0.041 0.041 0.041 0.041 0.042 0.042 0.041

CT 0.030 0.029 0.029 0.029 0.030 0.030 0.030 0.030 0.030

BTT 0.040 0.041 0.040 0.041 0.041 0.041 0.041 0.042 0.042

2

PA 0.034 0.035 0.034 0.029 0.027 0.020 0.016 0.011 0.008

TT 0.041 0.041 0.042 0.041 0.041 0.040 0.040 0.042 0.041

CT 0.030 0.030 0.031 0.029 0.029 0.029 0.029 0.030 0.029

BTT 0.041 0.041 0.042 0.041 0.041 0.040 0.040 0.042 0.041

3

PA 0.016 0.016 0.015 0.015 0.014 0.011 0.010 0.007 0.005

TT 0.042 0.041 0.042 0.040 0.041 0.041 0.042 0.040 0.042

CT 0.030 0.029 0.030 0.029 0.030 0.030 0.031 0.029 0.031

BTT 0.042 0.041 0.041 0.040 0.041 0.041 0.042 0.040 0.042

Table 10: False positive rate, nc = nt = 8, p = 5% (3% over and 2% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.063 0.060 0.056 0.048 0.042 0.034 0.026 0.019 0.014

TT 0.047 0.048 0.047 0.047 0.047 0.047 0.050 0.048 0.047

CT 0.037 0.037 0.036 0.037 0.037 0.037 0.039 0.038 0.037

BTT 0.047 0.047 0.046 0.047 0.047 0.047 0.050 0.048 0.047

2

PA 0.053 0.051 0.046 0.041 0.032 0.026 0.020 0.015 0.011

TT 0.047 0.047 0.048 0.050 0.048 0.048 0.048 0.047 0.048

CT 0.037 0.037 0.036 0.037 0.037 0.037 0.039 0.038 0.037

BTT 0.047 0.047 0.048 0.049 0.047 0.047 0.048 0.047 0.048

3

PA 0.040 0.039 0.034 0.029 0.023 0.020 0.014 0.011 0.008

TT 0.047 0.048 0.048 0.049 0.048 0.048 0.048 0.049 0.048

CT 0.037 0.037 0.038 0.039 0.038 0.038 0.037 0.038 0.038

BTT 0.047 0.047 0.048 0.049 0.047 0.048 0.048 0.049 0.048

is the sampled mean treatment effect for gene g, g = 1, . . . ,n,
and Y = {Y1, . . . ,Yn} is the set of all sampled mean treatment
effects.

Thus, considering Y, we can determine the predictive
density for a new observation Yn+1, given Y, and build a
100(1−α)% credibility interval for Yn+1. In order to develop
our idea and as often found in gene expression data analysis
[1, 8, 9, 11–13], we assume that Y is an independent sample
generated from a normal distribution with mean μ and
variance σ2,

Y1,Y2, . . . ,Yn ∼ N
(
μ, σ2). (2)

The likelihood function is given by

L
(
μ, σ2)∝ (

σ2)−n/2 exp

{
−n
(
y − μ

)2 + (n− 1)s2

2σ2

}
, (3)

where y = (1/n)
∑n

g=1 yg and s2 = (1/(n− 1))
∑n

g=1 (yg − y)2

are the sample mean and variance of y, respectively.
Since parameters μ and σ2 have a direct interpretation in

the context of the gene expression data analysis, so we may

express expert opinions in terms of prior distributions for
parameters. In order to explore the fully conjugation, con-
sider that joint prior distribution for parameters μ and σ2 is
given by

μ | σ2 ∼ N

(
μ0,

σ2

λ

)
, σ2 ∼ IG

(
τ

2
,
β

2

)
, (4)

where μ0, λ, τ, and β are known hyperparameters, and
IG(·) represent the inverse gamma distribution with mean
(β/2)/(τ/2)− 1.

