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Abstract: Large scale simulations of polymer flow through porous media provide an important
tool for solving problems in enhanced oil recovery, polymer processing and biological applications.
In order to include the effects of a wide range of velocity and density fluctuations, we base our
work on a coarse-grain particle-based model consisting of polymers following Brownian dynamics
coupled to a background fluid flow through momentum conserving interactions. The polymers are
represented as Finitely Extensible Non-Linear Elastic (FENE) dumbbells with interactions including
slowly decaying transient forces to properly describe dynamic effects of the eliminated degrees of
freedom. Model porous media are constructed from arrays of parallel solid beams with circular
or square cross-sections, arranged periodically in the plane perpendicular to their axis. No-slip
boundary conditions at the solid–fluid interfaces are imposed through interactions with artificial
particles embedded within the solid part of the system. We compare the results of our simulations
with those of standard Smoothed Particle Hydrodynamics simulations for Newtonian flow through
the same porous media. We observe that in all cases the concentration of polymers at steady state is
not uniform even though we start the simulations with a uniform polymer concentration, which is
indicative of shear-induced cross-flow migration. Furthermore, we see the characteristic flattening of
the velocity profile experimentally observed for shear-thinning polymer solutions flowing through
channels as opposed to the parabolic Poiseuille flow profile for Newtonian fluids.

Keywords: Hydrodynamically Coupled Brownian Dynamics; non-Newtonian flow through porous
media; polymer flooding; viscoelasticity; shear-thinning polymers; coarse-graining; large scale
simulations of polymer solutions

1. Introduction

We present large scale Brownian dynamics simulations of polymer solutions flowing
through complex geometries, with hydrodynamic interactions mediated through explicit
solvent. Simulations like these provide an important research tool for various applications.

Polymer flooding for Enhanced Oil Recovery (EOR) is one such application where
large scale simulations of polymer solutions through porous media are very important.
To understand the need for polymer flooding, it is important to understand the different
stages of oil recovery from an oil reservoir. The first stage of oil recovery, known as
primary recovery, typically involves the digging of production wells, through which the oil
naturally comes out of the reservoir due to the high pressure of the oil in the reservoir and
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simultaneous rock decompression. This results in the recovery of 5–25% of the Oil Originally
In Place (OOIP) depending on the type of oil reservoir. Light oils typically respond well to
primary recovery whereas heavy oils and particularly tar sands respond very poorly [1].
The second stage, known as secondary recovery, involves drilling additional wells known
as injection wells, through which a displacing fluid such as water or steam is pumped into
the reservoir to drive the oil out, which leads to an additional recovery of 5–30% of OOIP
depending on the type of oil reservoir. Thus, the most conservative estimate of the oil still
remaining in the reservoir after primary and secondary recovery is at least 45% of OOIP
and practically in many cases significantly more than 50% of OOIP up to almost 70% of
OOIP in some cases [2]. This illustrates the need for a tertiary stage of oil recovery, which is
typically done using Enhanced Oil Recovery (EOR) operations such as polymer flooding.
The primary reasons for why part of the oil is left behind, even after the second stage, are
either that the oil is trapped in the reservoir due to capillary forces or that the displacing
fluid is bypassing the oil due to differences in mobility between the two fluids [3,4]. Thus,
to recover more oil, one must increase the capillary number and/or reduce the mobility
ratio. The addition of polymers to a displacing fluid such as water is thus a well known way
to increase its viscosity, which increases the capillary number and diminishes the mobility
difference between the displacing fluid and the oil. Furthermore, it also imparts elasticity
to the displacing fluid, which leads to further enhancement of the oil recovery. It is this
visco-elasticity acquired by the displacing fluid by addition of the polymers that we wish
to capture with our model.

Besides its relevance for oil recovery, flow of polymer solutions and polymer gels in
complex geometries is interesting in its own right [5]. The interplay between external and
internal time and length scales gives rise to phenomena such as cross-flow migration, shear
banding [6,7], elastic instabilities and elastic turbulence [8], which are not accessible with
small scale simulations in simple geometries. In order to identify the relative importance
of shearing and compressing motions, flow through model geometries such as packed
beds, periodic arrays of cylinders, and microfluidic devices with pore throats have been
investigated [2,9–16].

