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ABSTRACT Recently, there has been an increasing interest in identifying the role that regions of low
recombination or inversion play in adaptation of species to local environments. Many examples of groups of
adapted genes located within inversions are arising in the literature, in part inspired by theory that predicts
the evolution of these so-called “supergenes.” We still, however, have a poor understanding of how
genomic heterogeneity, such as varying rates of recombination, may confound signals of selection. Here,
I evaluate the effect of neutral inversions and recombination variation on genome scans for selection,
including tests for selective sweeps, differentiation outlier tests, and association tests. There is considerable
variation among methods in their performance, with some methods being unaffected and some showing
elevated false positive signals within a neutral inversion or region of low recombination. In some cases the
false positive signal can be dampened or removed, if it is possible to use a quasi-independent set of SNPs
to parameterize the model before performing the test. These results will be helpful to those seeking to
understand the importance of regions of low recombination in adaptation.
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A recent focus of evolutionary biology has been to understand the
genetic basis of adaptation. Recent studies have uncovered a range of
complex genetic architectures underlying traits, and the idea that
adapted loci may be co-located and physically linked in the genome
has received a large amount of attention. These observations range
from extended signals of selection deemed “genomic islands” (Feder
et al. 2012), to clusters of tightly linked loci located within inver-
sions deemed “supergenes” (Schwander et al. 2014; Thompson and
Jiggins 2014), to an important role of restricted recombination in
local adaptation within species and maintaining boundaries among
species (Noor and Bennett 2010; Berner and Roesti 2017). These
empirical observations are expected based on theory. Theory pre-
dicts that rearrangements can bring locally adapted alleles together
(Yeaman 2013) and that linked alleles have increased establish-
ment probability (Yeaman et al. 2016). Theory also predicts that
rearrangements that capture locally adapted alleles will prevent

shuffling of alleles in heterozygotes, and that regions of suppressed
recombination results in reduced gene flow that enables locally
adapted alleles to evolve (Kirkpatrick and Barton 2006; Guerrero
et al. 2012; Fuller et al. 2018).

Many of these observations of extended signals in the genome are
based on the statistical analysis of population-genetic datasets using
genome scans. Genome scans are statistical tests used to infer the
genetic loci either affected by selection or that affect a trait (Table 1).
Genome scans can be divided into three groups: those that seek to
identify loci more differentiated among populations that expected
from neutrality (differentiation outlier methods, Hoban et al. 2016),
those that seek to identify loci that are associated with a variable
such as a phenotype or the environment where the individual was
sampled (association methods, Bush and Moore 2012; Korte and
Farlow 2013; Rellstab et al. 2015), and those that seek to characterize
allele frequency or haplotype shifts due to positive selection acting
within the sample (sweep methods, Pritchard and Di Rienzo 2010;
Pritchard et al. 2010; Schlamp et al. 2016). Despite the theoretical
expectations that we should find signals of selection within inver-
sions or regions of low recombination, we still have a poor under-
standing of how genomic heterogeneity, such as variation in
recombination rate, may produce false positive signals in the very
regions we expect to find adaptive signals. Every genome scan
method outputs a test statistic (Table 1) for each locus, or a numer-
ical summary of the signal at that locus, and the statistic itself or
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the significance of that statistic can be biased if the data violates
assumptions.

Unfortunately, the rate at which new genome scan tests are being
developed is rapidly eclipsing our understanding of their performance,
and the effects of heterogeneity in the data (such as recombination
variation) have not been well evaluated with simulations. Linkage
disequilibrium (LD) is the non-randomassociation of alleles at different
loci (Robbins 1918). Regions of extensive LD may be found following
hard selective sweeps as a new beneficial mutation arises in frequency
(Maynard-Smith and Haigh 1974; Charlesworth et al. 1997) as well as
around regions of low recombination such as centromeres or inversions
(Kirkpatrick and Barton 2006; Berner and Roesti 2017). In this case, the
potential issue is that the extensive LD that is expected to arise around a
nucleotide due to strong selection is the same extensive LD that may be
observed in neutral regions of low recombination, and that test statistics
based on the allele frequency spectrum or haplotype structure (Messer
and Petrov 2013; Schlamp et al. 2016)may be similar between these two
types of regions. Often measures of nucleotide diversity and measures
of the allele frequency spectrum are correlated with recombination
variation in genomes, but this is confounded with the action of posi-
tive selection and background selection (Charlesworth et al. 1993;
Nachman 2001; Charlesworth 2012).Whether tests for selective sweeps
have false positive signals in neutral regions of low recombination has
not been systematically evaluated with simulations.

A second potential issue is raised by a handful of empirical studies
that have found that even when data across the genome is used, long-
range LD at a particular locus can bias estimates of population structure
and neutral demography (Price et al. 2006; Corbett-Detig and Hartl
2012; Abdellaoui et al. 2013; Privé et al. 2018). Accurately correcting
for neutral demography in genome scans is important because non-
independence among populations can create false positive signals. For
example, early differentiation outlier methods basically assumed that
migration was equal among all populations (e.g., all populations were
equally related to each other, Lewontin and Krakauer 1973; Beaumont
and Nichols 1996). These methods had high false positive rates because

they did not account for complex demographic histories that create
varying degrees of relatedness among populations in the data
(Bonhomme et al. 2010; De Mita et al. 2013; Lotterhos and Whitlock
2014, 2015; Hoban et al. 2016). It was also realized that association
methods that did not correct for demographic history would exhibit
false positive signals because of spatial autocorrelation in allele frequen-
cies (Meirmans 2012). For this reason, most of the recently developed
differentiation outlier and association methods use neutral parameter-
ization (Table 1, sensu Lotterhos and Whitlock 2014) to calibrate or
calculate the distribution of the test statistic expected under the neutral
demographic process. Because genome scans must correct for popula-
tion structure in the statistical test, long-range LD that distorts esti-
mates of population structurewill also distort the significance of the test
statistic (Price et al. 2008). This suggests that distortion in population
structure due to LD may also bias the results of differentiation outlier
and association tests that require neutral parameterization, but this also
has not been systematically evaluated with simulations.

Overall, the effects of genomic heterogeneity in recombination and
long-range LD on neutral parameterization, as well as on estimates of
population structure, have not been well characterized. This is in part
because most of the evaluative studies have simulated unlinked, in-
dependent loci and are not useful for evaluating this problem (e.g., Price
et al. 2006; Novembre and Stephens 2008; McVean 2009; DeMita et al.
2013; Lotterhos and Whitlock 2014, 2015; Forester et al. 2016, 2018;
Martins et al. 2016; Luu et al. 2017). Here, I develop a novel set of
simulations to evaluate how genomic heterogeneity in recombination
affects the ability of genome scans to identify partial sweeps from a new
mutation (Hudson et al. 1994; Voight et al. 2006; Pritchard et al. 2010),
complete sweeps from a new mutation (Smith and Haigh 1974), or
causal quantitative trait nucleotides (QTNs, Table 1) that affect a trait
under spatially heterogeneous selection. One novel aspect of the sim-
ulations is that each of the 9 linkage groups (LGs) simulated were
subject to a kind of realism expected in actual genomic data (e.g.,
neutrality, QTNs, selective sweeps, an inversion, a centromeric region,
and recombination variation). Having genomic heterogeneity in the

n Table 1 Explanation of terms used in this study

Term Description

Genome scan A statistical test used to infer the genetic loci either affected by selection or that
affect a trait

Test statistic The numerical summary calculated for each locus that reduces the data to one value
that can be used to perform the hypothesis test. The relationship between the test
statistic and the P-value for that test statistic depends on the shape of the
distribution used to model the null hypothesis (e.g., neutral parameterization).

