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Abstract: Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate
ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the
roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of
DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell
cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis.
This review mainly focuses on the regulation of different downstream effectors and pathways via
biochemical regulation and posttranslational modifications. We summarize the relationship between
DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment.
This review also provides basic knowledge of DUBs in the development of cancers and highlights the
importance of DUBs in cancer biology.
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1. Introduction

Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate
their activities and stability. They are a heterogeneous group of cysteine proteases and
metalloproteases [1] that cleave the isopeptide bond between a lysine and the C-terminus of UBQ.
DUBs can also edit UBQ chains and process UBQ precursors. In addition, some DUBs can edit UBQ-like
proteins and their conjugates. DUBs in the human genome can be classified into subclasses based on their
UBQ-protease domains [1]: UBQ-specific proteases (USPs), which represent the largest class, otubain
proteases (OTUs), UBQ C-terminal hydrolases (UCHs), Machado–Joseph disease proteases (MJDs),
Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) motif proteases, and motif interacting with
ubiquitin-containing novel DUB family (MINDY) [2]. In addition, some new potential DUBs without
the above typical domains were currently identified, such as the monocyte chemotactic protein-induced
protein (MCPIP) [3] and Zn-finger and UFSP domain protein (ZUFSP) [4]. Approximately 100 DUBs
have been identified in humans. They are expressed and located in various organelles in the cell [5]:
USP1 and USP7 are found in the nucleus, USP30 in the mitochondria, and USP21 and USP33 in
microtubules. More examples are shown in Table 1 [5–8]. Some DUBs have higher expressions in
specific tissues, such as USP3 and UCHL3 in the pancreas and lung and USP14 in the brain [5].
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Table 1. The sub-cellular localizations of DUBs in mammalian cells.

Organelle DUBs

Nucleolus USP36, USP39

Nucleus
BAP1, MYSM1, USP1, USP11, USP22, USP26, USP28,
USP29, USP3, USP42, USP44, USP49, USP51, USP7,

USPL1, ZUP1

Golgi USP32, USP33

Endoplasmic reticulum ATXN3, USP13, USP19, USP33, YOD1

Microtubules CYLD, USP21

Centriole USP21, USP33, USP9X

Early endosome and multivesicular body AMSH, AMSH-LP, USP2a, USP8

Lipid droplet USP35

Peroxisome and mitochondrion USP30

Cajal body USPL1

Stress granule USP10, USP13, USP5

Plasma membrane JOSD1, USP6

Cytoplasm A20, CYLD, PSMD14, UCHL5, USP14

There has been extensive research on ubiquitination [9,10] and how DUBs regulate the
deubiquitylation process and their relative functions [11]. Moreover, an increasing number of
studies have uncovered the role of DUBs in cancer development [12]. Numerous informative reviews
on DUBs have been published [13–18] and research on DUBs has been increasing in recent years. In this
review, we aim to provide enriched content that summarizes the classical discoveries, and includes the
current findings on DUBs that are related to different aspects of human cancer, including proliferation,
cell cycle control, apoptosis, the DNA damage response (DDR), tumor suppression, oncogenesis,
and metastasis. Summarized information is shown in Table 2. Lastly, we discuss the potential of DUBs
as chemotherapeutic targets for cancer treatment.

2. DUBs and Cell Cycle Control

The cell cycle refers to a series of processes, including DNA synthesis, S phase; cell growth, G1 phase;
evaluation of the accuracy of the genomic material, G2 phase; and cell division, M phase. The cycle
is completed by duplicating the genetic information and equally segregating it into two daughter
cells. Many cell cycle checkpoints are controlled by cyclins and cyclin-dependent kinases (CDKs) [19].
The E3 ligases participate at almost every phase, indicating the importance of ubiquitination and
deubiquitination in regulating the cell cycle [20,21].

Table 2. Functional roles of DUBs in cancer properties.

Functions DUBs Targets References

Cell cycle control BAP1 KLF5 [22]
DUB3 cyclin A [23]

OTUD6B-2 cyclin D1 and c-Myc [24]
OTUD7B APC/C, GβL, HIF2α and E2F1 [25–28]

USP10 SKP2, Bcr-Abl [29]
USP14 AR [30]

USP17 p21, ELK-1, Su(var)3-9, Enhancer-of-zeste,
and Trithorax domain-containing protein 8 [31–33]

USP21 FOXM1 [34]
USP3 KLF5 [35]
USP7 PHF8 [36]
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Table 2. Cont.

Functions DUBs Targets References

Cell proliferation OTUB1 p53 [37]
OTUD1 p53, SMAD7 [38,39]
USP10 p53 [40]
USP14 AR [41]
USP15 MDM2, TGF-β receptor [42,43]
USP2 MDM2 [44]
USP28 p53, p21, and p16INK4a [45,46]
USP29 p53 [47]
USP4 β-catenin, p53 and NF-κB [48–50]
USP42 P53 [45]
USP49 FKBP51 [51]
USP5 P53 [52]

USP6NL β-catenin [53]
USP7 MDM2 [54–58]

USP9X β-catenin, p53 [59,60]

Cell apoptosis ATXN3 p53 [61]
JOSD1 MCL1 [62]
USP5 p53, MAF bZIP [63,64]

DNA damage repair BAP1 PR-DUB [65]
CYLD p53 [66]