Updating the prior distributions in (4) via likelihood
function in (3), the joint posterior distribution for (μ, σ2) is
given by

μ, σ2 | y ∼ N

(
μ∗,

σ2

λ + n

)
IG

(
τ∗

2
,
β∗

2

)
, (5)

where μ∗ = (n/(n+ λ)y) + (λ/(n+ λ))μ0, τ∗ = τ + n+ 1, and
β∗ = β + (n− 1) · s2 + nλ(y − μ0)2/(n + λ), for g = 1, . . . ,n.
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Table 11: False positive rate, nc = nt = 8, p = 10% (7% over and 3% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.064 0.059 0.049 0.039 0.027 0.017 0.011 0.006 0.003

TT 0.049 0.048 0.048 0.049 0.048 0.048 0.049 0.047 0.048

CT 0.039 0.037 0.038 0.038 0.038 0.038 0.038 0.037 0.037

BTT 0.049 0.048 0.048 0.049 0.048 0.048 0.048 0.047 0.048

2

PA 0.045 0.041 0.034 0.026 0.019 0.012 0.007 0.004 0.002

TT 0.048 0.047 0.047 0.047 0.047 0.049 0.048 0.048 0.046

CT 0.037 0.037 0.036 0.037 0.037 0.039 0.037 0.037 0.037

BTT 0.048 0.047 0.047 0.047 0.047 0.049 0.047 0.048 0.046

3

PA 0.027 0.024 0.020 0.015 0.010 0.007 0.004 0.002 0.001

TT 0.048 0.048 0.048 0.046 0.047 0.050 0.047 0.048 0.048

CT 0.037 0.038 0.037 0.037 0.036 0.039 0.036 0.037 0.038

BTT 0.048 0.048 0.048 0.047 0.046 0.050 0.047 0.048 0.048

Table 12: False positive rate, nc = nt = 8, p = 20% (5 over and 15 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.063 0.058 0.047 0.032 0.021 0.014 0.011 0.006 0.004

TT 0.048 0.048 0.048 0.048 0.049 0.048 0.048 0.049 0.049

CT 0.038 0.037 0.037 0.038 0.038 0.038 0.038 0.038 0.038

BTT 0.048 0.047 0.048 0.048 0.048 0.048 0.048 0.049 0.048

2

PA 0.036 0.036 0.030 0.023 0.017 0.012 0.007 0.004 0.002

TT 0.047 0.048 0.048 0.048 0.048 0.048 0.048 0.047 0.048

CT 0.037 0.038 0.037 0.037 0.037 0.037 0.037 0.037 0.038

BTT 0.047 0.048 0.048 0.048 0.047 0.048 0.047 0.047 0.048

3

PA 0.014 0.017 0.016 0.012 0.010 0.007 0.005 0.002 0.001

TT 0.048 0.048 0.047 0.048 0.047 0.048 0.047 0.047 0.048

CT 0.037 0.038 0.036 0.038 0.037 0.038 0.037 0.036 0.038

BTT 0.048 0.047 0.047 0.048 0.047 0.048 0.047 0.047 0.048

Considering now that Yn+1 is a new observation, inde-
pendent from Y, the predictive distribution of Yn+1 | y is
given by

Yn+1 | y ∼ tτ∗

(
μ∗,

β∗(n + λ + 1)
τ∗(n + λ)

)
, (6)

where tτ∗ represents the Student’s t-distribution with loca-
tion parameter μ∗, scale β∗(n + λ + 1)/τ∗(n + λ), and τ∗

degrees of freedom.
From (6), the variance of Yn+1 | y is given by

Var
(
Yn+1 | y

) =
(

τ∗

τ∗ − 2

)
·
(
β∗(n + λ + 1)
τ∗(n + λ)

)
, (7)

and a 100(1− α)% credibility interval for Yn+1 | y is given by

I(1−α)
(
Yn+1 | y

) =
(
μ∗ − t1−α/2,τ∗

√
Var
(
Yn+1 | y

)
,μ∗

+t1−α/2,τ∗
√

Var
(
Yn+1 | y

))
,

(8)

where t1−α/2,τ∗ denotes the quantile 1 − α/2 of the standard
t-student distribution with τ∗ degrees of freedom.

