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ABSTRACT 
 

Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer 
death in women. Its routine clinical management includes surgical resection and systemic therapy with 
chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents 
and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, 
it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. 
Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic 
drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate 
whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. 
We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines 
and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, 
and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed 
to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-
resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell 
proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-
resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic 
sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies. 
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INTRODUCTION 
 

Ovarian cancer (OC) is the third most common cancer 

and the second most common cause of gynecologic 

cancer death in women globally [1–6]. Due to the lack 

of effective early detection strategies, over 80% of 

ovarian cancers are usually diagnosed with metastatic 

lesions. In fact, ovarian cancer is three times more 

lethal than breast cancer even though it has a lower 

prevalence [1, 4–8]. Ovarian tumors can originate 

from epithelial cells, stromal cells, and germ cells. The 

most common form epithelial ovarian cancer (EOC) is 

composed of five diverse main histological subtypes 

on the basis of distinctive histological and genetic 

characteristics including: low-grade serous (LGSOC), 

endometrioid (ENOC), high-grade serous (HGSOC), 

clear cell (CCOC), and mucinous (MOC), and [1, 5, 6, 

9–11]. 

 

The outcomes of ovarian cancer treatment are 

dependent on early diagnosis, appropriate surgery, and 

effective systemic therapy [1, 12]. The clinical 

management of ovarian cancer includes debulking 

surgery, combination chemotherapy, radiation therapy, 

and other adjuvant therapies such as angiogenesis 

inhibitors in patients with suboptimally debulked and 

stage IV cancer, folate receptor targeting, and 

immunotherapy [1, 5, 6, 9–11]. A recent major 

progress has been made in maintenance therapy by 

including poly (ADP‐ribose) polymerase (PARP) 

inhibitors in recurrent diseases and in a frontline 

regime among patients having BRCA1/BRCA2 

mutations [13, 14]. Nonetheless, combination therapy 

with platinum-based drugs (e.g., cisplatin, carboplatin, 

or oxaliplatin) and paclitaxel is the first-line systemic 

therapy [1]. Even though the five-year survival rate 

has improved steadily for the past two decades, the OC 

overall cure rate hovers around ~30% [5, 15]. Many 

patients have recurrence within 12–24 months and 

eventually succumb to chemotherapy-resistant cancer 

[5, 15]. Thus, there is an urgent unmet clinical need to 

identify new and effective anticancer agents to treat 

chemoresistant ovarian cancer. 

 

Repurposing previously-approved drugs for cancer 

therapy is an appealing, safe and cost-effective 

approach to cancer drug discovery [16, 17]. 

Mebendazole (MBZ) is among the drugs with 

promising repurposing potential [17]. Approved by the 

US FDA to treat parasitic infections, MBZ has a long 

and favorable track-record of biosafety profiles in 

humans and in animal models [17]. We have recently 

demonstrated that MBZ can enhance cisplatin’s 

anticancer activities in head and neck squamous cell 

carcinoma (HNSCC) cells [18]. Other studies also 

indicate that MBZ and/or its derivatives exhibited 

anticancer activities in several types of human cancers 

[19–35]. Nonetheless, few studies have been carried out 

thus far to elucidate whether MBZ can effectively 

overcome chemoresistance and/or sensitize 

chemoresistant cancer cells to chemotherapeutics such 

as cisplatin. 

 

In this study, we investigate whether MBZ 

overcomes cisplatin resistance and sensitizes 

chemoresistant cells to cisplatin in human ovarian 

cancer cells. We first established and characterized 

two stable and robust cisplatin-resistant (CR) human 

ovarian cancer lines and demonstrated that MBZ 

markedly inhibited cell proliferation, suppressed cell 

wounding healing/migration, and induced apoptosis 

in both parental and CR cells at very low micromole 

range. Mechanistically, MBZ was shown to inhibit 

multiple cancer-associated signaling pathways 

including ELK/SRF, NFKB, MYC/MAX, and 

E2F/DP1 in cisplatin-resistant ovarian cancer cells. 

We further demonstrated that MBZ synergized with 

cisplatin to suppress cell proliferation, induce cell 

apoptosis, and blunt tumor growth in the xenograft 

tumor model of human cisplatin-resistant ovarian 

cancer cells. Collectively, our results suggest that 

MBZ may be repurposed as a synergistic sensitizer of 

cisplatin in treating chemoresistant human ovarian 

cancer. 

 

RESULTS 
 

OVCAR8CR and SKOV3CR are stable cisplatin-

resistant (CR) ovarian cancer cell lines with 

characteristics of chemoresistance 
 

Since there has been a limited availability of human 

ovarian cancer lines that are stably resistant to cisplatin 

in the cancer research community [36–38], we sought to 

establish stable cisplatin-resistant human ovarian cancer 

lines from two commonly-used OVCAR8 and SKOV3 

cell lines through a cisplatin dose-escalating selection 

process. When exponentially growing OVCAR8 and 

SKOV3 cells were initially treated with 0.5 µM 

cisplatin, vast majority of the cells were killed by 

cisplatin while a small fraction of the cells survived the 

selection. The viable cells were subsequently grown up 

and subjected to another round of selection with 0.5 µM 

cisplatin. Such selection scheme was carried out by 

escalating cisplatin concentrations gradually to 1.0 µM, 

1.5 µM, 2.0 µM, 3.0 µM and 5.0 µM, yielding the 

stable cisplatin-resistant cell lines, namely OVCAR8CR 

and SKOV3CR. 

