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ABSTRACT
Adenomyoepithelioma (AME) of the breast is a rare tumor that is composed of proliferating 
epithelial and myoepithelial cells. The pathogenesis of AME remains unclear, and no breast cancer 
cells have been identified in such tumor tissues. In this study, we established patient-derived 
breast cancer organoids from the surgical tumor samples of an elderly Chinese woman with an 
AME of the breast. Our findings confirmed the successful establishment of organoids from an AME 
of the breast of this patient. A short tandem repeat analysis revealed that the DNA signature of 
the AME of the breast organoids matched the DNA signature of the original tumor specimen. 
Moreover, diameter assay confirmed that the organoids from the breast AME showed sensitivity to 
paclitaxel and doxorubicin treatments, which was similar to, but lesser than that of primary culture 
cells. In conclusion, we established an efficient 3-dimensional breast cancer organoid culture 
platform from an AME of the breast. This platform can be effectively used for exploring clinico-
pathological and genomic characteristics of AME of the breast to identify possible treatments and 
increase awareness about this disease entity.
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Introduction

Adenomyoepithelioma (AME) of the breast is 
a rare tumor composed of benign or malignant 
epithelial and myoepithelial cells. In the 1970s, 
Hamperl introduced the concept of AME for the 
first time as a tumor consisting of ducts/lumen 
and myoepithelial cells [1]. In 2012, the World 
Health Organization defined AME as a tumor 
formed by the proliferation of myoepithelial cells 
surrounding the small lacunae overlying glandular 
epithelium [2]. Only few AMEs undergo malig-
nant transformation with local recurrences or dis-
tant metastases [3]. It is difficult to differentiate 
benign AME from malignant AME, which is char-
acterized by increased nuclear fission, cell hetero-
geneity, necrosis, coarse chromatin, cell-invasive 
growth, satellite foci, prominent nucleoli, and an 
increased mitotic rate [4–6].

Almost all prior studies on AME used clinical 
samples. Most of the AMEs possess gene-specific 
heterogeneity and display recurrent mutually exclu-
sive mutations of AKT serine/threonine kinase 1 

(AKT1) and phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA). Thus, 
PIK3CA and AKT1 may serve as effective therapeutic 
targets of AME in clinical settings [3]. Moreover, 
MYB gene rearrangements do not appear in AMEs, 
but they frequently appear in adenoid cystic carci-
noma [4]. However, the molecular characteristics of 
AME remain largely unknown owing to the lack of an 
ideal research model. Therefore, the establishment of 
a feasible and robust tool for further investigation on 
the pathogenesis of AME is warranted.

The concept of three-dimensional (3D) organoid 
culture has garnered immense attention recently. An 
organoid culture system includes bioengineered 
microenvironments that drive cells to self-organize 
into structures that mimic human tissues and organs 
from which they were derived [7,8]. Organoid cul-
tures have been established from various primary 
tumor tissues, including cervical [9], colorectal [10], 
lung [11], liver [12], gastrointestinal [13], prostate 
[14], bladder [15], and pancreatic [16] cancers. 
Human mammary epithelial organoids have been 
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established as a useful preclinical model because the 
histology, transcriptome, and genome of a breast can-
cer organoid typically matched the original tumor 
[17]. However, organoids derived from patients with 
an AME have not been reported so far.

Therefore, we thought the case of a 68-year-old 
Chinese woman with an AME of the breast can be 
constructed as organoids. This study attempted to 
establish an AME organoid system from original 
AME samples to study the drug targets and drug 
sensitivity of AME. Results showed that we estab-
lished an AME organoid model, and the organoids 
were found to be sensitive to the chemotherapy 
drugs paclitaxel and doxorubicin. To the best of 
our knowledge, this is the first time that AME 
patient-derived breast cancer organoids have 
been established.

Methods

AME sample collection

At the time of surgery, the AME tissue was collected 
from the patient with an AME of the breast. The AME 
sample was washed three times with precooled phos-
phate-buffered saline or saline to eliminate conges-
tion. Soybean-size tissues were obtained from the 
AME sample and put into cryopreservation tubes 
(Orgen biotechnology, Guangzhou, China) contain-
ing tissue protection liquid within 30 minutes and 
stored at −4°C temporarily. This experiment was 
approved by the committee of the Central Hospital 
of Shaoyang, and informed consent was obtained 
from the patient.