2.1. Predictive Approach Criterion. Let yord = {y(1), y(2), . . . ,
y(n)}, the set y in increasing numerical order, y(1) < y(2) <
· · · < y(n). Assuming that y(g) is a future observation
in relation to the set composite by all observed treatment
effect except the gth treatment effect, yord

(−g) = {y(1), . . . ,
y(g−1), y(g+1), . . . , y(n)}, so the distribution of Y(g) is given by
(6) with posterior parameter calculated using yord

(−g) and

I1−α(Y(g) | yord
(−g)) is a 100(1−α)% credibility interval for Y(g),

g = 1, 2, . . . ,n.
In order to identify the genes differentially expressed,

we fix E(μ | yord
(−g)) = μ∗ = 0 and set up I threshold

(g) =
t1−α/2,τ∗

√
Var({yord

(−g)} \ {ydif}) as a threshold, where {ydif} is
the set that will be composite by treatment effect from genes
identified with evidences for difference, and Var({yord

(−g)} \
{ydif}) is calculated according to (7) for the set {yord

(−g)} ex-

cluding the set {ydif}. For g = 1, . . . ,n, the identification of
the genes differentially expressed is given by the following
steps:

(i) Calculate I threshold
(g) ;
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Table 13: True discovery rate, nc = nt = 4, p = 5% (3 over and 2 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.053 0.057 0.098 0.155 0.246 0.326 0.420 0.513 0.586

TT 0.050 0.056 0.083 0.137 0.208 0.269 0.329 0.395 0.444

CT 0.053 0.060 0.089 0.144 0.224 0.300 0.359 0.439 0.497

BTT 0.052 0.055 0.084 0.137 0.208 0.272 0.331 0.394 0.442

2

PA 0.185 0.192 0.217 0.267 0.321 0.380 0.463 0.526 0.596

TT 0.059 0.058 0.074 0.102 0.122 0.148 0.188 0.224 0.262

CT 0.062 0.068 0.079 0.115 0.145 0.171 0.214 0.268 0.304

BTT 0.063 0.063 0.075 0.106 0.129 0.154 0.197 0.240 0.277

3

PA 0.325 0.351 0.341 0.394 0.430 0.493 0.533 0.610 0.662

TT 0.061 0.069 0.071 0.079 0.090 0.118 0.126 0.152 0.182

CT 0.074 0.082 0.083 0.091 0.111 0.146 0.157 0.191 0.223

BTT 0.073 0.075 0.083 0.090 0.104 0.131 0.146 0.170 0.202

Table 14: True discovery rate, nc = nt = 4, p = 10% (7 over and 3 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.102 0.124 0.180 0.295 0.424 0.564 0.682 0.776 0.857

TT 0.106 0.131 0.168 0.242 0.338 0.438 0.508 0.577 0.623

CT 0.107 0.130 0.170 0.261 0.365 0.467 0.547 0.616 0.673

BTT 0.106 0.132 0.168 0.246 0.343 0.439 0.510 0.579 0.627

2

PA 0.337 0.350 0.406 0.483 0.569 0.661 0.747 0.822 0.877

TT 0.109 0.127 0.146 0.185 0.224 0.276 0.335 0.389 0.436

CT 0.115 0.138 0.156 0.207 0.249 0.304 0.370 0.436 0.490

BTT 0.113 0.132 0.154 0.194 0.231 0.287 0.347 0.408 0.458

3

PA 0.555 0.575 0.619 0.666 0.722 0.785 0.836 0.882 0.922

TT 0.117 0.134 0.134 0.159 0.179 0.209 0.245 0.281 0.318

CT 0.135 0.157 0.155 0.181 0.214 0.244 0.295 0.330 0.379

BTT 0.131 0.147 0.153 0.176 0.200 0.228 0.270 0.309 0.347

(ii) if |y(g)| ≤ I threshold
(g) , then gene g does not presents

statistical evidence for differences;

(iii) if |y(g)| > I threshold
(g) , then gene g present statistical

evidence for differences. Do ydif = ydif ∪ y(g).

3. Data Analysis

In this section, we illustrate the predictive approach (PA)
applied to artificial and real datasets. The real data set
was extracted from the site (www.jbc.org) and refers to an
experiment realized with Escherichia Coli bacterium using
nylon membranes, described by [5].