Quantitative trait nucleotide (QTN) A causal allele that has an additive effect on a quantitative trait
Linkage disequilibrium (LD) Non-random association of alleles at different loci
Neutral parameterization The process of calibrating or calculating the distribution of the test statistic expected

under neutrality (i.e., the neutral demographic process)
Neutral parameterization with all SNPs

and genome scan on all SNPs (“naive”)
When based on all SNPs, neutral parameterization may be biased due to

non-independence among SNPs due to linkage disequilibrium. Since this is the
default for many programs, it is referred to as the “naive” approach. But note that
for some genome scans, this is the only option.

LD thinning, SNP thinning, thinned SNPs Move along a genome in a sliding window and reduce the set of SNPs to those that
have reduced linkage disequilibrium with each other

Neutral parameterization with thinned SNPs
and genome scan on thinned SNPs

When based on a set of SNPs thinned for LD, neutral parameterization is less likely
to be biased due to linkage disequilibrium among SNPs. However, trimming
removes many causal SNPs, and can greatly reduce the probability of finding
causal SNPs in the genome scan. For this reason, this approach was not evaluated.

Neutral parameterization with thinned SNPs
and genome scan on all SNPs (“best practice”)

Neutral parameterization on a set of thinned SNPs is less likely to be biased due to
linkage disequilibrium among SNPs. This parameterization can then be used when
performing the genome scan on the entire set of SNPs.
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same simulation is essential not only for simulating realistic genealogies
(as determined by the contributions to fitness from different regions of
the genome), but it is also essential for the evaluation of genome
scans because false positive signals or biased neutral parameteriza-
tion will affect the false discovery rate. As shown below, the genomic
heterogeneity does confuse some analyses, but other analyses are
unaffected. It is precisely this case when genomic heterogeneity
confuses analysis that demonstrates how caution must be applied
when analyzing genomic data.

I use a basic demography that results in an isolation-by-distance
pattern in thedata to explore the effects of genomicheterogeneity, rather
than the effects of different population demographies. While the geno-
mic heterogeneity in LD among SNPs in the simulations is caused by
variation in recombination rates among proximate SNPs, similar het-
erogeneity might be present in a dataset which contained a mixture of
random sets of SNPs from the entire genome and long sequences of
proximate SNPs obtained by sequence capture.

METHODS

Simulations
I conducted200 replicate forward-time simulationsof ametapopulation
adapting to a heterogeneous spatial environment (Figure 1) with
SLiM v. 3.2 (Haller and Messer 2017) to create SNP data for each
individual. The simulations resulted in a population that had iso-
lation-by-distance structure along an environmental gradient (e.g.,
isolation by environment,Wang and Bradburd 2014). For simplicity
in interpreting the results, only one type of genomic heterogeneity
was simulated on each LG, such that each LG evolved approximately
independently. Each of the 9 LGs were 50,000 bases and 50 cM in
length. The base recombination rate Ner = 0.01 (unless manipulated
as described below) gave a resolution of 0.001 cM between proxi-
mate bases. The recombination rate was scaled to mimic the case
where SNPs were collected across a larger genetic map than what
was simulated (similar to a SNP chip), but still low enough to allow
signatures of selection to arise in neutral loci linked to selected loci
(in the simulations 50,000 bases / (r = 1e-05) � 100 = 50 cM; in
humans 50,000 bp would correspond to 0.05 cM). Thus, SNPs at the
opposite ends of linkage groups were likely to have a recombination
rate between themof 0.5 (unlinked), but there would otherwise be some
degree of linkage among SNPs within linkage groups. For all LGs, the
population-scaledmutation rateNem equaled 0.001. For computational
efficiency, 1000 individuals were simulated with scaling of mutation
rate and recombination rate as described above (Fisher 1930; Wright
1931, 1938; Crow and Kimura 1970; Bürger 2000). In the first gener-
ation, individuals were placed randomly on a spatial map between the
coordinates 0 and 1. Individuals dispersed a distance given by a bi-
variate normal distribution with zero mean and variance sd (Table 2).

A unique aspect of these simulations is that individuals experienced
six components of fitness to reflect a core set of biologically realistic
pressures acting on the genome: (i) local adaptation of QTNs with
additive effects on a phenotype subject to selection by a heterogeneous
environment, (ii) competition, (iii) mating success, (iv) a beneficial new
mutation (hard sweep) at a single site introduced 300 generations before
sampling, which was enough time for the sweep to be near or at fixation
for varying lengths of time (“full sweep”), (v) a beneficial newmutation
(hard sweep) at another site introduced 60 generations before sampling,
which was enough time for the sweep to typically reach a frequency
from 0.5-0.85 (“partial sweep”), and (vi) weak negative frequency de-
pendent selection on the inversion, which was included tomaintain the
inversion as polymorphic in the population (but was unrelated to local

adaptation to the environment). Total fitness was calculated as the
multiple of the fitness components after they were scaled to relative
fitness for that component. The parameters chosen for competition
and mating (described in Appendix) resulted in local neighbor-
hoods or clusters of individuals (Figure 1), which could later be used
to assign individuals to populations for methods that required
it. The remaining fitness components are described below in the
“Genetic Map” section.

I tested for coalescence with preliminary simulations and found for
some replicates that even 50N generations of burn-in was not enough
time for the metapopulation to coalesce. Therefore, I only simulated
non-neutral mutations in SLiM with tree sequencing implemented to
record the geneology, and thenused recaptitationwithpyslim (v0.1) and
msprime (v0.6.1) to reconstruct the ancestryof the initial genomes using
the coalescent and to add neutral mutations (Haller et al. 2018; Kelleher
et al. 2018). Note that at this time recapitation of a SLiM simulation can
only be performed on a uniform recombination map. To evolve more
realistic patterns of haplotype diversity under recombination variation,
the SLiM simulation was run without spatially heterogeneous selection
for 10N generations, followed by a period of 2N generations during
which the metapopulation experienced spatially heterogeneous selec-
tion by the environment. After recaptitation and the addition of neutral
mutations, a vcf file was produced for subsequent analyses with genome
scans. See Data Availability for scripts and code.

Data filtering
VCF files produced from the simulations were first filtered for individ-
uals that were related and then for loci that had MAF, 0.01 with the
R package vcfR (Knaus and Grunwald 2016). Relatedness was calcu-
lated using the statistic of Lynch and Ritland (Lynch and Ritland 1999)
with the R package related for a subset of 800 SNPs with MAF. 0.05,
and for pairs of individuals with a pairwise relationship coefficient

Figure 1 Example landscape simulation. Each box is an individual,
colored by their phenotypic value. The background is the selective
environment. This output was generated after 1900 generations of
selection by the environment, resulting in a correlation of 0.52 between
the phenotype and the environment.
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greater than 0.5, one individual from the pair was removed. The test
statistics described belowwere then calculated from this filtered set of data.

Genetic map and fitness components

LG-1 and LG-2: Neutral: The first two linkage groups were simulated
under neutrality as described above (Figure 2). No loci in these regions
affected fitness components.