 

As shown in Figure 1A, both OVCAR8CR and 

SKOV3CR lines effectively survived cisplatin treatment 

at as high as 5.0 µM, compared with their parental lines 
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Figure 1. Characterization of human cisplatin-resistant (CR) ovarian cancer cell lines. (A) Crystal violet cell viability assay. 

Subconfluent two CR lines OVCAR8CR (a) and SKOV3CR (b), and the respective parental counterparts OVCAR8 (a) and SKOV3 (b) were 
treated with the indicated concentrations of cisplatin. At 72 h post treatment, cells were fixed and subjected to crystal violet staining. 
Representative results are shown. The stained cells were dissolved and measured quantitatively for optical absorbance. **p < 0.01, 
compared with that of the parental cells treated with 0 µM cisplatin (or DFM solvent control) group. (B) Cell apoptosis assay. Subconfluent 
OVCAR8 (a), OVCAR8CR (b), SKOV3CR (c) and SKOV3CR (d) were treated with 0 or 5 µM cisplatin. At 72 h post treatment, cells were 
collected, fixed and stained with Hoechst33258 and examined under a fluorescence microscope. Representative images are shown. 
Representative apoptotic cells are indicated by arrows. (C) Expression of the chemoresistance-associated genes in the two cisplatin-
resistant human ovarian cancer lines. Subconfluent two CR lines OVCAR8CR (a) and SKOV3CR (b), and the respective parental counterparts 
OVCAR8 (a) and SKOV3 (b) were treated with 0 or 2 µM cisplatin. At 48 h after treatment, total RNA was isolated and subjected to qPCR 
analysis of the indicated genes. GAPDH was used as a reference gene. All assays were done in triplicate. *p < 0.05, **p < 0.01, compared 
with that of the parental cells treated with 0 µM cisplatin (i.e., DFM solvent control) group. 
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OVCAR8 (Figure 1A-a) and SKOV3 (Figure 1A-b), 

respectively. We also demonstrated that both 

OVCAR8CR and SKOV3CR cells were resistant to 

cisplatin-induced apoptosis, compared with their 

parental lines OVCAR8 (Figure 1B-a) and SKOV3 

(Figure 1B-b), respectively. Furthermore, we 

analyzed the expression of a panel of 

chemoresistance-associated genes in the two 

cisplatin-resistant human ovarian cancer lines and 

found that most of them were up-regulated by 

cisplatin, and almost all of them were elevated in  
OVCAR8CR (Figure 1C-a) and SKOV3CR (Figure 

1C-b), respectively. Based on the cell viability 

analysis, the calculated IC50 values for parental and 

resistant lines are as follows: OVCAR8, 1.50 µM; 

OVCAR8CR, 5.17 µM; SKOV3, 2.84 µM; and 

SKOV3CR, 122.26 µM. Collectively, these results 

demonstrate that both OVCAR8CR and SKOV3CR 

confer robust cisplatin resistance and exhibit the 

molecular and cellular characteristics of 

chemoresistant cancer cells. 

 

Mebendazole (MBZ) inhibits the cell viability and 

proliferation of human cisplatin-resistant ovarian 

cancer cells 
 

We next tested whether MBZ was capable of 

inhibiting the cell viability of the CR ovarian cancer 

cells. When both OVCAR8CR and its parental 

OVCAR8 cells were treated with MBZ, we found that 

the numbers of viable cells drastically decreased at as 

low as 1.0 µM of MBZ, and completely eliminated at 

4.0 µM of MBZ (Figure 2A-a). In fact, a quantitative 

analysis indicates that MBZ significantly decreased 

the cell viability of the parental OVCAR8 cells at as 

low as 0.25 µM (Figure 2A-b). Similarly, MBZ was 

shown to effectively decrease the cell viability of both 

SKOV3 and SKOV3CR cells at as low as 0.25 µM 

(Figure 2B-ab), although more surviving cells were 

found in the SKOV3 and SKOV3CR treated with 4 

µM MBZ, than that found in the OVCAR8CR and 

OVCAR8 cells under the same treatment conditions 

(Figures 2A vs. 2B). 

 

We further examined the effect of MBZ on the cell 

proliferative activity of the CR ovarian cancer cells. 

MBZ was shown to inhibit cell proliferation of 

OVCAR8CR cells in a dose-dependent fashion with an 

IC50 at 0.28 µM (Figure 2C-a). Similarly, MBZ also 

effectively inhibited cell proliferation of SKOV3CR 

cells in a dose-dependent fashion with an IC50 at 0.61 

µM (Figure 2C-b). Collectively, these results 

demonstrate that MBZ may be able to overcome 
cisplatin resistance in the CR ovarian cancer cells by 

inhibiting cell viability and proliferative activity of 

ovarian cancer cells. 