Moreover, we compare the PA results with the results
obtained by considering three well-known methods to iden-
tify differentially expressed genes: the two-sample t-test (TT)
and Cyber-t test (CT) proposed by [1] and with the Bayesian
t-test (BTT) proposed by [12].

In the TT, the hypothesis test is based on the statistics

tg =
xgt − xgc√

s2
gt /nt + s2

gc /nc
, (9)

which follows a Student’s t-distribution with df = [s2
gc /nc +

s2
gt /nt]

2/[(s2
gc /nc)

2
/(nc − 1) + (s2

gt /nt)
2
/(nt − 1)], degrees of

freedom, where xgh and s2
gh are the sample mean and variance

for gene g in experimental condition h = {c, t}. Fixing a
significance level α, if |tg| is greater than a threshold t1−α/2,df

(quantile 1−α/2 of Student’s t distribution with df degrees of
freedom), then the test conclude for difference of expression
levels.

[1] proposed a two-sample t-test replacing the denom-
inator of (1) by a pooled variance estimated via a Bayesian
approach. So, the authors implement the Cyber-t software
using the statistics

tg =
xgt − xgc√

σ̃2
gt /ngt + σ̃2

gc /ngc
(10)

and the degrees of freedom df = ν0 + ngc + ngt − 2, where
σ̃2
gh = ν0σ

2
0 + (nh− 1)s2

gh /(ν0 +nh− 2), for h ∈ {c, t}, where ν0

and σ2
0 are hyperparameters. The authors assume that k > 2

points are needed to properly estimate the standard deviation
and keep ng + ν0 = k, where ng = ngc + ngt . They suggest
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Table 15: True discovery rate, nc = nt = 4, p = 20% (5 over and 15 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.209 0.235 0.350 0.488 0.629 0.749 0.841 0.903 0.934

TT 0.209 0.232 0.328 0.432 0.544 0.634 0.699 0.747 0.786

CT 0.203 0.231 0.336 0.457 0.568 0.661 0.730 0.783 0.817

BTT 0.207 0.230 0.331 0.434 0.546 0.636 0.704 0.750 0.786

2

PA 0.572 0.575 0.626 0.692 0.743 0.822 0.874 0.919 0.944

TT 0.229 0.241 0.275 0.340 0.385 0.470 0.536 0.584 0.638

CT 0.243 0.256 0.289 0.367 0.414 0.514 0.583 0.632 0.684

BTT 0.235 0.253 0.288 0.350 0.402 0.491 0.552 0.604 0.654

3

PA 0.815 0.817 0.834 0.845 0.870 0.901 0.918 0.947 0.961

TT 0.237 0.256 0.275 0.303 0.330 0.373 0.423 0.467 0.511

CT 0.269 0.297 0.318 0.352 0.381 0.431 0.480 0.533 0.577

BTT 0.257 0.284 0.301 0.331 0.365 0.409 0.452 0.506 0.547

Table 16: True discovery rate, nc = nt = 8, p = 5% (3% over and 2% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.048 0.068 0.145 0.262 0.385 0.503 0.619 0.717 0.790

TT 0.049 0.076 0.141 0.239 0.341 0.414 0.458 0.499 0.517

CT 0.052 0.075 0.150 0.258 0.371 0.452 0.512 0.549 0.573

BTT 0.050 0.075 0.141 0.242 0.340 0.415 0.459 0.498 0.519

2

PA 0.179 0.200 0.261 0.331 0.443 0.546 0.638 0.727 0.800

TT 0.054 0.061 0.087 0.127 0.189 0.249 0.309 0.364 0.407

CT 0.058 0.067 0.098 0.144 0.212 0.278 0.354 0.412 0.457

BTT 0.056 0.064 0.093 0.132 0.197 0.259 0.319 0.375 0.416

3

PA 0.324 0.336 0.381 0.450 0.529 0.600 0.699 0.762 0.825

TT 0.051 0.060 0.073 0.089 0.124 0.162 0.198 0.238 0.286

CT 0.058 0.069 0.084 0.104 0.148 0.189 0.236 0.278 0.332

BTT 0.058 0.070 0.078 0.101 0.138 0.176 0.215 0.256 0.304

to fix k = 10 and so ν0 = 10 − ng . To fix a value for σ2
0 ,

the authors say “one could use the standard deviation of the
entire set of observations or, depending on the situation, of
particularly categories of genes.” Using only the information
from observations of the gene g, we fix σ2