LG-3 and LG-4: Quantitative trait nucleotides: On these linkage
groups QTNs that had additive effects on the trait could evolve with the
probability of a newmutation being a QTN equal to 0.02 (Figure 2). If a
newmutation was a QTN, the effect size was drawn from a distribution
with mean 0 and variance sQTN. In this manner genetic architecture
(the distribution of effect sizes and linkage relationships among causal
mutations) was allowed to evolve. Because they were subject to spatially
heterogeneous selection, QTNs that evolved to explain a major pro-
portion of the genetic variance created signatures that could be detect-
able by differentiation outlier methods and genetic-environment
associations (GEAs) (Hoban et al. 2016). Because they had additive
effects on phenotypes, they could also be detectable by genome-wide
association studies with phenotypes (GWAS) (Bush and Moore 2012).

To simulate local adaptation, the trait was subject to spatially
heterogeneous stabilizing selection with the optimum for each location

in space dependent on the environment (Figure 1). To allow some
standing genetic variation at the QTNs to evolve prior to the onset of
heterogeneous selection, the phenotype was under weak stabilizing
selection with a mean trait optimum u = 0 and variance sS for the
first 10N generations. At 10N generations selection by the environ-
ment was initiated. For each location, the environmental optimum
was randomly generated at 25 locations on the grid by adding ran-
dom variation (s = 0.5) to a longitudinal cline (from -1 in the west,
to 1 in the center, and -1 in the east) to mimic a mountain range, and
then interpolated to determine the environmental optimum uxy for
the trait at any {x,y} location (Figure 1). When selection to the
environment was initiated, the environmental optimum at each
location changed from the historical optimum to the new optimum
linearly for 100 generations, and then remained at the new optimum
for the remainder of the simulation.

For each individual in each generation, the local-adaptation fitness-
componentwas determined by aGaussian function given the difference
between the individual’s phenotype and the optimum at that location,
with the strength of stabilizing selection as the variance of the Gaussian
function sK . The fitness component for individual i at location {x,y}
was:

vQTNi ¼ 1:0þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

K

q e
ðzi 2 uxyÞ2

2s2
K (1)

where zi is the phenotype (calculated from the sum of QTN effect
sizes) of individual i, and uxy is the optimum at the location where the
individual was located.

LG-5 and LG-6: Selective sweeps: In the center of LG-5 and LG-6,
positive selection on a single new mutation was simulated to create the
signature of a hard selective sweep (Figure 2). Because these sites arose in
frequency across the metapopulation, it was not going to be detectable
by differentiation outlier, GEA, or GWAS methods. Instead, these sites
would be detectable bymethods based on the allele frequency spectrum
or haplotype-based methods (Messer and Petrov 2013; Schlamp et al.
2016). I simulated two strongly selected mutations with the objective of
creating obvious signatures that should be detectable by methods based
on allele frequency spectrum or linkage disequilibrium. Each positively

n Table 2 Parameters used in the simulations and their values

Symbol Value Description

Ne 1000 Population size
sd 0.004 Standard deviation of dispersal
sS 3.0 Strength of stabilizing selection for first

4Ne generations
sK 0.05 Strength of stabilizing selection after

4Ne generations
sC 0.07 Standard deviation of competition function

for total interaction strength
sM 0.5 Standard deviation of mating function

for total interaction strength
m 1026 Mutation rate
r 1025 Base recombination rate
sQTN 0.7 Standard deviation of QTN effect sizes

Figure 2 Example genetic map with 9 linkage groups (LGs), each 50 cM long. LG-1 and LG-2 were neutral; on LG-3 and LG-4 quantitative trait
loci (QTL) were allowed to evolve (but exact locations and effect sizes depended on the simulation); on LG-5 and LG-6 a hard selective sweep
from a new mutation occurred at the purple arrow; on LG-7 a neutral inversion was simulated in the center; on LG-8 a region of low recombination
(3 orders of magnitude lower than the base rate) was simulated in the center; and on LG-9 recombination variation was simulated randomly.
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selected mutation was dominant and had a selection coefficient ssweep =
0.5. Since some genome scans are sensitive to whether or not the sweep
fixed, I simulated an older sweep on LG-5 that was at or near fixation by
the end of the simulation (“full sweep”, introduced 300 generations
before the end of the simulation) and a more recent sweep on LG-6
that typically rose to a frequency of 0.5-0.85 (“partial sweep”, intro-
duced 60 generations before the end of the simulation). To ensure that
the sweep was present at the end of the simulation, it was reintroduced
if it was lost to drift within 20 generations of first introduction.

LG-7 Neutral with a large inversion: A 10000 base pair region in the
center LG-7 was simulated as a large inversion. While in nature re-
combination may occur between inverted and ancestral haplotypes in a
heterozygote, a single crossover would result in inviable gametes that
lack critical genes. Since this process effectively results in essentially no
recombination between inversion and ancestral haplotypes, for com-
putational simplicity recombination was allowed between homozygotes
but completely suppressed between heterozygotes.

To ensure that the inversion was segregating in the population at the
endof the simulation, the inversionwasmaintainedunderweaknegative
frequency dependent selection. Individuals without the inversion had a
relative fitness equal to 1.0, while individuals with the inversion had a
fitnesscomponent thatdependedonthe frequencyof the inversioninthe
population f:vinversion = 1.0 - (f - 0.5) � 0.1. Thus, at any point in time the
fitness component of the rarer haplotype was slightly higher than
the common haplotype. Note however that the fitness of the inversion
was not related to local adaptation to the environment, and all muta-
tions within the inversion were neutral. These parameters resulted in a
range of minor allele frequencies of the inversion haplotypes across
replicate simulations (see Results).

LG-8 Neutral with a large region of low recombination: On, LG-8 a
stretch of 10,000 bases at the center of the LG was simulated with a
recombination rate of 1028, which was three orders ofmagnitude lower
than the base recombination rate, but would have been higher than
recombination between the two inversion haplotypes where recombi-
nation was completely suppressed.

LG-9 Neutral with recombination variation: LG-9 was simulated
with random recombination rate variation, where 9 breakpoints were
randomly chosen from a uniform distribution and the recombination
rates for the 10 resulting regions were generated by 10-b, where b was a
random normal variable with mean 5 and standard deviation of 2. This
generated recombination rates between �0.01 and 1029 at random
breakpoints, with a mean of the base recombination rate at 1025.

Population structure and neutral parameterization
Because of the potentially confounding effects of long-range LD,
many population-structure methods recommend that an “indepen-
dent” set of SNPs be used to estimate population structure
(Bradburd et al. 2018). Here I will use the term “quasi-indepen-
dent,” because all SNPs are located within the same genome and
can never be truly independent. A common way of obtaining a
quasi-independent set of SNPs is to thin for linkage disequilibrium
(LD or SNP thinning, Table 1), which typically moves along a ge-
nome in a sliding window and thins SNPs based on linkage dis-
equilibrium with each other. This may be based on a combination
of (i) “pruning,” which sequentially scans the genome and per-
forms pairwise thinning based on a given threshold of correlation,
(ii) “clumping,” which may incorporate some information about
the importance of SNPs based on summary statistics, and

(iii) removing SNPs in long-range LD regions (Privé et al. 2018).
While SNP thinning is a recommended practice for obtaining a set
of SNPs to estimate population structure, it is unclear what the best
practices are for genome scans because SNP thinning will (i) remove
the characteristic signature that selection will leave in the genome and
(ii) potentially remove causal or adaptive SNPs (Table 1: “Neutral
parameterization on thinned SNPs and genome scan on thinned
SNPs”). Methods vary widely in how they control for structure, their
flexibility, and their guidelines for users. For example, some meth-
ods allow the user to use one set of SNPs for neutral parameteriza-
tion and perform the statistical test on another (more complete) set
of SNPs, and clearly recommend that a random and independent set
be used for the first step (e.g., Günther and Coop 2013) (Table 1,
“Neutral parameterization with thinned SNPs and genome scan
on all SNPs”, “best practice”). Other methods could be implemented
in these two steps - but that is not the default and best practices are
not well articulated in the resources for users - and so naïve users
tend to use the entire set of SNPs for neutral parameterization and to
perform the test (Table 1, “Neutral parameterization on all SNPs
and genome scan on all SNPs”, “naïve approach”). Note that for
some genome scan approaches like haplotype-based statistics, this
latter approach is the only option. In many cases, the best practices
for implementing genome scans in the presence of long-range LD
are unclear.