MBZ inhibits cell wound healing/migration and 

induces apoptosis in cisplatin-resistant ovarian 

cancer cells 
 

We also tested the effect of MBZ on cell wound 

healing/migration of cisplatin-resistant ovarian cancer 

cells. MBZ was shown to effectively inhibit the wound 

closure of the injured OVCAR8CR cells in a dose-

dependent manner (Figure 3A-a). In fact, nearly 80% of 

the wound gap remained open at 40h after treated with 1 

µM MBZ, while the control group was completely 

healed (Figure 3A-a). Similar dose-dependent inhibitory 

effect of MBZ was observed on the wound closure of 

the injured SKOV3CR cells (Figure 3A-b). These 

results indicate that MBZ can inhibit cell migration and 

proliferation of the CR ovarian cancer cells at low 

micromole concentrations. 

 

We next analyzed whether MBZ induced cell apoptosis 

in cisplatin-resistant ovarian cancer cells. When the 

OVCAR8CR and SKOV3CR cells were treated with 

0.25 µM and 1 µM MBZ, Hoechst 33258 staining 

indicated that the numbers of apoptotic cells 

significantly increased in MBZ-treated cells, compared 

with that of the control group (Figure 3B-ab). We 

further analyzed the effect of the expression of pro-

apoptotic genes BAX and CASP3, and found that upon 

MBZ treatment (especially at 1 µM MBZ) both BAX 

and CASP3 expression levels were significantly 

elevated in the OVCAR8CR and SKOV3CR cells 

(Figure 3C-ab). Collectively, these results suggest that 

MBZ may overcome cisplatin resistance, at least in part, 

by inhibiting cell migration/proliferation and inducing 

apoptosis in chemoresistant ovarian cancer cells. 

 

MBZ inhibits multiple cancer-associated signaling 

pathways in human cisplatin-resistant ovarian 

cancer cells 

 

Mechanistically, several studies have reported that 

MBZ exerts its anticancer activity by regulating 

numerous cellular pathways. However, it is not clear 

whether MBZ can overcome cisplatin-based 

chemoresistance in ovarian cancer cells through similar 

mechanisms. Thus, we examined the effect of MBZ on 

the 12 cancer-related signaling pathways in the 

cisplatin-resistant ovarian cancer cells. When the 

pathway reporters were transfected into those cells and 

treated with various concentrations of MBZ, we found 

that 11 of the 12 pathways, especially ELK/SRF, 

NFKB, MYC/MAX, E2F/DP1, TGF/SMAD and AP1 

pathway reporters, were effectively inhibited by MBZ 

in a dose-dependent fashion although the CREB 
pathway reporter was seemingly activated at 1 µM and 

2 µM MBZ (Figure 4A), suggesting that MBZ may 

exert its anticancer and anti-chemoresistance activities 
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in ovarian cancer cells by inhibiting multiple cancer-

related signaling pathways. 

 

We further analyzed the dose-dependent and time-

dependent inhibitory effect of MBZ on the four most 

impacted pathways, ELK/SRF, NFKB, MYC/MAX, 

and E2F/DP1. We found that the ELK/SRF reporter 

activities were significantly inhibited by MBZ in dose-

dependent and time-dependent fashion (Figure 4B-a). 

Similar inhibitory effects by MBZ were observed for 

the NFKB (Figure 4B-b), MYC/MAX (Figure 4B-c), 

and E2F/DP1 (Figure 4B-d) reporter activities, 

suggesting that MBZ may exert profound inhibitory 

effects on cell proliferation pathways in cisplatin-

resistant ovarian cancer cells. 

MBZ synergizes with cisplatin to inhibit cell 

proliferation, induce cell apoptosis, and suppress 

tumor growth in the xenograft model of human 

cisplatin-resistant ovarian cancer cells 

 

We next tested whether MBZ could sensitize the 

cisplatin-resistant ovarian cancer cells to cisplatin. As 

demonstrated earlier, although 5 µM cisplatin alone in 

OVCAR8CR cells did not significantly impact cell 

viability, the presence of MBZ at a concentration as low 

as 0.25 µM drastically diminished cell viability and 

reduced cell colonies (Figure 5A-ab). In SKOV3CR 

cells, even though 5 µM cisplatin alone did affect cell 

viability, the presence of MBZ at a concentration as low 

as 0.25 µM markedly reduced cell viability and formed 

 

 
 

Figure 2. Mebendazole (MBZ) effectively inhibits the cell viability and proliferation of human CR ovarian cancer lines. (A and 