0 = ((ng − 1)/ng)s2
g ,

as suggested by [1], where s2
g is the sample variance of the set

xg = {xgc , xgt}.
Based on [1, 12], develop a Bayesian approach and show

that

Δμ− Δx

σn
√

1/ngt + 1/ngc

∣∣∣∣∣∣
xgc , xgt ∼ tνn , (11)

where Δx = xgt − xgc , νnσ2
n = ν0σ

2
0 + (ngc − 1)s2

gc + (ngt −
1)s2

gt , νn = ν0 + ngc + ngt − 2, and tνn represent the Student’s t
distribution with νn degrees of freedom, for g = 1, . . . ,n. As
suggested by authors, we fix ν0 = ng and σ2

0 = s2
g .

3.1. Artificial Data. To generate the artificial data sets, we
consider that observations from control group are generated
from a normal distribution with mean μc and variance σ2

c ,

Xigc ∼ N (μc, σ2
c ), for i = 1, . . . ,nc and g = 1, . . . ,n. We fix

μgc = −14 and σ2
gc = 0.8. These values are the average of

the observed mean and variance of the expression levels (log
transformed) from control group of the Escherichia coli
bacterium dataset. We fix n = 1.000, and the sample sizes
nc and nt were fixed at 4 and 8.

To generate the observations from treatment group, we
follow the steps:

(i) From index {1, . . . ,n}, we choose randomly p% of
these index to indicate the cases generated with dif-
ference, p ∈ {5, 10, 20};

(ii) if the index g ∈ {1, . . . ,n} is chosen, then we consider
an indicator variable Ig = 1 and generate Xigt ∼
N (μt, σ2

t ), for i = 1, . . . ,nt. In order to verify how
the method behaves when (μt, σ2

t ) moves away from
(μc, σ2

c ), we simulate its values using

μgt = μgc ± δσc, σt = γσc, (12)

for δ = {0, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2} and γ =
{1, 2, 3}. The differential cases represent the situation over-
expressed, defined by signal + in expression μt, and under
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Table 17: True discovery rate, nc = nt = 8, p = 10% (7% over and 3% under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.104 0.141 0.276 0.452 0.629 0.777 0.868 0.933 0.970

TT 0.105 0.140 0.254 0.392 0.507 0.595 0.643 0.678 0.690

CT 0.106 0.144 0.269 0.420 0.540 0.634 0.688 0.724 0.740

BTT 0.103 0.140 0.254 0.392 0.508 0.595 0.644 0.680 0.691

2

PA 0.336 0.382 0.467 0.591 0.716 0.821 0.901 0.946 0.973

TT 0.104 0.122 0.177 0.242 0.334 0.409 0.485 0.542 0.603

CT 0.112 0.131 0.197 0.268 0.366 0.448 0.532 0.594 0.649

BTT 0.108 0.129 0.185 0.254 0.344 0.419 0.497 0.552 0.611

3

PA 0.582 0.603 0.657 0.743 0.818 0.882 0.929 0.963 0.984

TT 0.104 0.112 0.141 0.182 0.232 0.276 0.346 0.398 0.451

CT 0.121 0.131 0.164 0.210 0.270 0.317 0.395 0.456 0.507

BTT 0.117 0.126 0.155 0.198 0.253 0.302 0.369 0.423 0.473

Table 18: True discovery rate, nc = nt = 8, p = 20% (5 over and 15 under).