Traditionally, theoretical work mainly concentrates on constitutive modeling. Early
work on polymer systems has been summarized in the books of Doi and Edwards [17]
and Graessley [18]. For shear banding, see the review by Olmsted [19], and more recent
work by Peterson et al. [20] and references therein. Constitutive models have been used to
simulate flow of polymer solutions through porous media by means of finite-element or
finite-volume methods [21–25]. These simulations suffer from several problems that are
difficult to bypass. Firstly, instabilities usually must be investigated through a perturbative
stability analysis on top of some homogeneous flow, or must be imposed in the flow.
Secondly, models and calculations become rather involved when concentration gradients
are needed to explain the experimental findings. Thirdly, numerical grids become rather
dense near sharp elements in the boundaries of the system, leading to a significant increase
in the computational effort. The first two of these problems do not occur with particle
based simulations, since they automatically include fluctuations of flow gradients and
stresses and naturally allow for concentration gradients. Furthermore, problems near
sharp boundaries are less prominent with particle based simulations than with constitutive
field modeling. However, explicitly simulating particles severely enhances computational
efforts and therefore coarse-graining is essential to enable application to systems with large
time and length scales. As a result, the models to be used must be highly coarse grained,
representing individual polymers by as few degrees of freedom as possible. Of course,
computationally cheaper methods exist to bypass some of the problems mentioned above,
of which Lattice–Boltzmann simulations are the most prominent [26,27]. This method is
designed to properly include Newtonian hydrodynamics, but it is in general very difficult
to include non-Newtonian effects into the model without resorting to constitutive equations
such as a power law or the Carreau model [28]. We therefore opt for a particle based model,
where it is easily possible to incorporate non-Newtonian effects into a self-developing
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flow arising directly out of molecular interactions. To motivate the particular model that
we have chosen to simulate, we quickly review some of the history of coarse grained
polymer models.

The science of eliminating ‘irrelevant’ degrees of freedom from particle based sim-
ulations is called coarse graining. As a simple example, we mention the use of united
atoms to simulate –CH, –CH2 and –CH3 groups as (different) single particles in early
molecular dynamics simulations. In an effort to simulate properties of realistic, as opposed
to generic, polymer systems, united atom coarse graining was extended to larger units such
as aromatic and even larger groups [29,30]. For applications in biophysical systems a highly
successful course grain force field has been developed called MARTINI [31,32]. Around
the same time, it was realized that lumping together even larger, flexible groups of atoms
would ask for stochastic simulation methods [33], and in particular for non-Markovian
stochastic simulations [34]. The latter field has developed quickly and has been reviewed
recently by Klippenstein et al. [35]. On the more generic side of models capturing the
chain character of polymers but leaving out chemical information, we mention the ground-
breaking Kremer–Grest molecular dynamics model, [36] the blob model of Padding and
Briels [37,38] and the slip-link model of Masubuchi et al. [39,40].

All particle based models mentioned so far are too detailed to serve our purpose
of performing large scale simulations of flow through large channels. We will have to
resort to models in which every polymer is represented by one or two particles or blobs.
Representing large but rather low density structures, such particles will severely overlap,
resulting in every polymer having many neighbors within its radius of gyration. With the
correct potential of mean force, i.e., the free energy of all eliminated degrees of freedom
for the given configuration of the coarse degrees of freedom, the thermodynamics of such
systems can still be simulated with great accuracy, provided the potential of mean force
at hand can be represented in a tractable way. The dynamics of such particles, however,
will not be captured with any accuracy at all. The reason for this is that the eliminated
degrees of freedom in an all-atom simulation, as a result of the high degree of entanglement
of the overlapping particles, would have given rise to a bunch of slow modes on a wide
range of time and length scales, which we generically call disentangling. Tube models and
corresponding disengagements as presented in the book of Doi and Edwards [17] describe
the ‘microscopic’ dynamics of the degrees of freedom that we have eliminated. They slow
down the dynamics of the coarse degrees of freedom much more than can possibly be
described by the potential of mean force. We must therefore explicitly re-introduce the
effects of disentangling processes by hand. We accomplish this using the responsive particle
dynamics model (RaPiD) of van den Noort et al. [41] through the introduction of structural
degrees of freedom with every pair of polymers, whose deviation from equilibrium gives
rise to transient forces [41,42] acting on the particles. From the point of view of dynamics,
these forces impose non-Markovian friction and random forces on the particles. In other
words, they essentially provide memory to the forces that act on the particles. In order to
include elastic forces, we represent every polymer by a dumbbell molecule containing two
blobs connected by a Finitely Extensible Non-linear Elastic (FENE) spring [43].

A second aspect that is absent in most coarse grain polymer models but is important
in the flow of low density polymer solutions is the possibility of hydrodynamic interactions.
This is the transport of momentum resulting from movements of one polymer mediated
through the solvent and imparted to another polymer. In this paper, we include the
presence of the solvent through the simulation of explicit fluid blobs as in Smoothed Particle
Hydrodynamics (SPH) [44]. In order to guarantee correct hydrodynamic behavior, we
must couple the polymer and fluid blobs in such a way that local momentum conservation
applies. For this reason, we use our recently published two-way coupling technique
‘Hydrodynamically Coupled Brownian Dynamics’ (HCBD) described in Ahuja et al. [45].
For applying the no-slip condition, we use artificial particles embedded within the solid
beams as we have done in our previous work [46]. From preliminary simulations with



Polymers 2022, 14, 1422 4 of 24

this model we have found that it exhibits cross-flow migration under shear as well as
characteristic flattening of the Poiseuille flow profile observed for polymer solutions.