B) Crystal violet cell viability assay. Subconfluent OVCAR8 and OVCAR8CR (A) and SKOV3 and SKOV3CR (B) were treated with the indicated 
concentrations of MBZ. At 72 h post treatment, cells were fixed and subjected to crystal violet staining (a). Representative results are shown. 
The stained cells were dissolved and measured quantitatively for optical absorbance (b). **p < 0.01, compared with that of the respective cells 
treated with 0 µM MBZ (or DMSO solvent control) group. (C) WST-1 cell proliferation assay. Subconfluent OVCAR8CR (a) and SKOV3CR (b) 
cells were seeded in 96-well plates and treated with MBZ at the indicated concentrations. At 72 h after treatment, the WST-1 regent (Takara 
BIO USA, Inc.) was added to each well, and incubated for 2 h prior to the absorbance reading of each well. The IC50 values were calculated by 
using the AAT Bioquest online tools. All assay conditions were done in triplicate. 
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Figure 3. MBZ effectively inhibits cell wound healing/migration and induces apoptosis in the human CR ovarian cancer 
cells. (A) Cell wounding/migration assay. Freshly subconfluent OVCAR8CR (a) and SKOV3CR (b) cells were wounded with micro-pipette tips 

and treated with the indicated concentrations of MBZ. The wounding gaps were recorded at 0 h, 24 h and 40 h after MBZ treatment. Each 
assay condition was done in triplicate. Representative results are shown (B) Cell apoptosis assay. Subconfluent OVCAR8CR (a) and SKOV3CR 
(b) cells were treated with the indicated concentrations of MBZ. At 72 h after treatment, cells were collected, fixed and stained with 
Hoechst 33258 and examined under a fluorescence microscope. Representative images are shown. Representative apoptotic cells are 
indicated by arrows. (C) The expression of apoptosis-inducing genes. Subconfluent OVCAR8CR (a) and SKOV3CR (b) cells were treated with 
the indicated concentrations of MBZ for 48 h. Total RNA was isolated and subjected to qPCR analysis of the expression of CASP3 and BAX. 
GAPDH was used as the reference gene. All assays were done in triplicate. *p < 0.05, **p < 0.01, compared with that of the cells treated with 
0 µM MBZ (i.e., DMSO solvent control) group. 
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significantly fewer colonies (Figure 5A-cd). 

Interestingly, MBZ concentrations increases (from 0.25 

µM to 4 µM) did not significantly enhance cisplatin-

mediated cytotoxicity (Figure 5A-cd). 

 

We also conducted WST-1 assay to investigate the 

effect of MBZ on cell proliferation. Even though 5 µM 

cisplatin alone inhibited cell proliferation, the presence 

of MBZ, at a concentration as low as 0.25 µM, 

significantly inhibited the cell proliferation of 

OVCAR8CR cells (Figure 5B-a). Similarly, while 5 µM 

cisplatin alone could inhibit cell proliferation, the 

presence of MBZ, at a concentration as low as 0.25 µM, 

significantly inhibited the cell proliferation of 

SKOV3CR cells, although higher concentrations of 

MBZ did not exhibit more inhibitory effect on cell 

proliferation (Figure 5B-b). 

 

We further analyzed the effect of MBZ on cisplatin-

induced apoptosis in cisplatin-resistant ovarian cancer 

 

 
 

Figure 4. MBZ inhibits multiple cancer-associated signaling pathways in human CR ovarian cancer cells. (A) Effect of MBZ on 

the 12 cancer-associated pathways in CR human ovarian cancer cells. Subconfluent SKOV3CR cells were transfected with the Gaussia 
luciferase reporter plasmids for the 12 cancer-associated pathways. At 24 h post transfection, the cells were treated with the indicated 
concentrations of MBZ for additional 48 h. The culture medium was collected for Gaussia luciferase assay using the Gaussia Luciferase 
Assay Kit (GeneCopoeia, Rockville, MD). Each assay condition was done in triplicate. *p < 0.05, **p < 0.01, compared with that of the cells 
treated with 0 µM MBZ (i.e., DMSO solvent control) group. (B) MBZ inhibits five cancer-related pathways in dose- and time-dependent 
manners. The selected five pathway reporter plasmids ELK/SRP (a), NFKB (b), MYC/MAX (c), and E2F/DP1 (d) were transfected into 
SKOV3CR cells as described in (A). The transfected cells were treated with the indicated concentrations of MBZ for 24 h or 48 h, followed by 
Gaussia Luciferase activity assays. Each assay condition was done in triplicate. *p < 0.05, **p < 0.01, compared with that of the cells treated 
with 0 µM MBZ (i.e., DMSO solvent control) group. 
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Figure 5. MBZ synergizes with cisplatin to inhibit cell proliferation and induce apoptosis in the human CR ovarian cancer 
cells. (A) Colony formation and crystal violet cell viability assay. Subconfluent OVCAR8CR (a, b) and SKOV3CR (c, d) cells were treated with 