γ Method
δ

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2

1

PA 0.207 0.283 0.465 0.671 0.820 0.903 0.939 0.969 0.983

TT 0.213 0.279 0.438 0.591 0.701 0.766 0.805 0.822 0.832

CT 0.211 0.288 0.456 0.616 0.728 0.793 0.834 0.851 0.863

BTT 0.212 0.278 0.438 0.592 0.703 0.766 0.806 0.822 0.832

2

PA 0.556 0.591 0.679 0.776 0.856 0.910 0.953 0.975 0.988

TT 0.211 0.242 0.313 0.420 0.527 0.613 0.679 0.729 0.767

CT 0.221 0.264 0.341 0.454 0.570 0.653 0.719 0.765 0.801

BTT 0.223 0.253 0.326 0.432 0.540 0.623 0.691 0.739 0.773

3

PA 0.831 0.817 0.840 0.887 0.915 0.942 0.967 0.984 0.992

TT 0.213 0.230 0.266 0.334 0.397 0.476 0.547 0.601 0.645

CT 0.247 0.258 0.302 0.377 0.447 0.527 0.599 0.655 0.693

BTT 0.237 0.255 0.292 0.361 0.426 0.502 0.574 0.625 0.667

expressed, defined by the signal− in expression of μt. We use
p = pover + punder, for pover = {3, 7, 5} and punder = {2, 3, 15},
respectively. For example, p = 5 is composite by pover = 3
plus punder = 2

(iii) if the index g ∈ {1, . . . ,n} is not chosen, then set
up Ig = 0 and generate Xigt ∼ N (μc, σ2

c ), for i =
1, . . . ,nc.

For PA application, we fix the hyperparameters in order
to have weak informative priors. We set up (i) τ and β in
a way that E[σ2] = (β/2)/((τ/2) − 1) = R2, where R =
max(y) −min(y) is the length of the interval of variation of
the observed data y. Thus, we obtain β = (τ − 2) · R2. So, we
fix τ = 3, μ0 = 0, and λ = 10−2. We also set up α = 0.05 to
calculate the credibility intervals and for the t-tests.

To record the cases identified with difference by PA, we
consider an indicator variable IPA

g = 1 for cases, so that

|y(g)| > I threshold
(g) . Otherwise, IPA

g = 0. Analogously, for

TT, CT, and BTT, we consider Imethod
g = 1 (method =

{TT, CT, BTT}) for cases with Pvalueg < 0.05 and Imethod
g =

0, otherwise.

In order to compare the performance of methods, we
calculate the true positive rate given by

Pmethod =
∑n

g=1 Ig · Imethod
g∑n

g=1 Ig
, (13)

where method = {PA, TT, CT, BTT}.
We calculate the true positive rate for S = 100 different

datasets generated according to steps (i) to (iii) described
above, and we present the results using the mean of the true

positive rate, that is given by Pmethod =
∑S

s=1 P
(s)
method/S, where

P(s)
method is the true positive rate calculated for sth generated

dataset for method = {PA, TT, CT, BTT}.
Tables 1, 2, and 3 present the Pmethod value for nc = nt = 4

and Tables 4, 5, and 6 present the Pmethod value for nc = nt =
8, for method = {PA, TT, CT, BTT}.

As we move from the left to the right side of the tables,
in each line, we have the distances between control and treat-
ment means, which are increasing. As we move from top to
down in columns of the tables, we have the distance between
the treatment and control variances, which are increasing.
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Increasing the sample sizes from 4 to 8, all methods increase
its performance.

For nc = 4 and all values of δ and γ used, the PA present
better performance than TT, CT, and BTT. Moving away
the treatment distribution from the control distribution (in-
creasing δ and γ), the true positive rate obtained by PA is
greater than t-tests.

For nc = 8 and γ = 1 fixed the TT, CT, and BTT present
better performance than PA for the same values of δ used. For
example, for p = 5 and δ = {1.5, 1.75, 2} the t tests present
greater true positive rate than PA. But increasing the value of
γ, γ = {2, 3}, the PA presents greater true positive rate.

Besides, note that TT, CT, and BTT present similar results
with a slight advantage for BTT, that is, greater true positive
rate than TT and CT. Also note that true positive rate ob-
tained by CT is smaller than TT for all cases simulated. It
happens because we use only the information from obser-
vations from gene g to fix the hyperparameter σ2

0 . In order to
obtain better results, [1, 12] suggest to fix σ0 as the standard
deviation estimated by pooling together all the neighboring
genes contained in a window of size w. But, the authors do
not discuss how to define a good value w to lead to satis-
factory results.