Thus, in this paper, we give a proof of principle that our Hydrodynamically Coupled
Brownian Dynamics (HCBD) model can be used to perform large scale simulations of
polymer solution flow through channels with sharp boundary elements, with only limited
computational effort. To this end, we study the flow of such systems through model porous
media, which are constructed using periodic arrays of solid beams arranged on a square
grid, the plane of which is perpendicular to the axes of the beams. We study the flow of
our model polymer solution across two different types of beams—one with circular cross-
sections which we call cylindrical beams and another one having square cross-sections
which we call cuboidal beams to simulate both the curved and sharp interfaces found in
naturally occurring porous media. Furthermore, we study two extreme angles of attack—
one parallel to one of the Cartesian directions of the plane of the square grid of beams and
another at an equal angle (45°) from either Cartesian directions of the same plane. Thus, we
study four different cases—two model porous media geometries and two flow directions.
We also compare the results with the flow of pure Newtonian solvent, which we have
simulated using standard SPH simulations.

Before embarking on a description of our model, we cite some other work in this
field [47], as well as bring some journals to the attention of the readers that are less well
known in the traditional polymer physics community [48–52].

2. Method

In this section, we present the equations of motion of all particles present in our
simulation boxes. These encompass the blobs that constitute a polymer, and those that
make up the SPH based solvent.

2.1. Equation of Motion for the Polymer Blobs

The position ra, shorthand for ra(t), of the center-of-mass of any given blob (or lobe) a
at time t is updated according to:

dra = v(ra)dt +
(

Fa

ξa

)
dt + kBT

∂

∂ra

(
1
ξa

)
dt + dWr

a. (1)

Here, dt is the time-step, dra = ra(t + dt)− ra(t), and Fa = Fa(t) is the driving force acting
on blob a as a result of the interaction with other such blobs, in addition to any force field
that may have been applied. ξa = ξ(ra(t)) is the friction coefficient at the position of poly-
mer blob a. The third term on the right hand side of Equation (1) is a drift term accounting
for the spatial variation of the friction coefficient, needed to guarantee the correct canonical
equilibrium distribution in the quiescent state. For the sake of simplicity, we have assumed
a constant friction coefficient, thereby rendering the third term equal to zero. The last
term on the right hand side of Equation (1), i.e., dWr

a = dWr
a(t), is a random displacement

typical of Brownian dynamics simulations. This random displacement is uncorrelated in
time and has a magnitude that is calculated in accordance with the fluctuation dissipation
theorem, satisfying:

〈dWr
adWr

b〉 = 2kBT
(

dt
ξa

)
δabI. (2)

Hereafter in this paper, we will not include the t in our notation, tacitly assuming that it
is implicitly present. Furthermore, v(ra) in Equation (1) is the background fluid velocity
at the position of blob a. It is calculated as an interpolation of the velocities vi of the fluid
blobs in the vicinity of ra using an appropriately normalized weight function w f (r) as
shown below:

v(ra) =

N f

∑
i=1

w f (rai)

n f
i

vi, (3)
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where i runs over the N f fluid blobs, and n f
i is the local number density of fluid blobs

calculated as ∑
N f
j=1 w f (rij).

Based on the RaPiD polymer model for FENE dumbells, the force Fa can be expressed
as a sum of three terms as shown below:

Fa = −
∂

∂ra

[
Φc + Φt + Φ f

]
, (4)

where Φc is the so-called ’conservative’ potential, Φt is the so-called ’transient’ potential
and Φ f is the FENE potential, all of which shall be defined and described in Section 3.

2.2. Equation of Motion for the Fluid Blobs

Consider a fluid blob i naturally moving with the background flow field at its position
of its center-of-mass. The position of its center-of-mass is thus updated using:

dri = vidt. (5)

For calculating the flow field, we discretize the Navier–Stokes equation as in SPH and
introduce an additional term coupling the fluid motion to the polymer motion as part of
the HCBD two-way coupling technique [45]. Thus, we arrive at the following equation that
we have used in our simulations to update the velocities of any given fluid blob i:

dvi = − dt
m

 N f

∑
j=1

 Pi

(n f
i )

2
+

Pj

(n f
j )

2

dw f

dr
(rij)

rij

rij
+

N f

∑
j=1

fijvij

+ gidt

+
dt
m

[
Nb

∑
a=1

w f (rai)

n f
i

Fa

]
+

N f

∑
j=1

dWv
ij, (6)

where m is the mass of the fluid blob i, N f is the number of fluid blobs, Pi is the pressure at

the position of the fluid blob i and n f
i is the local number density of fluid blobs. fij = f (rij),

is a symmetric function defined as follows:

f (rij) =

 −
(

2η

n f
i n f

j

)
1
rij

dw f

dr (rij) for rij ≤ Rc

0 for rij ≥ Rc,
(7)

with η being the solvent viscosity. Moreover, vij is the velocity of fluid blob i relative to that
of j and gi is the acceleration due to body forces. The pairwise velocity fluctuation terms are
uncorrelated in time and anti-symmetric manner, in the sense that dWv

ij = −dWv
ji, in order

to conserve momentum. The exact properties of the momentum fluctuations are taken in
such a way that the steady state probability distribution of the positions and velocities of
the fluid in a quiescent state yields the expected canonical equilibrium distribution. Thus,
we have: 〈

dWv
ijdWv

ij

〉
=

(
2kBT

m

)(
dt
m

)
fijI, (8)〈

dWv
ikdWv

jl

〉
= 0 (ik 6= jl ∧ ik 6= l j). (9)