OTUD5 SPT16 [67]
OTUD7A Rap80/BRCA1-A complex [68]
OTUD7B Rap80/BRCA1-A complex [68]

UBP12 PCNA [69]
UBP2 PCNA [69]

UCHL5 NFRKB [70]
USP1 PCNA [71–74]
USP11 BRCA2 [75]
UBP15 PCNA [69]
USP3 γH2AX and H2A [76]
USP48 BRCA1 [77]
USP7 PHF8, pBmi1, Bmi1, RNF168, and BRCA1 [36,78]

USP9X claspin [79]

Tumor suppression CYLD tumor necrosis factor receptor-associated factor 2,
IKKγ

[80–82]

USP11 PML [83]
USP13 PTEN [84]
USP46 PHLPP [85]

Oncogene BAP1 ASXL1 [86]
USP22 c-Myc [87]
USP28 MYC [88]
USP9X FBW7 [89]

Metastasis DUB3 Snail, Slug and Twist [90,91]
OTUB1 Snail [92]

PSMD14 GRB2 [93]
USP17 SMAD4 [94]
USP3 SUZ12 [95]
USP32 RAB7 [96]
USP37 14-3-3γ [97]

The ability to advance through different stages of the cell cycle regardless of inhibitory signals is
one of the hallmarks of cancer. A large number of DUBs have been found to play roles in cell cycle
control of cancers via the regulation of different cell cycle checkpoints. OTUD6B-2 and USP17 were
reported to control the G1 phase; USP3, USP10, USP14, USP17, USP20, and BAP1 played roles in
the G1/S transition. In addition, S/G2 transition was controlled by OTUD7B and DUB3. USP7 and
OTUD7B were necessary for the regulation of mitotic phase (Figure 1).
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Figure 1. Roles of DUBs in cell cycle control in cancers. The eukaryotic cell cycle consists of the G1 
phase (blue), the S-phase (brown), the G2 phase (yellow), and the M (mitosis) phase (green). Cells can 
enter a quiescent state, the G0 phase (grey). Cell cycle phases are indicated by different colored 
arrows. The cell cycle is regulated by complexes that are composed of cyclins (light purple), and its 
relative cyclin-dependent protein kinases (CDKs) (pink). The cyclin-CDK complex plays regulatory 
roles in the cell cycle. The red arrows indicate their targets, either within the designated cell cycle 
phase or in the transition state. Various DUBs have been shown to interact with the cyclin–cdk 
complex. DUBs that participate in G1 phase are labeled in light blue; S phase in light brown; G2 
phase in light yellow; and M phase in light green. The detailed interaction partner of each individual 
DUB can be found in the main text and the Table 2. 

For the G1 phase regulation, OTUD6B operates downstream of mTORC1 signaling in non-small 
cell lung cancer (NSCLC), and its isoform OTUD6B-2, was reported to control the stability of cyclin 
D1 and c-Myc [24]. USP17 is another cell cycle-regulating DUB. It was found to be highly expressed 
in colon, esophageal, and cervical cancers. The depletion of USP17 increases the levels of the CDK 
inhibitor p21 and impairs the G1-S transition, leading to cell cycle arrest [31]. In addition, USP17 
deubiquitinates the transcription factor ELK-1. The stabilization of ELK-1 increases the expression of 
cyclin D1 [32]. USP17 further decreases Su(var)3-9, enhancer-of-zeste, and trithorax 
domain-containing protein 8 ubiquitination to trigger cellular senescence [33]. 

For the G1/S phase, USP20 deubiquitinates and stabilizes the DNA checkpoint protein claspin, 
and thus activates the ATR-Chk1 signaling in the DNA damage response pathway [98]. USP10 
deubiquitinates SKP2 and augments the activation of Bcr-Abl by mediating deubiquitination and 
stabilization of SKP2 in chronic myelogenous leukemia cells [29]. An RNAi-based screening study 
discovered that USP21 binds and deubiquitinates FOXM1, leading to its increased stability, which 
induces cell cycle progression in basal-like breast cancer [34]. In addition, DUBs could regulate 
transcription factors for cell cycle control. The transcription factor Krüppel-like factor 5 (KLF5), 
which promotes cell proliferation by inhibiting the expression of the cell cycle inhibitor p27 [22], is 

Figure 1. Roles of DUBs in cell cycle control in cancers. The eukaryotic cell cycle consists of the G1
phase (blue), the S-phase (brown), the G2 phase (yellow), and the M (mitosis) phase (green). Cells can
enter a quiescent state, the G0 phase (grey). Cell cycle phases are indicated by different colored arrows.
The cell cycle is regulated by complexes that are composed of cyclins (light purple), and its relative
cyclin-dependent protein kinases (CDKs) (pink). The cyclin-CDK complex plays regulatory roles in the
cell cycle. The red arrows indicate their targets, either within the designated cell cycle phase or in the
transition state. Various DUBs have been shown to interact with the cyclin–cdk complex. DUBs that
participate in G1 phase are labeled in light blue; S phase in light brown; G2 phase in light yellow; and
M phase in light green. The detailed interaction partner of each individual DUB can be found in the
main text and the Table 2.