When applicable, the “naïve approach” for the method was run on
all SNPs withMAF. 0.01.When applicable (as noted for eachmethod
below), the “best practice” involved implementing the statistical tests in
two steps (Table 1). In step 1, thewhole genome datawere thinned for LD
to obtain a quasi-independent set of SNPs, and this set of thinned SNPs
were used for neutral parameterization. In step 2, these null parameters
were used to calculate the test statistic for all SNPs. SNP thinning was
implemented in R packages bigsnpr and bigstatsr with the function snp_
autoSVD, which uses sliding windows to remove SNPs correlated greater
than 0.2 with the SNPwith the highestMAF in that window and removes
regions with putative long-range LD (Privé et al. 2018).

Because the issues with some genome scans arise through how they
capturepopulationstructurevia theprocessofneutralparameterization,
I also evaluate the “naïve approach” (all SNPs with MAF . 0.01) and
the “best practice” (thinned SNPs, Table 1) on population structure
estimates from principal components. Principal components analysis
was conducted on the SNP matrix (coded as 0, 1, or 2) using the
function pcadapt() in the R package pcadapt v3.0.4 (Luu et al. 2017).
This function output the score for each diploid individual (`$scores`)
and the loading of individual SNP (`$loadings`) onto each PC axis. I
evaluated the degree to which scores reflected the isolation-by-distance
population structure that evolved on the landscape, as well as the degree
to which loadings were sensitive to genomic variation in recombination
rate.

Genome scan approaches
I compareddifferentmethods fordetecting selection fromgenomicdata,
including differentiation outlier tests (Hoban et al. 2016), genome-wide
association studies with phenotypes (Bush and Moore 2012; Korte and
Farlow 2013), genetic-environment associations (Rellstab et al. 2015),
and statistics for detecting selective sweeps based on shifts in haplotype
frequencies (Pritchard andDi Rienzo 2010; Schlamp et al. 2016).When
applicable, a method was run with a “naïve approach” and the “best
practice.” The “best practice” was determined by any of the following:
(i) following recommendations in the citation and the user guides, (ii)
communication with the developer, and (iii) preliminary data analysis
on a subset of simulations.
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Selective sweep methods: The statistics evaluated are designed to detect
the shifts in haplotype frequencies around the new mutation under
positive selection (LG-5 and LG-6 in the simulations). I evaluated three
statistics:

• iHS: integrated haplotype score; a measure of the amount of ex-
tended haplotype homozygosity (Voight et al. 2006);

• H12: estimates haplotype homozygosity by combining the frequen-
cies of two most frequent haplotypes into a single frequency and
adding it to the total haplotype homozygosity (Messer and Petrov
2013; Garud et al. 2015); and

• H2/H1: compares the haplotype homozygosity using all but the most
frequent haplotype to the total haplotype homozygosity (Messer
and Petrov 2013; Garud et al. 2015). This value is expected to be
smaller for hard sweeps, so was transformed to -log10(H2/H1) for
performance evaluation (see Supplementary Materials).

iHS is known to have lower power thanH12when the sweep is near
fixation (Tang et al. 2007; Schlamp et al. 2016). Also, iHS is standard-
ized to correct for variation in recombination rate over a range of SNPs
with similar derived allele frequencies (Voight et al. 2006), butH12 and
H2/H1 are not. Statistics were trimmed within 1000 bases of the ends of
the linkage groups to reduce potential biases there. Because these meth-
ods are based on haplotypes, they could only be implemented on the
complete set of SNPs. For details of all calculations see the Supplemen-
tary Materials.

Differentiation outlier methods: The differentiation outlier methods
are designed to detect loci that are subject to spatially heterogeneous
selection and evolve to be differentiated above and beyond that expected
by neutral demographic history (QTNs onLG-3 and LG-4). I compared
three methods that differ in the way that they correct for population
structure:

• OutFLANK: identifies FST outliers after estimating the neutral pa-
rameters on the FST distribution (Whitlock and Lotterhos 2015);

• PCAdapt: identifies outliers along the principal components that
describe structure (Duforet-Frebourg et al. 2014; Luu et al. 2017);
and

• XTX: identifies outliers along the covariance in allele frequencies
among populations based on the model of Bayenv2 (Günther and
Coop 2013) as implemented by Gautier (2015).

For each statistic, the “naïve approach” was evaluated using the
results from running the algorithm on all SNPs. The “best practice”
was evaluated using the results from running the algorithm in two
steps: first, using a quasi-independent set of thinned SNPs for neutral
parameterization, and then second, using that parameterization to run
the model and obtain P-values or test statistics for all SNPs. See Sup-
plemental Materials for details on all calculations.

Genome-wide association (GWAS) methods: The GWAS methods
are designed to detect loci that have effects on phenotypes and evolve to
be associated with the phenotypes (QTNs on LG-3 and LG-4). I
compared two methods that adjust for coefficient inflation in a latent
factor mixed model (LFMM) association between genotypes and phe-
notypes: ridge regression and lasso (Caye et al. 2019; François and Caye
2018). LFMMs model unexplained variation with latent factors, which
are estimated jointly with the main effects in the model. Thus, neutral
parameterization with thesemethods happens internally (e.g., the latent
factors and model coefficients are estimated jointly), and so the algo-
rithms can only be run in one step on the set of all SNPs. To accurately
estimate latent factors that capture the genetic population structure in a

GWAS, genotype is modeled as a function of phenotype (François and
Caye 2018). I tested two different methods for adjusting for coefficient
inflation in large data sets with collinear predictor variables (Caye et al.
2019):

• ridge regression, which adjusts all model coefficients by a shrinkage
term; and

• lasso, which adjusts for coefficient inflation by minimizing the re-
sidual sum of squares with a penalty.

More details can be found in the Supplementary Materials.

Genetic-environment association (GEA) methods: TheGEAmethods
are designed to detect loci that are subject to spatially heterogeneous
selection by a specific environment and evolve to be associated with that
environment (QTNs that evolve on LG-3 and LG-4). I compare four
methods that measure the association between the allele frequency and
an environmental variable:

• latent factor mixed Bayesian hierarchical model: measures environ-
ment-allele association corrected for structure with latent factors
(Frichot and François 2015);

• Bayes Factor from BayPass: measures strength of evidence of an
association, corrected for structure with population covariance ma-
trix (Gautier 2015). The “naïve approach” and “best practice” were
implemented as described for XTX above;

• Spearman’s r: uncorrected association between allele frequency and
the environment; and

• redundancy analysis: a method to extract and summarize the vari-
ation in a set of response variables (SNPs) that can be explained by a
set of explanatory variables (environmental variables) (Legendre
and Legendre 2012). Performance was evaluated using the loading
of SNP on the constrained axis (e.g., the environmental predictor)
following Forester et al. (2018); note this approach does not correct
for structure.