MBZ and cisplatin at the indicated concentrations. At 72 h post treatment, the cells were replated for colony formation for 10 days, followed 
by crystal violet staining (a, c). Each assay condition was done in triplicate. Representative results are shown (a, c). The stained cells were 
dissolved in acetic acid and quantitatively measured for optical absorbance (b, d). *p < 0.05 **p < 0.01, when compared with that of the 
respective 0 µM cisplatin groups. (B) WST-1 cell proliferation assay. Subconfluent OVCAR8CR (a) and SKOV3CR (b) cells were seeded into 96-
well cell culture plates, and treated with DMSO, cisplatin and/or MBZ at the indicated concentrations. At 72 h post treatment, WST-1 working 
mix was added to each well and incubated for 2h prior to absorbance reading at 450nm. Each assay condition was done in triplicate. *p < 0.05 
**p < 0.01, when compared with that of the respective 0 µM cisplatin groups. (C) Cell apoptosis assay. Subconfluent OVCAR8CR (a) and 
SKOV3CR (b) cells were seeded into 6-well cell culture plates, and treated with DMSO, 5 µM cisplatin (Cis) and/or 0.25 µM MBZ. At 72 h, the 
cells were collected, fixed, stained with Hoechst33258, and examined under a fluorescence microscope. Representative images are shown. 
Representative apoptotic cells are indicated by arrows. 
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cells. Even though 0.25 µM MBZ or 5 µM cisplatin 

alone caused detectable cell apoptosis in OVCAR8CR 

cells, the combination of both led a significant increase 

in apoptotic cells (Figure 5C-a). Similarly, the 

combination of 0.25 µM MBZ and 5 µM cisplatin 

caused a marked increase of cell apoptosis in 

SKOV3CR cells, compared that treated with either drug 

alone (Figure 5C-b). Taken together, these in vitro 

results strongly suggest that MBZ may sensitize the 

chemoresistant ovarian cancer cells to cisplatin. 

 

Lastly, we analyzed the potential synergistic effect 

between MBZ and cisplatin on in vivo tumor growth. 

Using a xenograft tumor model of SKOV3CR cells, we 

found that, even though MBZ or cisplatin alone slowed 

down tumor growth, the combination of MBZ and 

cisplatin drastically suppressed the xenograft tumor 

growth, compared with that treated with either drug 

alone (Figure 6A), which was confirmed by gross 

examining of the retrieved tumor masses (Figure 6B-

ab). Histologic evaluation indicates that xenograft 

tumors treated with MBZ and cisplatin alone or in 

combination exhibited significant necrosis with reduced 

cell numbers, compared with that of the DMSO control 

group (Figure 6C-a). Immunohistochemical staining 

with a PCNA antibody demonstrate that cell 

proliferation was drastically inhibited in the xenograft 

tumors treated with MBZ or cisplatin, while the 

combination of MBZ and cisplatin led to the greatest 

decrease in cell proliferation in the retrieved tumor 

masses (Figure 6C-b). Thus, these in vivo finding 

further demonstrate that MBZ and cisplatin could 

synergistically inhibit tumor growth in the xenograft 

tumor model of human CR ovarian cancer cells. 

 

DISCUSSION 
 

Any significant improvement in long-term survival of 

ovarian cancer patients hinges on translating our 

understanding of molecular pathogenesis of ovarian 

cancer into precision treatment strategies, devising 

novel methods for screening or early detection, and 

developing new therapeutics [5, 6, 9–11, 39]. The use of 

stable platinum or paclitaxel-resistant ovarian cancer 

lines is critical to the understanding and overcoming of 

ovarian cancer chemoresistance in order to improve the 

long-term survival of ovarian cancer patients. 

Histologically, there have been a rather limited 

availability of human ovarian cancer lines that are 

stably resistant to cisplatin in the cancer research 

community [37, 38]. A commonly-used cisplatin 

resistant ovarian cancer line A2780CP or A2780/CP70 

was first reported in 1988 [36–38], although other 

cisplatin resistant lines were later established from 

lesser known cell lines or treated patients [40–42]. Here, 

we sought to establish stable cisplatin resistant human 

ovarian cancer lines from two commonly-used 

OVCAR8 and SKOV3 cell lines through a cisplatin 

dose-escalating selection process. We demonstrated that 

both OVCAR8CR and SKOV3CR lines can confer 

robust and stable resistance to at least 5 µM cisplatin in 

culture. Furthermore, we demonstrated that the 

OVCAR8CR and SKOV3CR lines share similar 

biological characteristics to other chemoresistance, 

especially platinum-resistance, cancer lines as the 

expression of representative chemoresistance-related 

genes were effectively up-regulated in both cell lines. 

Thus, OVCAR8CR and SKOV3CR lines should be a 

valuable research resource for studying cisplatin 

resistance in ovarian cancer. 

 

Repurposing of drugs approved for other indications is 

an attractive strategy to develop new anti-cancer agents 

in a cost-effective and less time-consuming fashion [16, 

43]. In recent years, several members of the synthetic 

anthelminthic benzimidazole family, such as 

mebendazole (MBZ), fenbendazole (FBZ), 

flubendazole, and albendazole (ABZ), have shown great 

promise to be repurposed as anticancer agents [16, 17, 

28]. This family of anti-parasitic drugs has been used to 

treat pinworm and other helminthic infections in 

humans and animals with excellent safety records over 

decades [28]. Among them, MBZ is particularly 

appealing as it meets the desirable characteristics for 

anticancer agent repurposing: excellent and proven 

biosafety profile, favorable pharmacokinetics for 

reaching therapeutic concentrations at disease site, ease 

of delivery, and low cost [17, 28]. We demonstrated that 

MBZ exerted more potent anti-proliferation activity 

than cisplatin in human HNSCC cells, and effectively 

inhibited cell proliferation, cell cycle progression and 

cell migration, and induced apoptosis in HNSCC cells 

[18]. Other studies indicate that MBZ and its derivatives 

exerted potent anticancer effect in non-small cell lung 

cancer [19, 20], adrenocortical carcinoma [22], 

medulloblastoma [28], melanoma [21], leukemia and 

myeloma [24], glioblastoma multiform [23, 34], colon 

cancer [26], cholangiocarcinoma [27], breast cancer [25, 

29], gastric cancer [30], mouse hepatoma [31], and 

thyroid cancer [32]. In this study, our results are the first 

to demonstrate that MBZ can overcome cisplatin 

resistance and synergize with cisplatin in inhibiting cell 

proliferation and inducing apoptosis in cisplatin-

resistant ovarian cancer cells. 