For the G1 phase regulation, OTUD6B operates downstream of mTORC1 signaling in non-small
cell lung cancer (NSCLC), and its isoform OTUD6B-2, was reported to control the stability of cyclin
D1 and c-Myc [24]. USP17 is another cell cycle-regulating DUB. It was found to be highly expressed
in colon, esophageal, and cervical cancers. The depletion of USP17 increases the levels of the CDK
inhibitor p21 and impairs the G1-S transition, leading to cell cycle arrest [31]. In addition, USP17
deubiquitinates the transcription factor ELK-1. The stabilization of ELK-1 increases the expression of
cyclin D1 [32]. USP17 further decreases Su(var)3-9, enhancer-of-zeste, and trithorax domain-containing
protein 8 ubiquitination to trigger cellular senescence [33].

For the G1/S phase, USP20 deubiquitinates and stabilizes the DNA checkpoint protein claspin,
and thus activates the ATR-Chk1 signaling in the DNA damage response pathway [98]. USP10
deubiquitinates SKP2 and augments the activation of Bcr-Abl by mediating deubiquitination and
stabilization of SKP2 in chronic myelogenous leukemia cells [29]. An RNAi-based screening study
discovered that USP21 binds and deubiquitinates FOXM1, leading to its increased stability, which
induces cell cycle progression in basal-like breast cancer [34]. In addition, DUBs could regulate
transcription factors for cell cycle control. The transcription factor Krüppel-like factor 5 (KLF5), which
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promotes cell proliferation by inhibiting the expression of the cell cycle inhibitor p27 [22], is highly
expressed in breast cancer. A genome-wide siRNA library screen identified BAP1 and USP3 as KLF5
DUBs. Both BAP1 and USP3 bind to and stabilize KLF5 via deubiquitination [22,35], indicating the
possible regulatory role of DUBs in cancer proliferation. Another example is the androgen receptor
(AR), a key transcription factor in the development of breast cancer [99]. It has been reported that AR
can be stabilized by USP14, and depletion of USP14 reduces cell proliferation by blocking the G0/G1–S
phase transition in AR-responsive breast cancer cells [30].

For the S/G2/M phase, OTUD7B, also called cezanne, is frequently overexpressed in different
cancer types, such as breast and lung cancer [100,101]. It is reported to be a cell cycle-dependent DUB
because it deubiquitylates substrates of the mitotic cyclin anaphase-promoting complex/cyclosome
(APC/C) and prevents their degradation during mitosis [25]. The APC/C is a key regulator of cell
cycle progression through the regulation of CDK activity [26]. OTUD7B controls the cell cycle through
HIF2α and E2F1 in response to oncogenic signaling [27]. In addition, it removes UBQ from GβL in
the mTOR complex to regulate mTORC2 signaling in response to growth signals [28]. Besides, DUB3
can directly deubiquitinate cyclin A in NSCLC. The depletion of DUB3 decreases cyclin A levels,
leading to cell cycle arrest at the G0/G1-S phase checkpoint in NSCLC cells [23]. Lastly, it is known that
histone demethylases can regulate the cell cycle through transcriptional regulation [102]. The histone
demethylase PHF8 is stabilized by USP7, leading to the upregulation of cyclin A2, which is critical for
cell growth and proliferation in breast carcinomas [36].

3. DUBs and Cell Proliferation

In addition to their role in regulating the cell cycle, DUBs have been reported to regulate cell
proliferation through different cell signaling pathways, such as Wnt/β-catenin signaling, p53-mouse
double minute 2 (MDM2) signaling, PI3K-Akt signaling, AR signaling, and transforming growth
factor beta (TGF-β) signaling. Aberrant canonical Wnt/β-catenin signaling is tightly associated with
many solid and liquid tumors [103]. Furthermore, alteration or loss of differentiation control could
facilitate the development of metastatic traits during tumorigenesis [104,105]. Numerous studies have
demonstrated the control of Wnt/β-catenin signaling by DUBs in cancer [48,106]. USP6NL is elevated
in colorectal cancer (CRC) and regulates β-catenin accumulation. Knockdown of USP6NL results in
inhibition of cell proliferation and G0/G1 cell cycle arrest in human CRC cell lines [53]. In addition,
USP4 is a candidate for a β-catenin-specific DUB. There is a positive correlation between the levels of
USP4 and β-catenin in human colon cancer tissues. Further, knockdown of USP4 reduces invasiveness
and migration in colon cancer cells [48]. β-catenin is also stabilized by USP9X, leading to high-grade
glioma cell growth. USP9X removes the Lys48-linked polyubiquitin chains from β-catenin to prevent
its proteasomal degradation. Depletion of USP9X induces G1-S cell cycle arrest and inhibits cell
proliferation in glioblastoma cells [59].