For details on these calculations see Supplementary Materials.

Comparison of performance
Causal SNPswerecountedas truepositives if theycontributedmore than
1% to the additive genetic variance of the trait. Because SNPs were
filtered for final data analysis using standard cutoffs (MAF . 0.01),
some causal SNPs were below this threshold (rare alleles). Some of these
rare alleles were of small effect or just recently introduced in the pop-
ulation, thus contributing very little to the overall genetic variance of
the trait. The proportion of additive genetic variance for causal SNPs
was approximated as the additive genetic variance for SNP i standard-
ized by the total additive genetic variance:

a2
i pi

�
12 pi

�
PN

i¼ia
2
i pi

�
12 pi

�;

Where ai is the effect size and pi is the allele frequency of the derived
allele at SNP i. Causal SNPs whose contribution to the additive ge-
netic variance was greater than a proportion of 0.01 were then
counted as true positives (hereafter: “causal SNPs”). Note that some
of these causal SNPs were rare alleles (e.g., MAF , 0.01) of large
effect, and so they were not present in the set of analyzed SNPs but
they were still counted in the calculation of error rates because they
explained more than 1% of the additive genetic variance (see Results).

The performance of each metric was then summarized as the area
under the curve of the precision-recall graph (AUC-PR) (Davis and
Goadrich 2006). This is preferred to the area under the curve of the
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Receiver Operating Characteristics graph (AUC-ROC) graph (Fawcett
2004), because in biological applications when the number of samples
in each classifier is imbalanced (for example in these simulations there
are many neutral loci and only a few selected loci), a method can
achieve a high AUC-ROC even when the majority of positive hits are
false positives (Saito and Rehmsmeier 2015). In these cases AUC-PR
more accurately captures performance. An AUC-PR = 1 represents the
case when all causal SNPs have higher scores than neutral SNPs. The
AUC-PR that is expected by random is equal to the proportion of
causal loci in each dataset, which varied slightly from simulation to
simulation but was generally less than 1%. The AUC-PRwas calculated
with the R package PRROC (Grau et al. 2015) using the continuous
interpolation method (Boyd et al. 2013; Keilwagen et al. 2014).

I summarizedperformanceof eachmethod for the ability todetect (i)
all causal QTNs and (ii) a 2000 bp region on either side of a selective
sweep (note in this latter case the sweepnucleotidewas not always in the
dataset because it was at or near fixation). The distribution of AUC-PR
over replicate simulations was visually compared among methods with
boxplots. I inspected how signals in different regions of the genome
affected the performance of each metric by calculating the empirical
cumulative distribution function for neutral loci (ecdf() function in R)
and evaluating the average quantile of different regions of the genome
(e.g., sweeps, QTNs, inversion, etc.) relative to this empirical neutral
distribution (Lotterhos and Whitlock 2014).

Data Availability
To facilitate validation of newmethods and their sensitivity to genomic
realism, I have created a githubgroupcalled “Test theTests.”Within this
group is a repository for this study, https://github.com/TestTheTests/
TTT_RecombinationGenomeScans, that includes all the scripts needed
to recreate the simulations and figures presented in this manuscript.
The repository is structured so that the simulations may be easily
analyzed by new methods, and that the results may be easily added
and visually compared using the same metrics presented here. In ad-
dition the repository and “.trees” files from the simulations are archived
on Dryad at https://doi.org/10.5061/dryad.rj0kj10 (Lotterhos 2019).
Supplemental material available at FigShare: https://doi.org/10.25387/
g3.7973438.

RESULTS
After filtering for minor alleles, on average datasets had 6647 SNPs. On
average, 5% of SNPs were located within the non-adaptive inversion on
LG-7 and 2% in the region of low recombination on LG-8. The
simulation parameters resulted in a range of minor haplotype frequen-
cies in the inversion and a range of ages for the origin of the inversion
(Supplemental Figure S1).

On average 9.6 causal SNPs evolved that contributed more than 1%
to additive genetic variance (VA) in the trait. The distribution of causal
allele frequencies and their effect sizes are shown in Supplemental
Figure S2. Typically, 4-13 SNPs explained 80–98% of VA (based on
0.05 and 0.95 quantiles), and the locus in each simulation that explained
the most genetic variance explained on average 45%. Rare alleles of
large effect (that were filtered for analysis because they were rare)
typically left 3% of VA unexplained, but this could be as high as 15–20%
in a few simulations (Supplemental Figure S3).

The full hard selective sweep generally was at or near fixation
(frequency. 0.9) by the end of the simulation, and the mutations that
fixed were fixed for 1-200 generations (up to 0.2N generations, Sup-
plementary Figure S4 A, B). The partial hard sweep generally reached
an allele frequency of 0.5-0.85 by the end of the simulation but never
fixed (Supplementary Figure S4 C).

Effect of inversions and thinning on population
structure

PC scores of individuals on PC axes: When all the SNPs were used to
conduct a PCA, scores of individuals along PC1 depended on their
inversion haplotype on LG7 in the majority of replicate simulations
(Figure 3A). This occurred despite the SNPs in this region representing
on average 5% of the total number of SNPs in the data. Their scores
along PC2 depended on the simulation, but generally were determined
by their haplotype in the region of low recombination on LG8 or in the
region of recombination variation on LG9. This means that when all
SNPs in the data were used, the population structure was reflecting
these regions in the genome rather than the isolation-by-environment
pattern in the data.

In contrast, when a set of quasi-independent thinned SNPs were
used, the scores of individuals along PC1 reflected the isolation-by-
environment pattern in the data (Figure 3B).

PC loadings of loci onto PC axes: The above results can be explained
by understandinghow loci load ontoPCaxes.When all SNPs in the data
were used in thePCA toestimatepopulation structure, in themajorityof
simulations the neutral inversion on LG7 loadedmost strongly onto the
first PC axis (Figure 4A). This explains why in Figure 3A, PC scores of
individuals along PC1 could be explained by their inversion haplotype.
The genomic location that loaded most strongly onto the second PC
axis varied from simulation to simulation, but was typically the region
of low recombination on LG8, or less frequently the region of recom-
bination variation on LG9 or the neutral inversion (if it didn’t load onto
the first PC axis) (Figure 4B). Thus, in Figure 3A, PC scores of indi-
viduals along PC2 were segregated according to their haplotype in the
region that had the highest loading along this axis.

In contrast, when a set of thinned SNPs were used, the genomic
regions that containedQTN that adapted to the environment (LG2 and
LG3) had the highest loadings onto PC1 (Figure 4C). More specifically,
the QTNs selected for local adaptation to the environment (or neutral
loci linked to them - whichever were present in the trimmed set of
SNPs) in each replicate simulation had the highest loadings. This ex-
plains why in Figure 3B, individual scores along PC1 reflected the iso-
lation-by-environment structure along the environmental gradient.

In preliminary analyses with other methods based on using allele
frequencies to assign individuals to ancestral populations (e.g., STRUC-
TURE and similar methods, Pritchard et al. 2000; Frichot et al. 2014), I
also found that only the estimates of population structure based on a set
of thinned SNPs were accurate in describing the isolation-by-environ-
ment pattern present in the neutral data (results not shown).