Immunohistochemistry assay

Briefly, the deparaffinized sections were incubated in 
citrate buffer solution (Nanjing Jiancheng Bioengin 
eering Institute, Nanjing, China) for antigen retrieval. 
Subsequently, 3% hydrogen peroxide ((Nanjing 
Jiancheng Bioengineering Institute) was used for 
blocking endogenous peroxidases. Slides were then 
incubated with primary antibodies at 4°C overnight, 
followed by incubation with secondary antibodies at 
37°C for 30 min. Finally, 3,3-diaminobenzidine was 
used for staining and hematoxylin was used for coun-
terstaining the nuclei. The primary antibodies were as 
follows: Vimentin Polyclonal Antibody (10,366-1-AP; 

Proteintech, Wuhan, China), Pan-Keratin monoclo-
nal mouse antibody (4545 T; Cell Signaling 
Technology, Danvers, MA, USA).

Organoids and tumor cell culture

Soybean-size tissues were cut into 1 mm3 pieces and 
washed with 3 mL Hanks’ balanced salt solution 
(HBSS) (14,025,092; Gibco, Grand Island, NY, USA) 
containing 1% penicillin/streptomycin (15,140,122, 
Gibco). The tissue pieces were then digested in 2 mL 
HBSS containing 1% penicillin/streptomycin and tis-
sue digestive fluid (Orgen biotechnology) in a 37°C 
water bath for 30 minutes. During this period, the 
digested tissue was shaken once every 5 minutes. 
Digested cells were passed through 100 µM cell filters 
to remove excess tissue. The collected cells were sus-
pended in 4 mL HBSS, followed by centrifugation at 
1200 rpm. The collected cells were then suspended in 
a precooled AdDF+++ medium (advanced DMEM/ 
F12 medium [12,634,010, Gibco] containing 10 mM 
HEPES [15,630,106, Invitrogen, Carlsbad, CA, USA], 
1 × GlutaMAX [35,050,079, Gibco], recombinant 
human R-Spondin-1 [7189–10, Biovision, Guang 
zhou, China], Noggin [HEOPP-1403, Cyagen, 
Guangzhou, China], EGF [RP-8661, Invitrogen], B27 
[17,504,001, Invitrogen], N-Acetylcysteine [HY- 
B0215, MedChemExpress, Shanghai, China], 
500 nM A83-01 [2939, APExBIO, Beijing, China], 
5 μM Y-27632 [B1293, APExBIO], and 1% penicil-
lin/streptomycin). Subsequently, 1 × 105 cells per well 
were seeded into a preheated 48-well plate. BD 
Matrigel™ basement membrane matrix (354,234, BD 
Biosciences, San Jose, CA, USA) was thawed on ice. 
A mixture of 25 µL Matrigel and 25 µL cell suspension 
was seeded into a 96-well plate, which was incubated 
at 37°C in a humid environment with 5% CO2 for 
30 minutes. Subsequently, 100 µL AdDF+++ was 
added to each well. The medium was changed every 
2 days.

Short tandem repeat identification

Short tandem repeat (STR) identification was con-
ducted by Cellcook Biotech Co., Ltd (Cellcook, 
Guangzhou, China). The genomic DNA of original 
AME samples and organoids was isolated using 
a DNA isolation kit (TianGen Biotech, Beijing, 
China). Subsequently, the genomic DNA was 
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dissolved in sterile deionized water, and 1 ng of the 
DNA was used for each polymerase chain reaction 
(PCR). The reagents for PCR included DNA template, 
2× PCR buffer, 1.5 mM MgCl2, 0.4 mM each dNTP, 
0.1 mM STR site primers, and 0.25 UmL−1 Taq DNA 
polymerase, and water. The total reaction volume was 
50 μL. The PCR products were used to perform 
capillary electrophoresis. Results were analyzed using 
the ‘Gene Marker’ software.

Drug sensitivity test

Primary AME-derived tumor cells were seeded 
into a 96-well plate at a concentration of 1 × 104 

cells/well. The following day, the cells were 
exposed to different doses of paclitaxel or doxor-
ubicin for 48 h, which time was selected following 
with previous study [18,19]. Subsequently, we 
added Cell Counting Kit-8 (CCK-8) solutions 
(10 μL) (HY-K0301, MedChemExpress) to each 
well and incubated the plate for 2–4 h at 37°C. 
We determined absorbance values at 450 nm using 
an automated microplate reader (Multiskan FC, 
Thermo Fisher, Waltham, MA, USA).

When the diameter of AME organoids was 
approximately 50 μM, they were exposed to different 
concentrations of paclitaxel or doxorubicin for 48 h. 
The morphology and size of the AME organoids 
were then observed using an optical microscope.