The tumor suppressor p53 is a transcription factor able to control important cellular pathways.
It prevents genome mutation and plays protective roles in tumor onset and progression. It is mainly
regulated by ubiquitylation, indicating the importance of DUBs in monitoring its ubiquitin cycle [107].
Both MDM2 and p53 are targeted by different DUBs (Figure 2). Suppression of USP2 leads to MDM2
destabilization and results in p53 activation [44]. USP7 plays a key role in the p53 pathway by stabilizing
both MDM2 and p53 (Figure 2) [54–58]. Under normal conditions, USP7 has a higher binding affinity
to MDM2, the major E3 ligase of p53 [56], and thus deubiquitylates MDM2 more efficiently to prevent
its self-degradation and maintain stable protein levels for controlling p53 via the UBQ-proteasome
pathway [108]. USP10 regulates p53 localization and stability by deubiquitinating p53. It reverses
MDM2-induced p53 nuclear export and degradation [40]. Moreover, USP29 is reported to cleave
poly-ubiqutin chains from p53 and thus stabilize it [47], while USP15 stabilizes the E3 UBQ ligase
MDM2 in cancer cells and regulates p53 function and cancer cell survival. Inhibition of USP15 induces
apoptosis and boosts antitumor T cell responses in tumor cells [42]. Furthermore, a large number of
DUBs have been found to target p53 or p53-associated proteins directly, leading to proliferation. USP5
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regulates p53 levels and alters cell growth and cell cycle distribution associated with p21 induction in
melanoma cells [52]. OTUD1 is required for p53 stabilization, and OTUD1 overexpression increases the
cleavage of caspase-3 and PARP and subsequently increases apoptosis [38]. Another p53-associated
DUB, otubain 1 (OTUB1), is expressed in high-grade tumor types, such as lung, breast, and ovarian
tumors. OTUB1 regulates p53 to promote tumor cell survival and proliferation [37]. USP42 controls the
level of p53 ubiquitination during the early phase of the DDR to promote DNA repair, resulting in the
activation of p53-dependent transcription and cell-cycle arrest in response to stress [45]. In addition,
USP28 depletion leads to increased ubiquitinated H2A-K119 and decreased expression of p53, p21,
and p16INK4a, suggesting a role for USP28 in cell proliferation via the control of p53 and p53-associated
proteins [109]. Additionally, USP28 deubiquitinates TP53-binding protein 1 to promote p53-mediated
transcription [46]. USP4 is a potential oncogene that inhibits p53 and NF-κB via histone deacetylases
2 (HDAC2) [49,50]. USP9X-dependent p53 degradation was observed in hepatocellular carcinoma
(HCC) cells treated with the small molecule DUB inhibitor WP1130 [60].
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Figure 2. DUBs in MDM2-p53 pathways. Ubiquitination is found on both p53 and MDM2 molecules;
various DUBs could revise that via deubiquitination to regulate the p53 pathway. DUBs’ targets on
p53 are labeled in light brown; those that interact with MDM2 are labeled in light yellow. Detailed
descriptions can be referred to the main text.

DUBs are also involved in other signaling pathways that promote tumor proliferation. USP15,
which stabilizes the type I TGF-β receptor and enhances the TGF-β pathway, is upregulated in
various cancers [43]. In addition, OTUD1 mitigates TGF-β-induced pro-oncogenic responses via
deubiquitination of SMAD7 at lysine 220 in breast cancer [39]. USP49 regulates the Akt pathway
through the stabilization of FKBP51. FKBP51 activates PH domain leucine-rich-repeats protein
phosphatase (PHLPP) to dephosphorylate Akt, which inhibits pancreatic cancer cell proliferation [51].
The AR pathway is commonly activated in prostate cancer (PCa), and it plays a critical role in PCa
growth and progression. USP14 was reported to bind with and stabilize AR in androgen-responsive
PCa cells. Overexpression of USP14 promotes the proliferation of LNCaP cells [41]. Furthermore,
DUBs control different growth factors in tumor cells. For instance, USP8 prevents degradation of the
epidermal growth factor receptor and thus promotes proliferation [110].

4. DUBs and Apoptosis

The ability to evade apoptosis is one of the essential changes in cancer cells that causes malignant
transformation [111]. Apoptosis is a cellular self-destruction program in response to various cellular
stresses. The two extrinsic and intrinsic pathways in apoptosis both involve the activation of caspase
molecules. The activation of initiator caspase will further lead to the activation of executioner caspase
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in apoptosis [112]. DUBs were found to target different pro- and anti-apoptotic proteins in both the
extrinsic and intrinsic pathways. ATXN3 stabilizes p53 by deubiquitination and promotes p53-mediated
apoptosis [61]. USP5 targets p53-unanchored UBQ polymers and regulates p53-mediated transcription.
Depletion of USP5 controls tumor necrosis factor alpha apoptosis-inducing ligand (TRAIL)-mediated
apoptotic responsiveness in TRAIL-resistant tumor cells, and this function of USP5 ubiquitination
can be blocked by caspase 8-specific inhibitors [63]. In addition, USP5 deubiquitinates the MAF bZIP
transcription factor and prevents its degradation. Knockdown of USP5 leads to apoptosis in multiple
myeloma cells [64]. In a chemoresistant xenograft model, JOSD1 was identified to be upregulated
during the development of chemoresistance. Moreover, JOSD1 has been reported to deubiquitinate
and stabilize MCL1, which plays a suppressive role in mitochondrial apoptotic signaling. Therefore,
depletion of JOSD1 leads to severe apoptosis in gynecological cancer cells through the degradation
of MCL1 [62]. There are several DUBs that regulate the apoptotic pathways via BCL-2 family, an
inhibitor of apoptotic proteins (IAPs) and caspases. DUB3/USP17 induces apoptosis through caspase
3 activation [113], whereas USP15 plays a role in stabilizing procaspse 3 [114]. Besides, A20, a DUB
belongs to the OTU subclass, interacts with caspase 8 to reverse the ubiquitination of a cullin 3-based
E3 ligase [115]. As for the IAPs, they are a class of proteins that inhibit apoptosis. They contain the
baculovirus IAP repeat domain and the RING domain that provides the E3 ligase property [116]. USP19
stabilizes the cellular IAP1 and cellular IAP2 during caspase activation and apoptosis [117]; OTUD1
was found to regulate the TNF-dependent cell death by modulating the cellular IAP1 stability [118].
Furthermore, USP9X was reported to interact with an E3 ligase X-linked IAP for mitotic cell fate
decision [119]. In addition, USP27X was found to interact with the BIM. BIM is a pro-apoptotic
BH3-only protein that regulates the cell death proteins such as BAX. Overexpression of Usp27x reduces
BIM ubiquitination, and induces apoptosis in tumor cells. On the other hand, suppression of USP27X
could reduce apoptosis [120].