Performance of genome scans

Selective sweep methods: Performance was assessed as the AreaUnder
the Precision-Recall Curves (AUC-PR). Sweep statistics generally had
low performance (AUC-PR , 0.3) for detecting the full and partial
sweeps (Figure 5 A and B, first three columns). The low performance
based on AUC-PR could be because (1) low power to detect the sweep
due to lack of signal around the sweep area, and/or (2) large false
positive signals in other areas of the genome. These effects can be
visualized by the empirical quantile of the signal in different regions
of the genome relative to the neutral loci simulated on LG-1 and LG-2.
For instance, H12 and H2/H1 had strong signals at the partial sweep
(0.8-1.0 quantile) while iHS had a relatively weaker signal (0.6-0.9
quantile) (Figure 6). However, H12 also had elevated signals in the
region of the inversion and region of low recombination (.0.75 quan-
tile), while iHS in these regions overlapped with the median signal at
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neutral loci (Figure 6, see alsoManhattan plot in Supplementary Figure
S5). Overall, H12 and H2/H1 had similarly large signals at the sweep
mutations but also elevated signals in regions of low recombination
rate, which led to lower overall performance.H2/H1 outperformedH12

in some cases because it was less sensitive to recombination variation

(Figure 6) and neither statistic was affected by the minor haplotype
frequency within the inversion region (Supplementary Figure S6). On
the other hand, the low performance of iHSwas caused by less power to
detect the sweep mutations, even though it was not affected by recom-
bination variation (Figure 6).

Figure 3 PC scores of individuals
on PC axes for one replicate
simulation. A) PC scores calculated
from all loci. Structure along PC1
was determined by the number
of copies of the inversion (“0|0”
lacked inversion, “0|1” inversion
heterozygote, and “1|1” inversion
homozygote). In this simulation,
structure along PC2 was deter-
mined by haplotype in the region
of low recombination on LG-8. B)
PC scores calculated from a quasi-
independent set of thinned SNPs,
which resulted in PC1 reflecting
the isolation-by-environment struc-
ture in the data.
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The performance of all statistics depended on the allele frequency of
the sweep mutation at sampling, with higher power of all statistics to
detect sweeps that had not yet fixed.H12 always had higher power than
iHS across allele frequencies and after fixation (Figure 7). The power of
H12was maximized at an allele frequency of 0.7-0.9, while the power of
iHS was maximized at an allele frequency of 0.6-0.7 (Figure 7 A). Both
statistics retained similar power between fixation and up to 200 gener-
ations after fixation (Figure 7 B).

Differentiation outlier methods: Both the naïve and best prac-
tice approach was evaluated for PCAdapt, OutFLANK (FST), and
BayPass (XTX). In general, OutFLANK and BayPass did not have a
large difference in performance between the naïve approach and
best practice (compare “naïve” to “best practice” for the two meth-
ods in Figure 5C and Figure 8A). However, the AUC-PR of PCAdapt
increased greatly when the neutral population structure was com-
puted on the set of thinned SNPs (best practice) rather than the
entire set of SNPs (naïve approach) (Figure 5C for AUC-PR, com-
pare PCAdapt “naïve” to PCAdapt “best practice”). This difference
in performance occurred because using the naïve approach resulted
in large false positive outlier signals in the inversion and regions
of low recombination (Figure 8A, compare PCAdapt “naïve” to
PCAdapt “best practice”). These outlier signals occurred in the

naïve approach because of the way that regions of low recombina-
tion loaded onto the principal components (Figure 4).

The “best practice” for all methods had similarly moderate perfor-
mance (Figure 5 C, AUC-PR �0.1-0.8), similarly large signals at the
largest effect QTL in the data (Figure 8 A, quantile �1.0), and median
quantiles in the inversion and low recombination regions similar to that
expected based on neutrality (Figure 8A, median quantile �0.5 across
replicate simulations). In some replicate simulations, a haplotype in a
region of low recombination drifted to different frequencies among
subpopulations and resulted in an elevated signal within that region
(e.g., Supplementary Figure S7, Manhattan plot). When comparing the
methods for the “best practice” scenario using the AUC-PR, PCAdapt
and OutFLANK (median AUC-PR �0.35) had slightly higher perfor-
mance than BayPass (median AUC-PR �0.3, Figure 5B).

Overall, there was considerable variation from simulation to simu-
lation in which differentiation outlier statistic performed the best and
hadthemostpower todetect smaller effectQTNs.For example, inFigure
9A OutFLANK had the best performance: although PCAdapt had
higher precision for the largest-effect QTNs, OutFLANK had higher
precision for moderate-to-small effect QTNs and this resulted in an
overall higher AUC. However, in Figure 9B PCAdapt had the best
performance: although XTX had higher precision for the largest-effect
QTNs, PCAdapt had higher precision for moderate-to-small effect

Figure 4 Loadings of loci onto PC axes across all replicate simulations. Each panel shows the frequency distribution of genomic locations that had
outlier PC loadings for that scenario. A) When all SNPs were used, typically SNPs in the inversion would have outlier loadings along PC1
(corresponding to scores along x-axis in Figure 3A). B) When all SNPs were used, typically SNPs in one of the low recombination regions would
have outlier loadings along PC2 (corresponding to scores along y-axis in Figure 3A). C) When a set of quasi-independent thinned SNPs were used,
the QTNs that adapted to the environment (or neutral loci linked to them) had the highest loadings along PC1 (corresponding to scores along
x-axis in Figure 3B).
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QTNs and this resulted in an overall higher AUC. In Figure 9C, Out-
FLANK had the highest precision to detect QTNs of all effect sizes.
These results illustrate that no single statistic is ideal in all scenarios.

Association methods: For associationswithphenotypes (GWAS), ridge
regression outperformed lasso regression for latent factormixedmodels
(LFMM, Figure 5C). The lower performance for LFMM-lasso occurred
because although both methods were able to detect the largest effect
QTN (Figure 8B), the lasso sometimes had elevated signals in the in-
version and the regions of low recombination (Figure 8B, see also
Manhattan plot in Supplementary Figure 8).

For associations with environments (GEA), Spearman’s r and RDA
had similarly high performance, followed by LEA, and then BayPass

(BF) (Figure 5C). All methods had extreme signals at the largest effect
QTN and were not affected by recombination variation (Figure 8B).
Although BayPass (BF) showed a slightly elevated signal in the inver-
sion compared to the genome-wide median (Figure 8B), these signals
were far below anything that would be considered significant (average
log10(BF) in the inversion was -11.2; for a log10(BF) to be considered
“decisive evidence” it should be larger than 2 (Kass and Raftery 1995)).
Finally, it should be noted that in some replicate simulations a haplo-
type in a region of low recombination could drift to different frequen-
cies among populations and show elevated signals for some association
tests but not others (Manhattan plot in Supplementary Figure S8).

Finally, the SNP loadings on the unconstrained axes of theRDA(e.g.,
the principal components) reflected genomic variation in recombina-
tion rate, with the inversion typically loading onto the first PC and the
other regions of low recombination loading onto the subsequent PCs
(Supplementary Figure S9).