For details of the derivation, see our previous work on these matters [45,53].
The third term in Equation (6) provides the coupling of the fluid motion to that of the

polymer. Here, Nb is the number of polymer blobs (which is twice the number of polymers
Np as each polymer is represented by two blobs). In order to have correct hydrodynamic
behavior, it is important that the coupling between the polymer and the fluid motion locally
conserves momentum. For a proof of this fact, we refer to our previous work [45].
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In cases of appreciable flow-rates at the current scale of the simulation, the random
contributions to the fluid forces may be neglected, as we do in this paper. However,
with low velocities and for simulations at smaller scales, one must add the additional
fluctuation terms as mentioned in the equation.

2.3. Solutions of the Equations of Motion

The first order Brownian dynamics equations for the positions of the polymers were
updated according to a first order Euler equation for the systematic forces, i.e., literally as
given in Equation (1), with the random contribution calculated as follows:

dWr
a =

√
2kBT

ξ
∆t

Gx
Gy
Gz

, (10)

where ∆t is the time-step and Gα are Gaussian random numbers with mean zero and unit
variance, i.e., with < Gα >= 0 and < GαGβ >= δα,β.

The second order dynamics equations for the motion of the fluid blobs were integrated
with the leap-frog algorithm for the conservative forces and frictional forces augmented
with random contributions to velocity and positions of the fluid blobs being calculated
as follows

dWv
ij =

√
2kBT fij∆t

m
Gij

(
rij

rij

)
, (11)

drran
i =

N f

∑
j=1

dWv
ijdt (12)

in that order. Here, it is understood that Gij = Gji and for the rest, these random numbers
have the same properties as the Gaussian random numbers defined earlier as Gα.

3. Force Fields

In this section, we define the potentials from which the forces on the polymers are
derived and the equation of state that enters as a force in the equations of motion of the
fluid blobs.

3.1. The Conservative Potentials

There are two force fields from which conservative forces are derived, i.e., Φc and
Φ f . As already mentioned in the Introduction, the interaction potential between coarse
grain polymers is actually the free energy of all eliminated degrees of freedom for the
given configuration of the coarse degrees of freedom. In order to define Φc we treat the
polymer as a single entity and calculate everything needed from the center-of-mass of the
polymer instead of the two beads or lobes of the polymer dumbbell. We have used the
Flory–Huggins potential, which has been introduced before for simulations of polymer
solutions [45,54–56], and which is defined as follows:

Φc = pkBT
Np

∑
a=1

[(
1− φa

φa

)
ln(1− φa)− χφa

]
. (13)

Here, Np is the total number of polymers in the solution, p is the number of Kuhn segments
per polymer, χ is the solvent interaction parameter and φa is the local volume fraction of
polymer blobs in the neighborhood of polymer blob a at time t calculated as:

φa =
np

a

np
max

. (14)
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In this equation, np
max is the maximum number density of polymers that the system is

allowed to reach, i.e., the melt density, and np
a is the local number density at the position of

the center-of-mass of polymer blob a calculated as:

np
a =

Np

∑
b=1

wp(rab), (15)

where rab is the distance between the centers-of-mass of polymers a and b at time t and
wp(r) is a normalized weight function with a cut-off rc. The superscript p in wp(r) indicates
that this is the weight function used for the polymer blobs.

The interaction between two blobs within one polymer is described by the FENE
potential Φ f describing a finitely extensible nonlinear elastic spring, which is given by:

Φ f = −
1
2

kr2
0

Np

∑
a=1

ln

[
1−

(
ra

r0

)2
]

, (16)

where ra is the separation between the two lobes of the polymer dumbbell a, k is the spring
constant, and r0 is the maximum allowed deformation of the spring.

3.2. The Transient Potential

We have used the transient potential of the RaPiD model [41,42] to incorporate mem-
ory effects into the simulation model. This potential, which essentially takes into account
the history of the interacting polymer blobs by keeping track of additional dynamic vari-
ables [57], is given by:

Φt =
1
2

α
Nb

∑
a,b=1

(
λab − λ

eq
ab

)2
. (17)

Φt the transient potential, α is a parameter associated with the strength of the interactions
or in other words the penalty for the deviation of the dynamic variable λab = λab(t) from its
equilibrium value λ

eq
ab, shorthand for λeq(rab). We use here the following form for λeq(rab)

that has been used earlier in the literature [54–56]:

λeq(rab) =

{ (
1− rab

rc

)2
for rab ≤ rc

0 for rab ≥ rc.
(18)

The variable λab is a dimensionless variable representing the degree of intermixing of the
polymers a and b, which evolves over time according to the following first order stochastic
differential equation:

dλab = −(λab − λ
eq
ab)

dt
τ

+ dWλ
ab, (19)

where τ is the relaxation time and Wλ
ab is a Wiener process with time-uncorrelated incre-

ments satisfying:

〈dWλ
abdWλ

ab〉 =
(

2kBT
α

)(
dt
τ

)
I. (20)

In a non-flowing system, λab will harmonically fluctuate around its equilibrium value.