5. DUBs and the DDR

Cells undergo DDR to sense and repair unique lesion structures in the damaged DNA. Efficient
DDR protects cells from genomic instability [121,122]. Ubiquitination regulates DDR by controlling
DDR protein localization, activity, and stability [123]. DUBs play critical roles in different stages of the
DDR through the regulation of many molecules involved in DNA repair (Figure 3). DNA repair is
important for preventing tumor formation [124]. Proliferating cell nuclear antigen (PCNA) is a key
molecule that mediates the tolerance to DNA damage and allows the growth of tumors. PCNA is
monoubiquitinated in response to DNA damage. A fission yeast study showed the importance of UBP2,
UBP12, and UBP15 in the stabilization of mono, di, and polyubiquitylated forms of PCNA, which
sensitize cells to DNA damage [69]. In addition, PCNA can be deubiquitinated by USP1 in the crosslink
repair pathway in Fanconi anemia [71–73]. In a complex with its cofactor UAF1, USP1 reverses PCNA
ubiquitination [74]. UCHL5 regulates double-strand break (DSB) resection and repair by homologous
recombination through protecting its interactor, NFRKB, from degradation [70]. In addition, USP20
plays role in genome maintenance and DNA repair by enhancing recombinational repair of collapsed
replication forks [125]. Furthermore, USP9X regulates the DNA checkpoint protein claspin during
S phase, suggesting a role in DNA repair [79]. USP7-promoted PHF8 stabilization confers cellular
resistance to genotoxic insults and is required for the recruitment of BLM and KU70, which are both
essential for DNA DSB repair [36].
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Figure 3. Roles of DUBs in DNA damage response. Various DUBs (light purple) have been shown
to interact with molecules (various colors) that play roles in DNA repair and chromosomal stability
during DNA damage. Proliferating cell nuclear antigen (PCNA) plays important roles during DNA
replication and repair, while BRCA members are the key players in repairing the DNA lesions such as
DNA double-strand breaks. In addition, BLM repairs DNA double-strand breaks to maintain genome
stability. Detailed information can be found in the main text.

Breast-cancer susceptibility gene (BRCA) 1 contributes to DNA repair and the maintenance of
chromosomal stability in response to DNA damage [126]. BRCA1 appears to play roles in two distinct
pathways of DSB repair, non-homologous end joining and homology-directed repair, through the regulation
of different effectors. It has been reported that several DUBs can regulate BRCA1. The BRCA1-associated
DUB BAP1 is mutated in mesothelioma and melanoma [65]. BAP1 is a phosphorylation target for
the DDR kinase ATM, and BAP1 mediates rapid poly(ADP-ribose)-dependent recruitment of the
polycomb DUB complex PR-DUB to repair DNA DSBs [65]. In addition, both cezanne (OTUD7B)
and cezanne2 (OTUD7A) promote the recruitment of the Rap80/BRCA1-A complex by binding to
Lys63-polyubiquitin and targeting Lys11-polyubiquitin in response to DNA repair [68]. Another DUB,
USP11, forms a complex with BRCA2. It deubiquitylates the partner and localizer of BRCA2 to enhance
DNA repair [75]. BRCA1/BRCA2-containing complex 3 (BRCC3) is a Lys63-specific DUB involved
in the DDR. BRCC3 inactivation increases the release of several cytokines, including G-CSF, which
enhances proliferation in AML cell lines [127]. Further, OTUD5, a specific stabilizer of the UBR5 E3
ligase, is reported to localize at DNA DSBs. OTUD5 plays two roles at DSBs. First, OTUD5 interacts
with UBR5 and represses RNA Pol II-mediated elongation and RNA synthesis. In addition, OTUD5
interacts with the FACT component SPT16 and antagonizes histone H2A deposition at DSBs [67].

Histone ubiquitination at DNA breaks is required for activation of the DDR and DNA repair.
BRCA1-BARD1-catalyzed ubiquitination of histone H2A primes chromatin for repair by homologous
recombination during the DDR. Ubiquitination of histone H2A and γH2AX by the UBQ ligases RNF168
and RNF8 generates a cascade of ubiquitination. USP3 deubiquitinates ubiquitinated γH2AX and
H2A [76]. USP48 is another H2A DUB that is specific for the C-terminal BRCA1 ubiquitination site.
USP48 promotes genomic stability by antagonizing the BRCA1 E3 ligase function. Depletion of
USP48 increases the distance between p53-binding protein 1 (53BP1) from the DNA break point [77].
It should be noted that histone ubiquitination by RNF168 is a critical event for the recruitment of
BRCA1 and 53BP1, and the stability of RNF168 can be regulated by USP7. Depletion of USP7 impairs
H2A and γH2AX monoubiquitination, leading to decreases in the levels of pBmi1, Bmi1, RNF168,
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and BRCA1 under ultraviolet radiation-induced DNA damage [78]. Moreover, USP3, a histone
H2A DUB, negatively regulates UBQ-dependent DDR signaling through regulation of chromatin
ubiquitination in response to genotoxic stress [128]. Lastly, CYLD deubiquitinates p53 and facilitates
its stabilization in response to genotoxic stress. Loss of CYLD catalytic activity causes impaired DNA
damage-induced p53 stabilization and activation of skin tumorigenesis [66].