DISCUSSION
Genome scan methods have different strengths and weaknesses, and it is
important tounderstandwhat thesearewhendetecting signalsof selection
in genomes. This study used the process of analysis validation (Lotterhos
et al. 2018) to illustrate how inversions and regions of low recombination
can confound some genome scans. Methods designed to detect selective
sweeps based on haplotype frequency may show elevated signals in re-
gions of low recombination. Non-independence among SNPs due to LD
can disproportionally affect estimations of population structure, espe-
cially those based on principal components. For some differentiation
outlier and association methods, even a small percent of non-indepen-
dent SNPs in the data can bias estimates population structure and create
false positive signals in these regions. This negative consequence can be
mitigated if a set of SNPs that have been thinned for LD are used to first
estimate population structure or calibrate the null distribution, which
better captures the neutral demography of the study species. Given the
importance of inversions (Schwander et al. 2014; Thompson and Jiggins
2014) and centromeric regions (Berner and Roesti 2017) in local adap-
tation, these results illustrate the importance of validating genomic pipe-
lines on simulations before making conclusions about the genomic
architecture of adaptive traits.

Estimating population structure with
principal components
Many seminal studies that have been used to evaluate genome scans
haveused independently simulated SNPs to evaluate themethods. In the

Figure 5 Area Under the Curve for Precision-Recall (AUC-PR) mea-
sures the overall performance of each statistic: AUC = 1 means that all
causal loci have larger signals than neutral loci, and an AUC �0.01 is
expected under random chance (horizontal gray line). A) AUC-PR eval-
uated in the region of the full sweep (2000 bp on either side). B)
AUC-PR evaluated in the region of the partial sweep (2000 bp on
either side). C) AUC-PR evaluated at all causal QTNs that explained
greater than 1% in the additive genetic variance. Each method is
shown in a different color, and the naive practice is shown with
hatched bars when applicable.

Figure 6 Boxplots of empirical quantiles of each test statistic in
different regions of the genome. The genome-wide median at neutral
loci (0.5 quantile) is shown as the horizontal line.
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seminal paper by Price et al. (2006) where principal components were
first introduced as a way to control for population structure in GWAS,
they simulated an independent set of SNPs to evaluate the method.
Following this seminal paper, a few studies have illustrated some of the
caveats of using principal components to estimate genetic structure
using independently simulated SNPs. For instance, Novembre and
Stephens (2008) showed that PCA can depend on the details of a
particular dataset, including distribution of sampling locations and
amounts of data. Similarly, McVean (2009) showed that PCA can be
strongly influenced by uneven sampling among populations and biases
in SNP ascertainment, and that the accuracy of PC axes to capture
structure increases with the number of independent SNPs.

By illustrating the effects of genomic heterogeneity in recombination
on principal component estimates of genetic structure, this study builds
on these previous studies as well as ground-truths empirical studies that
have documented the effects of linkage disequilibrium on PCA. For
instance, the Wellcome Trust Case Control Consortium (2007) found
that data from a 500K human SNP chip was dense enough to create
high loadings of SNPs onto regions of linkage disequilibrium, and as a
result four of the first six PCs on population structure reflected local
genomic LD. They also showed how related individuals can distort
projections of samples onto PC axes and admixture proportions. Sim-
ilarly, Price et al. (2008) articulated concerns about how long-range LD
and inversion polymorphisms can produce signals of unusual ancestry
and should be accounted for in genome scans for selection. Privé et al.
(2018) showed how long-range LD regions from a celiac disease dataset
(�300K SNPs) load onto principal components and how these effects
can be removed with SNP thinning. Most recently, Li and Ralph (2019)
showed that inversions and regions of low recombination can dominate
patterns of mean relatedness along the genome as determined by local
principal components.

Three main conclusions can be drawn from the simulations pre-
sented in this study and empirical studies. First, for each PC axis,
individual scores will be dominated by the SNPs that have the highest
loadings along that axis. Second, using a SNP dataset that has not been
trimmed for LD may result in local genomic LD loading onto some of
the principal components. On one hand, this may be a good way to
identify local regions of LD, and to quickly visualize and group indi-
viduals according to their haplotype within that LD region (for an

empirical example see Barney et al. 2017). Even low density SNP data-
sets (consisting of tens of thousands of SNPs) may be susceptible
depending on the range of LD; for example the resolution in these
simulations was a SNP only every 0.07 cM (�50 cM per LG divided
by �700 SNPs per LG), which corresponds to every �70,000 bp in
humans (corresponding to a 50K SNP chip). Third, thinning SNPs for
LD can more accurately capture neutral genetic structure (although
scores will still be dominated by SNPs with the highest loadings). These
caveats and best practices will be useful to those using various kinds of
software that incorporate principal components (PCs) of genotypes
(Abraham and Inouye 2014; Abraham et al. 2016; Galinsky et al.
2016; Price et al. 2006).

Variation in performance of genome scans
This study compared the ability of three statistics to detect hard selective
sweeps from new mutation. In these simulations, iHS statistic overall
had low power than H12 and H2/H1 to detect the sweep across allele
frequencies. This contrasted with previous studies that found iHS had
high power to detect partial sweeps that had not reached fixation (Tang
et al. 2007; Schrider et al. 2015; Schlamp et al. 2016).H12 andH2/H1 had
similarly large signals at the hard sweep across a range of allele frequen-
cies, which is in agreement with previous studies that found these
statistics had high power to detect the amutation under strong selection
simulated here (Schrider and Kern 2016). However, both statistics also
showed elevated signals in the inversion and regions of low recombi-
nation and this led to overall lower performance. In the simulations
these neutral regions were dominated by only a couple haplotypes
segregating in the population, and so statistics based on combining
the frequencies of the two most common haplotypes were inflated. In
Drosophila melanogaster H12 peaks were not associated with inversions
(Garud et al. 2015), which suggests that the results from this study may
not apply to all cases.

Of the three differentiation outlier methods tested with these sim-
ulations, the naïve PCAdapt was shown to be the most susceptible to
genomic variation in LD, but when best practices were employed this
method had similar performance to other methods. This sensitivity for
the naïve approach occurred when all SNPs were used to estimate the
principal components, because regions of high LDhad high loadings on
the PC axes. OutFLANK and BayPass were not sensitive to the set of

Figure 7 Empirical quantiles of H12 and iHS across replicate simulations as a function of (A) allele frequency and (B) for fixed sweeps, the number
of generations since fixation. The genome-wide median at neutral loci (0.5 quantile) is shown as the horizontal line.
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SNPs used. However for OutFLANK, it should be noted that bias in the
estimation of the neutral mean FST and df has been observed with high-
density genomic data compared to a subset of trimmed SNPs (KEL,
pers. obs.), and that best practices should still be employed. Previously,
the model that BayPass is based on was shown to perform poorly under
isolation by distance compared to other methods (Lotterhos andWhit-
lock 2015), and this should be considered when interpreting the results
presented here.

Almost all the association methods had similar performance. There
was some variation in the behavior of three latent factor mixed models
(the ridge regression with phenotype, lasso regression with phenotype,
and LEA with environment), with the lasso regression sometimes
showingoutlier signals in the inversion or regions of low recombination.
In the implementation of these models in the R package, the ridge
regression is solved analytically while the lasso regression is solved
numerically, which may indicate that the ridge estimates are more

Figure 8 Boxplots of empirical
quantiles of each test statistic in
different regions of the genome.
The genome-wide median at neu-
tral loci (0.5 quantile) is shown as
the horizontal line. (A) Differentia-
tion outlier statistics, comparing
the “naive” to the “best practice”
(BP). (B) Association tests.
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accurate (Caye et al. 2019). However, in some of the evaluations per-
formed by Caye et al. (2019), the lasso regression appeared to outper-
form the ridge regression (e.g., in the Celiac disease dataset), and so
additional validation may be required for these implementations to
understand their different strengths and weaknesses. Although both
Spearman’s r and redundancy analysis had high performance to sep-
arate signals of selection at QTNs from signals at neutral loci, it is
important to note that these methods do not correct for population
structure: even though causal loci have large signals than neutral loci,

many neutral loci can have significant P-values when structure is not
accounted for (Meirmans 2012).