3.3. The Equation of State

For the pressure, acting as a force in the dynamical updates of the velocities of the
fluid blobs, we use the commonly used pseudo-incompressible equation of state [58,59]
given by:

Pi = P0

(n f
i

n̄ f

)7

− 1

, (21)
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where P0 is chosen such that the velocity of sound in the simulation is sufficiently large
in order that the density fluctuations are sufficiently small, which results in a fluid that
resembles an incompressible fluid.

4. Interaction of the Fluid with the Solid

For the correct solid–fluid interaction, there are two important conditions that need
to be met—no penetration of fluid into the solid and a no-slip boundary condition at the
solid–fluid interface. For this purpose, we explicitly embed artificial particles uniformly
distributed in the solid regions with the same density as the real fluid blobs as in our
previous work [46]. These artificial particles interact with the real fluid blobs in a couple
of ways. Firstly, they contribute to the density of the fluid blobs in their vicinity and
consequently the pressure as well. Furthermore, the density and pressure is also calculated
for the artificial particles in the vicinity of the real fluid blobs. This ensures that the
pressure inside the solid is sufficient to prevent the fluid from entering the solid. Secondly,
for ensuring the no-slip boundary condition at the surface of the solid, we apply the Morris
boundary conditions [60], which is applicable for plane as well as curved boundaries. We
also use these artificial particles to calculate densities in the Flory–Huggins potential for the
polymers, albeit with a higher weight. The weight assigned to artificial particles is higher
than regular polymer blobs by a ratio of the density of the polymers to the density of the
artificial particles. This is to compensate for the difference in the density of these artificial
particles and the polymers. This ensures that polymers do not artificially accumulate near
the solid interface owing to lower concentration in a hypothetical sphere drawn around the
center of these polymer blobs at the interface. Moreover, if still any polymer blob enters the
solid due to a random displacement, we explicitly forbid that move, thereby preventing
the polymer blob from entering the solid due to a random displacement.

5. Weights and System Parameters

For the polymer blobs, we have used a normalized weight function that has been used
earlier in the literature, where the polymer model RaPiD has been employed [45,54–56]. It
given by wp(r):

wp(r) =


15

2π(r5
c−σ5)

(rc − σ)(rc + σ− 2r) for r ≤ σ

15
2π(r5

c−σ5)
(r− rc)2 for σ ≤ r ≤ rc

0 for r ≥ rc,

(22)

where the cut-off rc is chosen as 2.5σ.
For the fluid blobs, we have chosen the normalized M4 kernel commonly used in

SPH [44] as the weight function. It is given by w f (r):

w f (r) =


1

4πh3

[
(2− r

h )
3 − 4(1− r

h )
3] for r ≤ h

1
4πh3 (2− r

h )
3 for h ≤ r ≤ 2h

0 for r ≥ 2h,

(23)

where h is what is commonly referred to as the support of the weight function, which we
have chosen as h = 2σ for our simulations such that the cutoff radius Rc = 2h for the fluid
blobs is larger than the cut-off radius rc = 2.5σ chosen for the polymer blobs. This is done
intentionally because the weight function w f (r) must be able to accurately estimate the
second order derivatives occurring in the equation of motion for the fluid blobs. Following
the same logic, it immediately follows that for the polymer–fluid interactions, as we do
not need to calculate any gradients, we can use the weight function wp(r) with a smaller
cut-off rc instead of w f (r) with a larger cut-off Rc for computational efficiency. Moreover,
we must emphasize that we have chosen the resolution for the fluid n̄ f such that there are
on average 8 particles within a sphere of radius h so that there are about 64 neighbouring
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fluid blobs on average, which is sufficiently higher than the minimum required number for
this weight function for 3-D SPH simulations [61]. The values of the system parameters
have been summarized in Table 1.

Table 1. Summary of system parameters.

System Parameter Symbol Value Unit

Solute length scale σ 5.0 µm
Friction coefficient ξ 1.0 × 10−7 kg/s
Number of Kuhn segments p 300,000 -
Concentration of polymers C 2.5 C*
Maximum number density of polymers np

max 1.0 × 104 C*
Number of polymers Np 33,062 -
Flory Huggins interaction parameter χ 0.5 -
Strength of polymer interactions α 500 kBT
Relaxation time τ 1.0 s
Spring constant k 50 kBT/σ2