6. DUBs and Tumor Suppressors/Oncogenes

DUBs play an important role in cancer development by controlling various different tumor
suppressors and oncogenes. CYLD was first identified as the tumor suppressor gene for
cylindromatosis [129]. Its protein expression level is downregulated in various tumor types [130,131].
CYLD plays an essential role in NF-κB [82] and c-Jun N-terminal kinase pathways [132]. Briefly,
it inhibits NF-κB activation by promoting deubiquitylation of several UBQ-dependent NF-κB positive
regulators, such as tumor necrosis factor receptor-associated factor 2 and the NF-κB essential
modulator/IKKγ subunit [80–82]. Enhanced and/or prolonged NF-κB signaling due to reduced
CYLD activity increases cellular apoptosis resistance and the chances of tumor formation [133]. USP13
also acts as a tumor suppressor through its regulation of the phosphatase and tensin homolog deleted
on chromosome 10 (PTEN)/AKT pathway in oral squamous cell carcinoma. Overexpression of USP13
induces PTEN expression and represses the activation of AKT, glucose transporter-1, and hexokinase-2,
leading to growth inhibition [84]. In an RNAi screen, USP11 was identified as a promyelocytic leukemia
(PML) regulator to deubiquitinate and stabilize PML, counteracting the functions of PML. UBQ ligases
RNF4 and the KLHL20-Cullin 3-Roc1 complex [83]. This complex causes suppression of PML in many
cancer types [83]. PHLPP is a family of Ser/Thr protein phosphatases that serve as tumor suppressors
by negatively regulating AKT. In CRC, USP46 is reported to bind to PHLPP and directly remove its
polyubiquitin chains, resulting in the stabilization of PHLPP. USP46-mediated stabilization of PHLPP
subsequently inhibits AKT, blocking proliferation and tumorigenesis in colon cancer cells [85].

A large number of DUBs have been reported to bind with and stabilize oncogenes, such as c-MYC.
USP22 promotes deubiquitination of c-MYC in breast cancer cells, resulting in increased levels of
c-MYC. Overexpression of USP22 stimulates tumorigenic activity in breast cancer cells and is closely
correlated with breast cancer progression [87]. USP9X acts as an FBW7 interactor, and the loss of
FBW7 has been observed in many types of human cancer [134]. USP9X antagonizes FBW7-mediated
ubiquitylation and causes FBW7 stabilization. USP9X suppresses tumor formation by regulating FBW7
protein stability, which reduces c-MYC levels [89]. The degradation of the oncogene product MYC is
also enhanced by USP28 [88]. An integrated genomic analysis of malignant pleural mesotheliomas
uncovered somatic inactivating mutations in the tumor-suppressive nuclear DUB BAP1. BAP1 targets
histones with the polycomb repressor subunit ASXL1 [86].

7. DUBs and Metastasis

Metastasis, which is the ability of cancer cells spread to different tissues or organs, is regulated
by many mechanisms. It is a series of biological processes including various invasion-metastasis
cascades. Multiple reports have suggested the role of DUBs in controlling these mechanisms.
The epithelial–mesenchymal transition (EMT) represents one of the most important invasive events in
cancer metastasis. It refers to a change of a subset of adhesion molecules in cells: adopting a migratory
and invasive behavior [135]. Numerous DUBs are involved in cancer cell invasiveness through the
regulation of different EMT transcription factors (Figure 4).
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SNAIL is a key regulator of EMT and plays an important role in tumor progression and 
metastasis. A group of DUBs, including OTUB1, DUB3, and USP3, are reported to stabilize Snail 
through preventing its ubiquitination and proteasomal degradation. OTUB1 promotes metastasis of 
esophageal squamous cell carcinoma through the stabilization of Snail [92]. DUB3 is found to be 
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cancer stem cell-like properties in breast cancer cells [91]. Moreover, USP3 is significantly 
upregulated in glioblastomas and gastric cancer (GC). Clinicopathological data demonstrate that 
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Figure 4. Roles of DUBs in epithelial–mesenchymal transition (EMT) in cancer metastasis. Epithelial cells
are held together by numerous proteins, including tight junctions, adherens junctions, and desmosomes.
These cells express molecules that are associated with the epithelial state, such as E-cadherin in epithelial
state, and N-cadherin in mesenchymal state. Induction of EMT induces different EMT-inducing
transcription factors (EMT-TFs) such as SNAIL, SLUG, and TWIST. These factors can then inhibit
the epithelial state-related genes, such as E-cadherin, and activate the mesenchymal state related
genes, such as N-cadherin. Various DUBs have been shown to interact with different EMT regulators.
EMT is a reversible process, and mesenchymal cells can revert to the epithelial state by undergoing
mesenchymal–epithelial transition (MET). A detailed description can be found in the main text.