Statistical analysis

Statistical analyses were conducted using GraphPad 
Prism software (8.0; La Jolla, CA, USA). All experi-
ments were repeated thrice and the data in this study 
are presented as mean ± standard deviation. 
Differences between groups were compared using 
one-way ANOVA and analyzed using SPASS 18.0 
(SPASS, Chicago, IL, USA), followed by Duncan’s 
post hoc test. P-values of <0.05 were considered sta-
tistically significant.

Results

We encountered a patient with AME of the breast, 
which is rarely observed in clinical settings. To 
establish an AME research model, we created 
AME organoids. STR identification was used to 
compare the DNA of the organoids and the 

original tissues to check for similarity between 
the DNA signatures of the two. The chemosensi-
tivity of AME organoids was investigated using the 
chemotherapeutic drugs paclitaxel and adriamy-
cin. The results showed that we established an 
efficient 3D breast cancer organoid culture plat-
form from an AME of the breast. This platform 
can be effectively used for exploring clinicopatho-
logical and genomic characteristics of AME of the 
breast to identify possible treatments and increase 
awareness about this disease entity.

Case report

A 68-year-old Chinese woman was admitted owing 
to a 10-cm mass in her left breast. Three years prior, 
a soybean-size mass was initially discovered without 
tenderness, nipple overflow, surface skin redness, 
swelling, elevated local skin temperature, fever or 
chills, low heat night sweats, chest pain and tight-
ness, or nausea and vomiting. The lesion grew 
rapidly within 1 month. Physical examination 
revealed a palpable painless mass in the left breast, 
which was approximately 10 cm in diameter.

Pathological examination affirmed the diagnosis 
of a malignant AME of the breast. Findings of hema-
toxylin and eosin staining revealed the presence of 
myoepithelial spindle cell type (Figure 1b), and 
immunohistochemistry results showed the expres-
sion of the epithelial cell marker keratin and the 
mesenchymal cell marker vimentin (Figure 1c).

Establishing AME patient-derived organoids

To establish AME patient-derived organoids, the 
specimen was collected from the patient. We 
obtained 1-mm3 pieces from the AME sample 
and digested these using 2 mg/mL collagenase 
and 1.2 U/mL dispase II (Figure 2a). We obtained 
tumor cells from the samples for culturing them 
under two-dimensional (2D) and 3D culture sys-
tems (Figure 2b). The tumor cells were spindle- 
shaped in a 2D cell culture system (Figure 2b). The 
organoids were cultured well in a 3D-culture sys-
tem, and we kept a record of the culturing process 
when the organoids were cultured for 1, 3, and 
7 days (Figure 2b). The diameter of organoids was 
approximately 20, 40, and 80 μm when they were 
cultured for 1, 3, and 7 days, respectively 
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(Figure 2b). The organoids filled up the cultivation 
space after they were cultured for 10 days.

STR profiling of AME organoids revealed a match 
with the original tissue

To confirm that the tissues and organoids were of 
the same origin, STR profiling was performed. Our 

analysis revealed that the STR profiles showed 
a 100% match between the AME organoids and 
the original tissue (Figure 3a). The 21 identified 
loci were D3S1358, vWA, D7S820, CSF1P0, Penta 
E, D8S1179, D21S11, D16S539, D2S1338, Penta D, 
D19S433, TH01, D13S317, TPOX, D18S51, 
D6S1043, AMWL, D1S1656, D5S818, and FGA 
(Figure 3b).

Figure 1. Representative images of postoperative samples from a 68-year-old Chinese woman with an adenomyoepithe-
lioma (AME). (a) An image of AME tissues. (b) A typical image of hematoxylin and eosin-stained postoperative tissues. Scale 
bar = 100 μm. (c) Immunohistochemistry assay for keratin and vimentin expressions. Scale bar = 100 μm.

Figure 2. Images representing the process of culturing organoids from an adenomyoepithelioma (AME) of a patient. (a) The 
AME tumor sample was cut into 1-mm3 pieces and digested with 2 mg/mL collagenase. The tumor cells were then cultured under 
2D and 3D culture systems. (b) The morphology of the cultured tumor cells and organoids at days 1, 3, and 7, as observed under 
a microscope. The diameter of the organoids was measured at days 1, 3, and 7. Data are presented as mean ± standard deviation. 
n = 3, *p < 0.05, ***p < 0.001.