Solvent length scale h 10.0 µm
Resolution of fluid n̄ f 1.9099 particles/h3

Number of fluid blobs N f 13,228 -
Density of fluid ρ 1000 kg/m3

Viscosity of fluid η 1.0 mPa·s
Pressure coefficient P0 0.13 Pa

Time step dt 10.0 µs
Temperature T 300 K

It is pertinent to note that the relative resolution between the polymer and the fluid,
lets call it R = σ/h, which we have chosen as 1/2 for the work presented in this paper,
is actually a very important parameter. In principle, one should choose a high enough
value for the relative resolution R in order to accurately mimic the draining of the solvent
through the polymers. Nevertheless, in practice, if one chooses a very large value for R,
a direct consequence would be that the fluid blobs have a really small mass and hence a
much smaller time-step would be required, which would drastically affect the efficiency
of the method. Furthermore, in case of studying flow through a particular geometry,
naturally a much larger number of fluid blobs would be required if the same length scale
of the geometry is to be studied with smaller blobs. Thus, a very high resolution leads to
computational problems. On the other hand, if the value is chosen to be too small, then
there would be a large number of polymers per fluid blob. This leads to a conceptual
problem because then one would have to capture the fluid flow field gradient within each
fluid blob and transmit it to the polymers within the blob, which will need a modification of
the equation of motion for the polymers adding an extra term accounting for the gradient
of the fluid flow field within the fluid blob. Thus, we have chosen the sizes of the polymer
blobs not very different from that of the fluid blobs.

The physical properties of the fluid, i.e., the density and viscosity, have been chosen to
be consistent with those of water. The value of P0 has been chosen high enough to ensure
small density fluctuations and a large enough velocity of sound cs in the simulation, which
can be calculated as:

cs =

√
∂P
∂ρ

=

√
7P0

ρ
. (24)

We have ensured that the velocities that we encounter in the simulations performed in
this study are much smaller than this velocity of sound in our simulation. For the flow
through a cylindrical porous medium in the diagonal direction, a ten times higher value of
P0 than mentioned in Table 1 has been selected to ensure that the fluid does not break apart
downstream of the cylindrical beam, which was found to occur at lower P0 values.
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The solute particles can be thought of as very large polymers or micro-gel particles
with a radius of 5 µm and a relaxation time of 1 s. These may even qualify as small
clusters of polymers as may occur when poly-electrolytes like the ones used in enhanced
oil recovery, at particular salt concentrations and pH conditions, form salt-bridges among
each other.

6. Results and Discussion

In this section, we present the results of flow simulations of polymer solutions through
two types of channels in porous media. We will mention many cases where polymer
concentrations show large gradients as a result of shear banding type of flow instabilities. It
is important to mention that in all these cases the overall density of polymers and fluid was
always nearly constant throughout the whole part of the systems composed of channels.

6.1. Flow through Cylindrical Porous Media

In this sub-section, we present results of flow simulations of our model polymer
solution through cylindrical porous media. By cylindrical porous media, we mean that
our model porous media consist of solid cylindrical beams with axes along the z direction
arranged on a square grid on the x-y plane along the Cartesian axes. The radius of each
of the cylindrical beams is 40 σ, i.e., 200 microns and the perpendicular distance between
the axes of the cylinders in x as well as y direction is 90 σ, i.e., 450 microns. This leads to a
porous medium with a porosity of 0.38. In all the simulations that we have presented in
this paper, we have maintained the same porosity. The depth of the box, i.e., its length in
z direction is 90 microns. The simulation runs for the flow of polymer solutions are started
with a steady state profile of the fluid and polymers are added randomly in a uniform
manner throughout the box except in the solid region and then the run is continued till
steady state is achieved.

6.1.1. Pressure Drop in the Positive x Direction

We now present results of simulations of flow driven by an applied pressure drop
in the positive x direction which is effected in the simulation through a body force which
produces an acceleration of 0.1 m/s2. In Figure 1, we show the positions of polymers in our
simulation at different times.

In this figure, we have shown the simulation box in what we call the ‘beam-view’,
where the solid region is present at the center of the simulation box and the fluid flows
around it. We have also shown the directions of the axes to clarify at the outset what we
mean when we refer to x, y and z directions. As can be seen in Figure 1a, the polymers are
initially uniformly and randomly distributed throughout the box except the solid region
which is the cylinder in the center of the box seen as a circle in this 2-D view. As time
progresses, the polymers start forming a pattern which evolves over time and finally settles
in a more-or-less steady-state pattern at 200 s as shown in Figure 1f. We clearly see the
result of cross-flow migration, which initially is more prominent where the flow is away
from the cylinder, i.e., in the downstream area, than in the area where the flow is into the
cylinder. It is interesting to note that even in the steady state there are small differences
between distributions downstream and upstream. It seems like downstream a second
low density streak emerging from the cylinder has developed, while upstream this is not
the case. For a more clear visualization of the evolution of polymer positions, please refer
to the animations of the simulations provided in the supplementary material.