SNAIL is a key regulator of EMT and plays an important role in tumor progression and metastasis.
A group of DUBs, including OTUB1, DUB3, and USP3, are reported to stabilize Snail through preventing
its ubiquitination and proteasomal degradation. OTUB1 promotes metastasis of esophageal squamous
cell carcinoma through the stabilization of Snail [92]. DUB3 is found to be overexpressed in breast cancer,
and depletion of DUB3 leads to Snail1 destabilization, which suppresses EMT, tumor invasiveness,
and metastasis [90]. In addition, DUB3 also interacts with SLUG and TWIST and prevents their
degradation, thereby promoting migration, invasion, and cancer stem cell-like properties in breast
cancer cells [91]. Moreover, USP3 is significantly upregulated in glioblastomas and gastric cancer (GC).
Clinicopathological data demonstrate that USP3 correlates with a shorter overall and relapse-free
survival in glioblastomas [136]. It has also been reported that USP3 interacts with and stabilizes SUZ12
via deubiquitination. Expression of SUZ12 is negatively correlated with E-cadherin, which promotes
migration and EMT in GC cells [95]. SMAD4 has been found to regulate EMT. USP17 is upregulated in
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osteosarcoma tissues and stabilizes SMAD4 through its DUB activity, leading to enhanced osteosarcoma
cell invasion [94].

In addition to EMT mediators, DUBs target other molecules involved in cancer invasiveness.
High expression of 14-3-3γ is found in various cancers, such as breast cancer and NSCLC [137,138].
Overexpression of 14-3-3γ promotes cell migration and invasion and correlates with the invasiveness
of cancer cells. USP37 regulates the stability of 14-3-3γ through its DUB activity [97]. Another DUB,
26S proteasome non-ATPase regulatory subunit 14 (PSMD14), is a posttranslational regulator of
growth factor receptor bound protein 2 (GRB2). PSMD14 is significantly upregulated in HCC tissues,
and it inhibits the degradation of GRB2 via deubiquitination. Overexpression of PSMD14 correlates
with vascular invasion, tumor recurrence, and poor tumor-free and overall survival in patients with
HCC [93]. The small GTPase Ras-related protein RAB7 is an early-induced melanoma driver and
endocytosis protein that favors tumor invasion [139]. It is suggested to play roles in modulating
endosomal maturation and autophagosome resolution in various cell types [140,141]. It was recently
shown to be regulated by USP32 [96].

8. DUBs as Therapeutic Targets for Cancer Treatment

As mentioned above, DUBs have been shown to deubiquitinate many targets involved in different
characteristics of cancer (Table 2), suggesting that DUBs may be potential therapeutic targets in
cancer treatment. Indeed, many studies have been conducted to examine the potential of DUBs
in cancer therapeutics. As DUBs are part of the proteasome system, proteasome inhibitors target
them, which has shown promising successes for cancer treatment. Several examples are given
below. Bortezomib, the first proteasome inhibitor, has entered clinical practice to treat relapsed
multiple myeloma and showed outstanding antimyeloma activity [142,143]. In addition, combination
of bortezomib and epirubicin significantly increases the sensitivity of colorectal carcinoma cells
to apoptosis [144]. Due to the resistance to bortezomib, next-generation proteasome inhibitors
carfilzomib and ixazomib have been approved. Carfilzomib irreversibly binds to the β-5 subunit of the
proteasome [145]. A preclinical study has demonstrated that carfilzomib increased efficacy against
bortezomib-resistant multiple myeloma [146]. In the Phase 2 and Phase 3 clinical trials, single-agent
carfilzomib provided durable anticancer activity in patients with relapsed and/or refractory multiple
myeloma [147]. Ixazomib, the first oral proteasome inhibitor to enter the clinic, is now commonly used
for multiple myeloma treatment. It is an efficacious and long-term therapy for patients with advanced
stage multiple myeloma [148]. In a double-blind Phase 3 trial, the use of ixazomib significantly
improved progression-free survival in patients with relapsed and/or refractory multiple myeloma [149].

In addition to proteasome inhibitors, numerous DUB therapeutic targets have been developed.
One excellent and classical example is USP7. Activating p53 by inhibiting MDM2 is a major direction
of cancer treatment [150,151]. Nutlin-3 from Roche and RITA (2,5-bis(5-hydroxymethyl-2-thienyl)furan
(NSC652287)) from the National Cancer Institute have been developed for interfering with the
MDM2/p53 interaction to induce p53 and therefore cell death in human tumor cells [152–154]. They
represent an important class of small molecules that has significant antitumor effects without obvious
toxicity in mice [153,155], which further suggests that promoting MDM2 degradation will provide
a therapeutic benefit when treating p53-related cancers. Additionally, USP7 silencing promotes the
degradation of MDM2 and thus abrogates p53 degradation. Targeting DUBs might provide a new
direction for cancer treatment, as it has the advantage of a simpler mechanism than targeting UBQ
ligases or the 26S proteasome [150,156]. A small molecule lead-like inhibitor of USP7, HBX41108,
which stabilizes and activates p53, was identified using high-throughput screening [156]. This inhibitor
symbolizes a milestone in DUB drug development and sheds light on new potential cancer therapies
using DUB inhibitors.