 

Mechanistically, we examined the effect of MBZ on the 

12 cancer-related signaling pathways in the cisplatin-

resistant ovarian cancer cells. When the pathway 

reporters were transfected into those cells and treated 
with various concentrations of MBZ, we found that 11 

of the 12 pathways, especially ELK/SRF, NFKB, 

MYC/MAX, E2F/DP1, TGF/SMAD and AP1 pathway 
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reporters, were effectively inhibited by MBZ in a dose-

dependent fashion although the CREB pathway reporter 

was seemingly activated by MBZ, suggesting that MBZ 

may exert its anticancer and anti-chemoresistance 

activities in ovarian cancer cells by inhibiting multiple 

cancer-related cell proliferation pathways in cisplatin-

resistant ovarian cancer cells. These results are 

consistent with our recent studies, in which we 

demonstrated that MBZ modulated the cancer-

associated pathways including ELK1/SRF, AP1, 

 

 
 

Figure 6. MBZ and cisplatin synergistically inhibit tumor growth in the xenograft tumor model of human CR ovarian cancer 
cells. Exponentially growing SKOV3CR cells were collected and subcutaneously injected into the flanks of athymic nude mice (n = 6 per 
group). At 7 days post injection, the mice were randomly divided into four groups, and treated with DMSO, MBZ, and/or Cisplatin (Cis) for 
three weeks. Tumor growth was monitored and average tumor growth was calculated. (A) Representative retrieved tumor masses were 
photographed individually (B-a) or pooled in Eppendorf tubes. (B-b) The retrieved tumor masses were subjected to H & E staining (C-a), and 
anti-PCNA immunochemical staining (C-b). Minus primary antibody and control IgG were used as negative controls. Representative results 
are shown. 
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STAT1/2, MYC/MAX, and synergized with cisplatin in 

suppressing cell proliferation and inducing apoptosis of 

human HNSCC cells [18]. 

 

Several studies also indicate that MBZ may exert its 

anticancer activity by regulating multiple cellular 

pathways [17]. It was reported that MBZ in 

medulloblastoma inhibited tumor angiogenesis [28]. We 

and others found that MBZ effectively induced mitotic 

arrest and apoptosis by depolymerizing tubulin in 

cancer cells [18, 20, 22]. A recent study showed that 

MBZ’s anticancer activity was associated with p53-

independent induction of p21 and tubule 

depolymerization in ovarian cancer cells [35]. 

Interestingly, an in silico molecular target screening 

predicted MBZ as a potent MAPK14 inhibitor [44], 

while MBZ was shown to activate MEK-ERK pathway 

in monocytes and macrophages [45]. MBZ was shown 

to promote the terminal differentiation of the HNSCC 

CAL27 cells and keratinization of CAL27-derived 

xenograft tumors [18], and MBZ was also shown to 

function as differentiation therapy for human acute 

myeloid leukemia (AML) cells [46]. MBZ was shown 

to suppress cell proliferation and/or induce apoptosis 

through inactivating C-MYC pathway in malignant 

ascites cells and gastric cancer cells [47], inhibiting 

USP5/c-Maf axis in multiple myeloma [48] or TRAF2- 

and NCK-interacting kinase (TNIK) in colon cancer 

cells [49], and downregulating XIAP expression in 

melanoma cells [50]. MBZ was also identified as a 

hedgehog signaling inhibitor [51]. Interestingly, MBZ 

was shown to sensitize cancer cells to ionizing radiation 

[52] and potentiate radiation therapy for triple-negative 

breast cancer cells [53]. Nonetheless, the exact 

mechanism through which MBZ exerts anticancer 

activities and overcomes cancer chemoresistance 

remains to be thoroughly investigated. 

 

CONCLUSIONS 
 

We investigated whether MBZ could overcome 

cisplatin resistance and sensitize chemoresistant ovarian 

cancer cells to cisplatin. Using our established and 

characterized two CR human ovarian cancer lines, we 

demonstrated that MBZ markedly inhibited cell 

proliferation, suppressed cell wounding 

healing/migration, and induced apoptosis in both 

parental and CR cells. Mechanistically, MBZ was 

shown to inhibit multiple cancer-related signal 

pathways including ELK/SRF, NFKB, MYC/MAX, and 

E2F/DP1 in cisplatin-resistant ovarian cancer cells. We 

further demonstrated that MBZ synergized with 

cisplatin to inhibit cell proliferation, induce cell 

apoptosis, and suppress tumor growth in the xenograft 

model of human CR ovarian cancer cells. Taken 

together, our findings strongly suggest that MBZ may 

be repurposed as a synergistic sensitizer of cisplatin in 

treating chemoresistant human ovarian cancer, which 

should be thoroughly investigated in clinical trials. 