We also compare the performance of the methods using
the mean of the false positive rate and the mean of the true
discovery rate. The mean of the false positive rates is
presented in Tables 7 to 9 and in Tables 10 to 12. All methods
present a small false positive rate.

The mean of the true discovery rates is presented in
Tables 13 to 15 and in Tables 16 to 18. The PA presents greater
true discovery rate than t-tests for all values of δ and γ
used. Besides, note that increasing the value of δ and γ, the
true discovery rate increases in both directions for PA. But
the same does not happen with the t-tests, in which the
proportion of identification increases only as the value of δ
increases, that is, when the mean of the treatment distribu-
tion moves away from the mean of the control distribution.
Increasing the variance of treatment (increasing the value
of γ), the t-tests present a reduction of its performance,
in opposite to PA which presents an improvement in its
performance.

Results show a better performance of the PA in relation
to TT, CT, and BTT, specially, when the difference refers
to variance of the variable involved. From the biological
practical point of view, it shows us that PA may identify with
differences genes which are not identified by TT, CT, and
BTT, specially, genes with differences in means and variances.

3.2. Escherichia coli Data. In this section consider the gene
expression data set on Escherichia coli bacterium, composed
by n = 4290 genes [5]. Figure 1 shows the treatment and
control observed means and variances for all genes of this
dataset.

Results for PA are presented in Figure 2. Results for TT,
CT, and BTT are presented in Figure 3. These figures show
the observed treatment and control means and variances of
genes identified with evidence for difference by considering
PA, TT, CT, and BTT, respectively. The PA identifies 340

genes with evidences for difference, while TT identifies 222,
CT 219, and BTT 288 genes.

Note that genes with means well apart are better identi-
fied by PA than by the other methods. Moreover, genes with
mean and variances well apart are identified by PA and not
identified by TT, CT, and BTT, as can be noted in Figure 2.
Examples are genes 2766 (b1326(f262)) and 3254 (dbpA)
that are highlighted in Figures 2(a) and 2(b). Genes with
means well apart and similar variances are however identified
by TT, CT, and BTT. An example is the gene 10 (hdeB) that is
highlighted in Figures 2(a) and 2(b). One possible reason for
this is the low performance of TT, CT and BTT in situations
with differences in means and variances, as observed in the
artificial data sets. Besides, note that PA is capable to identify
differentially expressed genes which are not identified by TT,
CT, and BTT, specially, genes with differences in means and
variances.

4. Discussion

Identifying genes with difference, in what concerns gene
expression, may help biologists to study and understand
some function of genes and infer possible relationships
among genes and proteins. In this paper we propose a Baye-
sian approach to identify differentially expressed genes based
on predictive density.

In order to verify the performance of the PA approach
and compare it with TT, CT, and BTT, we considered artifi-
cial and real datasets. Results show a better performance of
PA in relation to the t-tests in identifying difference, mainly,
in presence of different variances. The main advantage of the
proposed method is that it is easy to use like a usual two-
sample t-test but presents better performance in situations
with small sample size.

The biological interest in this fact is that PA may bring
to light genes that are not identified when we use only the
TT or the modified t-test ones. Moreover, the PA can be
easily implemented in usual softwares such as the software
R (the Comprehensive R Archive Network, http://cran.r-
project.org). The source code used for the data analysis was
implemented in software R and can be obtained by emailing
the authors.

According to [1], gene expression data can be analyzed in
at least three levels of increasing complexity. In the first level,
each gene is analyzed separately, where the objective is to ver-
ify whether the observed expression in treatment experimen-
tal condition is significantly different from observed expres-
sion in control experimental condition. In the second level,
clusters of genes are analyzed in terms of common functiona-
lities and interactions. In the third level, the objective is to
infer and understand the relationship among genes. As it
should be clear by now, in this paper, we focus on the first
level of analysis. However, as future work we intent to present
the adjustment of the proposed method to control the false
discovery rate for multiple testing hypotheses, when thou-
sands of hypotheses are realized simultaneously, as proposed
by [14], as well as to make a systematic comparison with his
methodology. Besides, we also will development a multivari-
ate approach in order to consider dependence among genes.
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