In addition, many cancer studies have focused on the apoptotic role of DUBs and exploited this
role for chemotherapy. A drug screening study demonstrated that the small molecule DUB inhibitor
b-AP15 inhibits two DUBs, USP14 and UCHL5. Treatment with b-AP15 results in apoptosis of human
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Waldenström macroglobulinemia (WM) cell lines and primary WM tumor cells [157]. In another
chemotherapeutic study, pharmacological targeting of USP14 with the FDA-approved small-molecule
inhibitor VLX1570 decreased viability in endometrial cancer cells through cell cycle arrest and caspase
3-mediated apoptosis [158]. The oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1)
promotes advanced PCa cell proliferation. USP9X interacts with and stabilizes the PBX1 protein by
attenuating its Lys48-linked polyubiquitination. The USP9X inhibitor WP1130 markedly induces
PBX1 degradation and promotes PCa cell apoptosis [159]. The selected DUB inhibitors that target on
cancer cells are summarized in Table 3. To conclude, DUBs play multiple roles in cellular functions.
The aberrant expression and regulation of these enzymes have been shown to contribute to promote
tumorigenesis, making them promising therapeutic targets for cancer therapy.

Table 3. Summary of known DUB inhibitors that are targeted in cancer cells.

DUBs DUBs Inhibitors Therapeutic Targets Functional Effects References

USP8 9-Ethyloxyimino-9H-indeno
[1,2-b]pyrazine-2,3-dicarbonitrile

Non-small cell
lung cancer

Downregulation of receptor
tyrosine kinases including

EGFR, ERBB2, ERBB3,
and MET

[160]

UCHL1 LDN-57444 Lung cancer cell line Inhibit proliferation [161]

UCHL1, UCHL3 TCID Multiple myeloma Induce apoptosis [162]

USP1 Pimozide Leukemic cell lines Promoted the degradation
of ID1 [163]

USP1-UAF1 ML323
Non-small cell lung

cancer and
osteosarcoma cells

Induced DNA damage [164]

USP1-UAF1 Pimozide and GW7647 Non–small cell
lung cancer Inhibit cell proliferation [165]

USP2 ML346 Colorectal cancer nad
mantle cell lymphoma

Accelerate cyclin D1
degradation, cell cycle arrest [166]

USP2a/USP2b/USP5/USP8 AM146, RA-9 and RA-14 Breast, ovarian and
cervical cancer cell lines

Downregulation cell-cycle
promoter, and upregulation

of tumor suppressor
[167]

USP5/IsoT, USP4 Vialinin A Basophilic leukemia cells Inhibit the release of TNFα [168]

USP7 HBX 41,108 Colorectal carcinoma Induced p53-dependent
apoptosis [156]

USP7/USP47 P5091 and Compound 1 Multiple myeloma Induce apoptosis, inhibit
tumor growth [169,170]

USP9X/USP5/USP24 WP1130 Mantle cell lymphoma

Downregulation of
antiapoptotic and
upregulation of

proapoptotic proteins, such
as MCL-1 and p53

[171,172]

USP14/ UCHL5 AC17 Human lung cancer cells Inhibit NFκB pathway and
reactive p53 [173]

USP14/UCHL5 b-AP15 (WO2013058691) Multiple myeloma/
colorectal carcinoma

Downregulation of CDC25C,
CDC2, and cyclin B1/
overexpression of the

anti-apoptotic mediator
Bcl-2 and anti-tumor activity

[162,174]

USP14/UCHL5 VLX1570 Colon carcinoma cell Inhibit proteasome
DUB activity [175]
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Abbreviations

53BP1 p53-binding protein 1
Akt protein kinase B
APC/C anaphase-promoting complex/cyclosome
AR androgen receptor
BAP1 BRCA1 associated protein 1
BRCA breast-cancer susceptibility gene
BRCC3 BRCA1/BRCA2-containing complex 3
CDK cyclin-dependent kinase
CRC colorectal cancer
DDR DNA damage response
DSB double-strand break
DUB Deubiquitinase
ELK-1 ETS like-1 protein
EMT epithelial-mesenchymal transition
FBW7 F-box and WD repeat domain-containing 7
FKBP51 FK506-binding protein 51
GC gastric cancer
GRB2 growth factor receptor bound protein 2
HCC hepatocellular carcinoma
JOSD1 Josephin domain containing 1
KLF5 Krüppel-like factor 5
MDM2 mouse double minute 2
mTORC1 mammalian target of rapamycin complex 1
NK-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NSCLC non-small cell lung cancer
OTUB1 otubain 1
OTU otubain protease
PBX1 pre-B cell leukemia homeobox-1
PCa prostate cancer
PCNA proliferating-cell nuclear antigen
PHF8 PHD finger protein 8
PHLPP PH domain leucine-rich-repeats protein phosphatase
PML promyelocytic leukemia
PSMD14 26S proteasome non-ATPase regulatory subunit 14
PTEN phosphatase and tensin homolog deleted on chromosome 10
RNF ring finger proteins
SKP2 S-phase kinase associated protein 2.
TGF-β transforming growth factor beta
TRAIL tumor necrosis factor alpha apoptosis-inducing ligand
UBQ ubiquitin
UBR5 ubiquitin protein ligase E3 component N-recognin 5
UCH ubiquitin C-terminal hydrolases
UCHL ubiquitin C-terminal hydrolases like
USP ubiquitin-specific protease
WM Waldenström macroglobulinemia
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