BIOENGINEERED 11581



Sensitivity of AME organoids to 
chemotherapeutic drugs

To determine the sensitivity of AME organoids to 
chemotherapeutic drugs, the organoids were treated 
with paclitaxel and doxorubicin, which are antican-
cer drugs that have been widely used in the treatment 
of breast, ovarian, some head and neck, and lung 
cancers [20–22]. CCK-8 assay confirmed that pacli-
taxel and doxorubicin treatments significantly 
decreased the viability of primary AME tumor cells 
cultured in a 2D cell culture system (Figure 4a). 
Treatment with 100 nM paclitaxel had no obvious 
effect on the diameter of AME organoids. However, 
the diameter of AME organoids reduced remarkably 
after treatment with 500 nM and 1000 nM paclitaxel 
(Figure 4b). Doxorubicin significantly inhibited the 
growth of organoids at 500 nM, 1000 nM, and 
5000 nM. The above results revealed that both pri-
mary AME tumor cells and organoids were sensitive 
to paclitaxel and doxorubicin treatments. However, 
AME of the breast organoids is less sensitive to 
paclitaxel than primary culture cells.

Discussion

AME of the breast is rare and is found in only 1.0% of 
the cases of breast cancers [23]. However, a small 

number of AMEs undergo malignant transformation, 
which may recur locally and have a metastasis rate of 
30%–40%, albeit the benign nature of AMEs [24]. 
AMEs occur more commonly in postmenopausal 
women [25]. As AMEs are rare, it is impending and 
necessary to establish biologically and clinically rele-
vant models that will be of significant help in finding 
effective drugs to improve the therapeutic outcomes. 
In the present study, an elderly woman was admitted 
because of a > 10-cm mass in her left breast, which 
grew quickly within 1 month.

A 3D culture system, a novel model system that 
mimics the rich in vivo microenvironment and com-
plex processes in which cells grow, is superior to the 
traditional 2D cell culture system, which has been 
extensively used in previous studies [26–28]. Thus, 
a 3D culture system offers great promise for the pre-
clinical evaluation of drug efficacy and associated 
risks. To date, several types of 3D culture systems 
have been established, not only from single cell-type 
static 3D culture systems to cell coculture 3D culture 
systems but also from simple spheroids to organs-on- 
chips [29–31]. At present, some organ models, includ-
ing the gut or blood–brain barrier, lung, liver, and 
kidney, have been established to investigate drug phar-
macology [11,32–34]. However, there are still no 
reports of organoids derived from patients with 
AME that have been established for nonclinical 

Figure 3. Short Tandem Repeat (STR) profiles of the adenomyoepithelioma (AME) organoids and the original AME tissue. 
The STR profiles revealed a 100% match between the two.
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testing. In the present study, we successfully estab-
lished an AME organoid culture system from original 
tumor samples. The STR profiles showed a 100% 
match between the AME organoids and the original 
tissue. In addition, our analysis revealed that both 
primary AME tumor cells and organoids were sensi-
tive to paclitaxel and doxorubicin treatments. 
However, more study need to confirm the genetic 
signature of organoid compared to tumor from the 
frozen sample using mRNA transcriptome 
sequencing.

Compared with a 2D cell culture system, such 
as Wang’s and Yao’s researches used [35,36], 
a 3D organoid culture system mimics the 
in situ tissue more closely. Thus, tumor-derived 

organoids from AME of the breast are 
a promising model for the clinical assessment 
of treatment regimens, evaluation of new drugs, 
and research on drug targets. However, orga-
noids are cultured in vitro, thereby lacking 
immune responses, hypoxia, and vascular micro-
circulation, which are present in in vivo condi-
tions. Therefore, it is necessary to establish 
organoids and organoid chip models that can 
more simulate the in vivo environment more 
accurately. In future, we aim to coculture AME 
organoids with immune cells and vascular 
endothelial cells to establish a model that can 
simulate the in vivo environment more 
accurately.

Figure 4. Sensitivity of primary adenomyoepithelioma (AME) tumor cells and AME organoids to chemotherapeutic drugs. 
(a) A representative image showing the viability of primary AME tumor cells, derived from an AME of the left breast of a Chinese 
woman, after paclitaxel and doxorubicin treatments, which was confirmed using Cell Counting Kit-8 assay. (b) A representative 
image of organoids treated with paclitaxel and doxorubicin. The diameter of organoids after paclitaxel treatment was measured. 
Data are presented as mean ± standard deviation. n = 3, *p < 0.05, **p < 0.01.
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Conclusion

An AME organoid model was established from an 
AME of the breast discovered in a 68-year-old 
Chinese woman. AME organoids can be effectively 
used for exploring clinicopathological and geno-
mic characteristics of patients with AME.

Highlights

(1) DNA signature of the AME of the breast orga-
noids matched the original tumor specimen.

(2) AME can be used to establish cancer orga-
noid models.

(3) AME organoids were sensitive to the che-
motherapy drugs paclitaxel and doxorubicin.
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