 

MATERIALS AND METHODS 
 

Cell culture and chemicals 

 

Human ovarian cancer cell lines OVCAR8 and SKOV3 

were kindly provided by Dr. Ernest Lengyel of The 

University of Chicago. All cells were cultured in 

DMEM with 10% fetal bovine serum (FBS, Gemini 

Bio-Products, West Sacramento, CA), 100 U/mL 

penicillin, and 100 µg/mL streptomycin at 37°C in 5% 

CO2 as previously reported [54–57]. Research grades 

of cisplatin (Cis) and mebendazole (MBZ) were 

purchased from Selleckchem (Houston, TX). Other 

chemicals were purchased either from Sigma-Aldrich 

(St. Louis, MO) or from Thermo Fisher Scientific 

(Waltham, MA). 

 

Establishment of the cisplatin-resistant (CR) human 

ovarian cancer lines OVCAR8CR and SKOV3CR 

 

Exponentially growing human ovarian cancer cell lines 

OVCAR8 and SKOV3 were treated with 0.5 µM 

cisplatin (dissolved in dimethylformamide or DMF; the 

cisplatin stock solution was aliquoted and kept at –

80°C) for 72 h. Viable cells were replated and grown 

up, followed by one more round treatment of 0.5 µM 

cisplatin. Similar selection scheme was carried out by 

escalating cisplatin concentrations gradually to 1.0 µM, 

1.5 µM, 2.0 µM, 3.0 µM and 5.0 µM, yielding the 

stable and robust cisplatin-resistant cell lines that are 

designated as OVCAR8CR and SKOV3CR. These lines 

were further characterized in the reported work. 

 

Crystal violet staining 

 

Cell viability was assessed by using the crystal violet 

staining as described [58–62]. Experimentally, 

subconfluent ovarian cancer cells were seeded in 6-well 

or 12-well cell culture plates, and treated with various 

concentrations of cisplatin and/or MBZ. At 72 h post 

treatment, the cells were washed with PBS and then 

stained with 0.5% crystal violet/formalin solution. The 

stained cells were washed with tape water, air dried and 

scanned for image documentation. For quantitative 

analysis, the stained cells were dissolved in 10% acetic 

acid, followed by measuring absorbance at 570–590nm. 

Each assay condition was carried out in triplicate. 

 

RNA isolation and touchdown-qPCR (TqPCR) 

 

Subconfluent cells were treated with various conditions 

for 48h. Total RNA was isolated by using the 
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NucleoZOL reagent (Takara Bio USA Inc.), and 

subjected to reverse transcription (RT) reactions as 

previously described [63–66]. The RT cDNA products 

were used as PCR templates. The primers for the genes 

of interest were designed by using Primer3 Plus 

program (Supplementary Table 1). TqPCR reactions 

were carried out by using SYBR Green-based Forget-

Me-Not™ qPCR Master Mix (Biotium Inc., Hayward, 

CA) on a CFX-Connect unit (Bio-Rad Laboratories, 

Hercules, CA) as described [67–70]. Relative gene 

expression was normalized to GAPDH by using the 

2−∆∆Ct method. All qPCR reactions were done in 

triplicate. 

 

Cell colony formation assay 

 

Subconfluent ovarian cancer cells were plated in 12-

well cell culture plates and treated with various 

concentrations of cisplatin and/or MBZ. At 72 h after 

treatment, cells were replated into 30mm cell culture 

dishes, and cultured in compete DMEM medium for 

additional 10 days. The colonies were then stained with 

0.5% crystal violet/formalin solution and scanned for 

image documentation. For quantitative analysis, the 

stained cells were dissolved in 10% acetic acid and 

measured for absorbance at 570–590nm. Each assay 

condition was carried out in triplicate. 

 

WST-1 cell proliferation assay 

 

Cell proliferation was quantitatively determined with 

Premixed WST-1 Reagent (Takara Bio USA Inc., 

Mountain View, CA) as described [54, 71–75]. 

Experimentally, OVCAR8CR and SKOV3CR cells 

were seeded into 96-well culture plates, and treated 

with varied concentrations of cisplatin and/or MBZ. At 

72h post treatment, the freshly prepared WST-1 

Working Mix were added into each well, and 

incubating at 37°C for 2 h before subjecting the plates 

to absorbance reading at 450nm using a microplate 

reader (BioTek EL800, Winooski, VT). The IC50 

values were calculated by using the AAT Bioquest 

online tools. Each assay condition was done in 

triplicate. 

 

Cell wounding/migration assay 

 

The cell wounding/migration experiments were 

performed as described [18, 76, 77]. Briefly, 

OVCAR8CR and SKOV3CR cells were seeded in 6-

well plates and grown to 90% confluence. Monolayer 

cells were then scratched with sterile micro-pipette tips. 