Limitations of simulations
While the simulationspresentedhave certain types of realism in termsof
including local adaptation, selective sweeps, and recombination varia-
tion, each type of realismwas simulated on discrete linkage groups. Such
compartmentalization of genomic heterogeneity is unlikely to be found
in nature. Additionally, natural inversions may show evidence of
exchange between arrangements, which may occur during rare double
crossovers or gene conversion events (e.g., Schaeffer and Anderson
2005). This type of exchange was not captured by the simulations.
The simulated data were also idealistic in that every individual in the
population was sampled, their genotypes were known without error,
and there was no missing data. There was also no environmental noise
that affected the phenotypes (which were also known exactly without
error), which is part of the reason for the high performance of GWAS
methods. While these properties of the data are idealistic, the effects of
sampling and genotyping errors could easily be explored with the ar-
chived files. Since these simulations used scaling of mutation and re-
combination rate to population size, they may fail to capture some
important dynamics that are unique to large samples. The ability
of genome scans to produce accurate results can also be affected by a
number of qualities of the data, including sampling strategy (Lotterhos
andWhitlock 2015), ascertainment bias (Lachance and Tishkoff 2013),
allele dropout (Gautier et al. 2013), and missing data.

Selection in regions of low recombination
Many empirical studies suggest that inversions may capture sets of
adaptiveQTNs, deeming these regions “supergenes” (Cheng et al. 2011;
Schwander et al. 2014; Thompson and Jiggins 2014; Kapun et al. 2016;
Barney et al. 2017; Berg et al. 2017). Others have similarly inferred that
centromeric regions of low crossover rate facilitate adaptive divergence
(Berner and Roesti 2017). Do the simulations results suggest that the
importance of “supergenes” or regions of low recombination have been
overstated in the literature? Robustly answering this question would
require a thorough meta-analysis of how these regions were identified,
which methods were used, and whether the authors employed best
practices when scanning the genome. Many of the classic examples
of inversions underlying adaptive differences among populations or
phenotypes within a species are from traditional QTL mapping, which
was not evaluated in this study. However, the association tests in this
study tended to perform well and not be susceptible to false positive
signals from the inversion or regions of low recombination. In general,
caution should be applied in drawing conclusions about the importance
of a specific genomic regions based solely on the functions and ontol-
ogies of genes located within that region (Pavlidis et al. 2012) or based
solely on chromosomal structure.

When applicable, employing the “best practice” suggested here
should help discern false positive signals in neutral inversions from
true positive signals in adaptive inversions. Models show that locally
adapted inversions have higher genetic differentiation than the ge-
nome-wide background or drifting inversions (Guerrero et al. 2012,
but note neutral inversions under genetic drift can produce coalescent
patterns similar to locally adapted inversions of intermediate age). The
ability ofmethods to discern different genetic architectures (e.g., mono-
genic vs. polygenic) within adaptive inversions, however, is an impor-
tant area for future research, and one that could give important insights
to the “supergene” hypothesis. Discerning whether an adaptive inver-
sion has a monogenic or polygenic basis may be a difficult task with
population genomic data because of the extended signals resulting from

Figure 9 Precision-recall curves for three replicate simulations. For
each method, the Area Under the Curve (AUC-PR) is indicated in the
legend. Because large-effect loci tend to have the largest signal and
be discovered first, the power of methods to detect them are captured
whichever method has a larger area under the curve on the left side of
the plot where recall is low (e.g., only the loci with the largest signals
have been discovered). The power of methods to detect moderate-to-
small effect loci are captured by whichever method has a higher
AUC-PR in the center and right side of the plot where recall is higher
(more of the causal loci have been discovered). Precision decreases
with recall because many neutral loci have signals that are larger than
small-effect causal loci.
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low recombination rates within the inversions. However, new ap-
proaches based on machine learning are being used to discern among
different types of genomic heterogeneity, including different types of
selection acting on a single sequence, and may hold promise for this
problem (Schrider and Kern 2018).

Conclusions and best practices
The single best practice that can be employed when analyzing genome
scans for selection is to validate your genomics pipeline (including
filtering, imputation of missing data, genomic realism, and analysis
methods) on simulated data (Lotterhos et al. 2018). In most cases this
will not feasible, as it could be as much work as the empirical study
itself. The following steps may help to validate analyses with genome
scans when simulations are not available. First, related individuals
should be removed from the analysis (e.g., Wellcome Trust Case Con-
trol Consortium 2007) or the relatedness should be accurately con-
trolled for in the statistical test. Next and when applicable, estimate
the neutral population structure (either by principal components, a co-
variancematrix, or by estimating parameters on somemodel) on a quasi-
independent set of SNPs that has been thinned for LD.When applicable,
use this same subset of SNPs across all methods to control for population
structure in testing for selection across all sites in the data. When appli-
cable, also inspect P-value histograms and Q-Q plots to check assump-
tions, and calculate the genomic inflation factor (François et al. 2016).
Next, evaluate the sensitivity of your results to the decisions made in the
pipeline, such as filtering SNPs, imputing genotypes, phasing haplotypes,
etc. The effects of unequal sample size should also be evaluated to ensure
that they do not affect the results (McVean 2009).

Finally, datasets and pipelines that reproduce the results should be
required for publication, including widely used file formats (e.g., VCF)
that are produced after the process of filtering reads, mapping reads,
and calling variants. Only when easy-to-reproduce pipelines are pro-
vided will it be possible to re-analyze data if a weakness is identified in
one of the methods used in the pipeline.
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APPENDIX

Fitness component: competition.
Individuals that experienced more competition had a lower fitness component for competition. Competition for a single individual was

experienced as the sum of interactions with all other individuals, which declined with distance and increased with phenotypic similarity. Total
interaction strength (PCi) for any individual i at spatial location xi, yi equaled:

PCi ¼
XN

j¼1;i6¼j

exp
�
21

2

�
Xj 2Xi

�T
Σ21

�
Xj 2Xi

��
ffiffiffiffiffiffiffiffiffiffi
2p  Σ

p (2)

Where Xi = [ xi, yi, ri] of individual i, ri is the phenotype of individual i, Xj = [ xj, yj, rj] for individual j 6¼ i, and Σ was a 3 x 3 diagonal matrix
with equal variance sC and no covariances. Thus, sC described the spatial and phenotypic distance over which individuals interacted. The
competition fitness-component for individual i was estimated from PCi as an exponential decay (vCi = exp(0.0009�100�PC�(1-PC))), such that
individuals that had 0 total interaction strength had a relative fitness of 1 and individuals that had large interaction strengths (.�7) had a total
fitness of about 0. In this manner, local density dependence was implemented in the model and the maintenance of some genetic variation was
maintained within genetic neighborhoods (e.g., weak disruptive selection).

Fitness component: mate choice.
Individuals also experienced mate choice. The total interaction strength for mating for individual i (PMi) was also given by Equation 2, such that

individuals that were closer in space and phenotype had larger interaction strengths, with the exception thatΣwasmodeledwith a different variance
(sM). The mating fitness-component (vMi) was equal to PMi scaled to relative fitness for this component. Thus, assortative mating favored the
erosion of genetic variation (e.g., weak stabilizing selection) within local neighborhoods.
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