Since the simulation box is periodic in nature, we can also alternatively represent the
results shown above in a different representation which we call the ‘porous-media-view’ as
shown in Figure 2. In this view, the pore appears centrally and the solid region is at the
corners. Note that we no longer show the axes in this figure and hereafter in all such figures
as the notation has been already clarified in Figure 1. From now on, we shall present all the
results in this porous-media-view as it provides a better visual impression of the porous
media to the reader.
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In Figure 3, we have shown a comparison of the steady state velocity profiles of the
flow of polymer solution through the porous medium with the flow of the solvent through
the same medium for the same pressure drop. On the left hand side panels of such figures,
we show the polymer solution flow profile and on the right hand side panels, we show the
solvent flow profile. In fact, the polymer simulations are initiated with the fluid steady state
profiles shown in the right panels. Note that the velocities in the legends of all such velocity
heat map figures in this paper are shown in internal units of σ/s, i.e., the velocities in S.I.
units [m/s] can be obtained by multiplying the velocities in internal units with 5 × 10−6,
as is shown in the captions.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Snapshots of simulation (in beam-view) at different times showing development of polymer
positions over time for flow through a cylindrical porous medium with pressure applied in the
positive x-direction. (a) t = 0 s; (b) t = 25 s; (c) t = 50 s; (d) t = 100 s; (e) t = 150 s; (f) t = 200 s.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Snapshots of simulation (in porous-media-view) at different times showing development of
polymer positions over time for flow through a cylindrical porous medium with pressure applied in
the positive x-direction. (a) t = 0 s; (b) t = 25 s; (c) t = 50 s; (d) t = 100 s; (e) t = 150 s; (f) t = 200 s.

For a better understanding, we have shown not just the overall velocity but also its
2 components, i.e., vx and vy in Figure 3a,c, respectively, for the polymer solution flow
and similarly in Figure 3b,d for the solvent flow. Furthermore, in Figure 3e,f, we have
shown the velocity vectors superimposed on the velocity heat map for the polymer solution
flow and solvent flow, respectively. From these two sub-figures, it can be seen that the
maximum velocity v in the polymer solution flow is almost 4.6 times lower than the same
for the solvent flow through the same porous medium for the same pressure drop. This is
due to increased viscosity of the solution due to the addition of polymers to the solvent.
Furthermore, the viscosity of the polymer solution is not constant but rather shear-thinning
in nature, which leads to the characteristic flattening of the velocity profile in the channels
that is clearly visible for the polymer solution flow vis-à-vis the parabolic Poiseuille flow
profile for the Newtonian solvent flow.

Furthermore, on comparison of Figures 2 and 3e, we can see that the polymer con-
centration is reduced in the zones separating the regions of strong primary flow with the
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regions of near stagnant flow, which indicates shear induced cross-flow migration. This
shows that the concentration of the polymers in the flow through the porous medium is
not uniform but rather related to the flow through the particular geometry. This level of
information is difficult to get with a continuum-level CFD simulation and it demonstrates
the importance of particle-based simulations in linking the macroscopic flow to the micro-
scopic molecular level interactions and positions of particles involved in the flow. Needless
to say, a more detailed description of the molecules can provide even more information,
but to go to a finer level of coarse-graining becomes very expensive if one has to simulate
the flow of even several tens of thousands of polymers flowing through a model periodic
porous medium like we show here.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of velocity profiles for flow of polymer solution with the flow of solvent
through a cylindrical porous medium with pressure applied in the positive x direction. (a) vx for flow
of polymer solution. Here, vx varies from 0 to 5.4 σ/s, i.e., 0 to 27 µm/s; (b) vx for flow of solvent.
Here, vx varies from 0 to 23 σ/s, i.e., 0 to 115 µm/s; (c) vy for flow of polymer solution. Here, vy

varies from −1.1 to 1.1 σ/s, i.e., −5.5 to 5.5 µm/s; (d) vy for flow of solvent. Here, vy varies from −2.8
to 2.8 σ/s, i.e., −14 to 14 µm/s; (e) v for flow of polymer solution. Here, v varies from 0 to 5.4 σ/s,
i.e., 0 to 27 µm/s; (f) v for flow of solvent. Here, v varies from 0 to 23 σ/s, i.e., 0 to 115 µm/s.
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6.1.2. Pressure Drop along the Positive x-y Diagonal

We now present results of flow simulations through our cylindrical porous medium
driven by an applied pressure drop in the diagonal direction 45 degrees to the positive
x and y directions. This is effected in the simulation through body forces along the pos-
itive x and y directions, which together produces an acceleration of 0.1 m/s2 along the
diagonal direction.