At the indicated time points, the wound closure status at 
the same locations was recorded under a bright field 

microscope. Each assay condition was done in 

triplicate. 

Apoptosis analysis (Hoechst 33258 staining) 

 

Hoechst 33258 staining assay was conducted as 

described [54, 78–80]. Specifically, exponentially 

growing human ovarian cancer cells were treated with 

varied concentrations of cisplatin and/or MBZ. At 72 h 

post treatment, the cells were collected and stained with 

the Magic Solution. Apoptotic cells were documented 

under a fluorescence microscope. Each assay condition 

was done in triplicate. 

 

Transfection and gaussia luciferase assay 

 

The cancer-related pathway reporters and the Gaussia 

luciferase assay were previously described [81–83]. The 

tested cancer-related pathways included NFAT, HIF-1, 

TCF/LEF, E2F/DP1, ELK1/SRF, AP1, NFκB, SMAD, 

STAT1/2, RBP-JK, CREB, MYC/MAX pathway 

reporters. Briefly, exponentially growing SKOV3CR 

cells were seeded in 60mm cell culture dishes and 

transfected with 5.0 µg reporter plasmid DNA/dish of 

each reporter plasmid by using the PEI transfection 

reagent (Polysciences, Warrington, PA). At 24 h after 

transfection, the cells were replated into 24-well cell 

culture plates, and treated with various concentrations 

of MBZ. At 24 and/or 48 h after treatment, culture 

media were taken for Gaussia luciferase assays using 

the Gaussia Luciferase Assay Kit (GeneCopoeia, 

Rockville, MD). Each assay condition was done in 

triplicate. 

 

Xenograft tumor model of human ovarian cancer 

cells 

 

The use and care of animals for the reported work 

were approved by the Institutional Animal Care and 

Use Committee. The xenograft tumor model of human 

ovarian cancer cells was established as previously 

described [71, 84–86]. Specifically, exponentially 

growing SKOV3CR cells were collected, resuspended 

in PBS at 1.5 × 108 cells/ml, and injected 

subcutaneously into the flanks of athymic nude mice 

(Harlan Laboratories, 6–8 week old, female, 5 × 106 

cells per injection, and 4 injection sites per mouse). At 

7 days post injection, the mice were divided into four 

groups (n = 6 per group): MBZ group (i.p. injection of 

7.5 mg/kg body weight MBZ, once every two days); 

cisplatin group (i.p. 3mg/kg body weight cisplatin, 

once every two days); cisplatin/MBZ group (i.p. 7.5 

mg/kg body weight MBZ, and 3mg/kg body weight 

cisplatin, once every two days); and DMSO control 

group. Tumor growth was monitored by caliper 

measurements at the indicated time points. Tumor 
volumes were calculated by using the formula (a × b2 

× 0.52), whereas the “a” is the long dimension, and 

“b” being the short as previously described [87–89]. 
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The nude mice were sacrificed at 27 days after cell 

injection. The tumor masses were retrieved for 

histologic evaluation and immunohistochemical 

analysis. 

 

Hematoxylin and eosin (H & E) staining & 

immunohistochemical (IHC) analysis 

 

H & E histological analysis was carried out as described 

[90–94]. Briefly, the retrieved tumor masses were fixed 

with 10% PBS-buffered formalin and paraffin 

embedded. Serial sections were deparaffinized and 

subjected to H & E staining. Staining results were 

documented under a bright field microscope. 

 

IHC analysis was carried out as described [57, 95–98]. 

Specifically, the tissue sections were deparafinized, 

rehydrated, and subjected to IHC staining with an anti-

PCNA antibody (Santa Cruz Biotechnology, Dallas, 

TX). Minus primary antibody and control IgG were 

used as negative controls. 

 

Statistical analysis 

 

All quantitative experiments were done in triplicate 

and/or in three independent batches. Data were 

expressed as mean ± standard deviation. Statistical 

significance was determined by one-way analysis of 

variance and the Student t-test. A p-value of <0.05 was 

defined as statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. List of qPCR Primers. 

GENE Forward Primer Reverse Primer 

GAPDH  GTCAAGGCTGAGAACGGGAA AAATGAGCCCCAGCCTTCTC 

ABCB1 AGGGACTGAGCCTGGAGG ACACGATGCCCAGGTGTG 

ATP7A GGGACTGGCCACTCCAAC CCACTGGGGTTCCGTGAG 

ATP7B TTCGAGGCCAGCATTGCA CGGCCTCTTGGTTGCTGA 

CTR2 GAGGAACGTGCAGGCACT TGCTGCAATGGCTTCCGA 

ERCC1 GCAGAAACCAGCGGACCT CTTTCTGAGGGCCCAGGC 

FN1 CTGGGATGCTCCTGCTGT GCCGCTGATGGTAGCTGT 

CDH2 GTGCATGAAGGACAGCCTCT GCCACTTGCCACTTTTCCTG 

CASP3 TCCTAGCGGATGGGTGCT GAAGAGGCAGGTGCAGGG 

BAX GCCCCACTAACTGTTGCATT AGACTGCAGTGAGCCAAGGT 

 