In Figure 4, we show the positions of polymers at different times in our simulation
box in porous-media-view. Here too, there is a difference between the downstream and
upstream polymer distribution during the evolution of the flow, however it is less significant
at the steady state. The expected mirror symmetry in the figure’s diagonal is clearly visible.
In order to understand the geometry of the streaks, we take a look at the velocity profiles.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Snapshots of simulation (in porous-media-view) at different times showing development of
polymer positions over time for flow through a cylindrical porous medium with pressure applied
along the positive x-y diagonal. (a) t = 0 s; (b) t = 25 s; (c) t = 50 s; (d) t = 100 s; (e) t = 150 s; (f) t = 200 s.
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In Figure 5, we show these velocity profiles both for the polymer solution vs and
the Newtonian solvent. As in the previous case with the forcing along the x direction,
the streaks in the polymer density plots occur where the velocity gradients are largest. This
is somewhat similar to local shear banding with large density coupling demonstrated in
other works in the literature [62]. This is also clear from Figure 5e,f. The top and bottom
parts of these plots are not very informative since all velocity vectors are parallel, but the
situation in these parts of the plot can be inspected by rotating the plots by 90 degrees.
Besides the characteristic flattening of the shear thinning polymer solution flow through
the channels as compared to the parabolic Poiseuille flow of the Newtonian solvent, there
is another interesting aspect that can be observed by comparing the last two sub-figures,
i.e., Figure 5e,f.

There is not just a quantitative but also a qualitative difference in the velocity profile
of the polymer solution vis-a-vis the fluid velocity profile. Upon close observation of these
two sub-figures, one can see that the shape of the two stagnant regions in the bottom left
and top right of the polymer solution flow shown in Figure 5e is sharper (more pointed)
as compared to the solvent flow in Figure 5f. This is clearly correlated with the polymer
distribution that can be seen in Figure 4f. It can be seen that the polymers concentration is
clearly reduced in the regions of high shear separating the primary flow from the stagnant
regions and the resulting polymer concentration then affects the flow profile too because
the resultant flow profile is qualitatively different from the solvent flow. This is a good
illustration of the two-way coupling between the polymers and the background fluid,
which is a key feature of our HCBD model. For a more clear visualization of the evolution
of polymer positions, please refer to the animations of the simulations provided in the
supplementary material.

6.2. Flow through Cuboidal Porous Media

We now introduce sharp-edged elements in the boundaries of the flowing material.
An important reason for including these model simulations is to prove that they are made
possible with our simulation methodology. Their practical importance is that porous media
as they occur in oil reservoirs contain lots of irregular channels with sharply pointed bound-
ary elements. As it turns out, our treatment of boundary conditions is highly successful.

Our model system consists of solid cuboidal beams with square cross-sections and
their long axes oriented along the z direction, arranged on a square grid on the x-y plane
along the cartesian axes. The length of the side of the square cross-section of each of these
cuboidal beams is 71 σ, i.e., 355 microns and the perpendicular distance between the axes
of the beams in x as well as y direction is 90 σ, i.e., 450 microns. The depth of the box,
i.e., its length in z direction is 90 microns. This leads to a porous medium with a porosity of
0.38, which is the same as the porosity that we had in case of the cylindrical beams. Again
as in the case of cylindrical porous media simulations, the simulation runs for the flow
of polymer solutions are started with a steady state profile of the fluid and polymers are
added randomly in a uniform manner throughout the box except in the solid region and
then the run is continued till steady state is achieved.

6.2.1. Pressure Drop in the Positive x Direction

We present results of flow simulations through a cuboidal porous medium, driven by
an applied pressure drop in the x direction, which is effected in the simulation through a
body force which produces an acceleration of 0.1 m/s2.

In Figure 6, we show the positions of polymers at different times in our simulation
box in porous-media-view. As we see in Figure 6a, the polymers are initially uniformly
and randomly distributed throughout the box except the solid region. As time progresses,
the polymers start forming a pattern which evolves over time and finally results in a more-
or-less steady-state pattern at 200 s as shown in Figure 6f. Streaks of low polymer density
appear in a similar way as with the cylindrical beams. As will be seen below, the streaks
mainly appear in regions where velocity gradients are large. Interestingly, a layered
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structure seems to built up along the walls of the horizontal channel. The asymmetry
between upstream and downstream structures is much less pronounced than with the
cylindrical beams.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison of velocity profiles for flow of polymer solution with the flow of solvent
through a cylindrical porous medium with pressure applied along the positive x-y diagonal. (a) vx

for flow of polymer solution. Here, vx varies from 0 to 3.7 σ/s, i.e., 0 to 18.5 µm/s; (b) vx for flow of
solvent. Here, vx varies from 0 to 15 σ/s, i.e., 0 to 75 µm/s; (c) vy for flow of polymer solution. Here,
vy varies from 0 to 3.7 σ/s, i.e., 0 to 18.5 µm/s; (d) vy for flow of solvent. Here, vy varies from 0 to
15 σ/s, i.e., 0 to 75 µm/s; (e) v for flow of polymer solution. Here, v varies from 0 to 3.7 σ/s, i.e., 0 to
18.5 µm/s; (f) v for flow of solvent. Here, v varies from 0 to 15 σ/s, i.e., 0 to 75 µm/s.

In Figure 7, we show the comparison of the steady state velocity profiles of the flow
of polymer solution with those of the flow of the solvent through the same medium for
the same pressure drop. On the left hand side panels of this figure, we show the polymer
solution flow profile and on the right hand side panels, we show the solvent flow profile.
For this flow geometry, we see interesting secondary flows induced near the cross section
area of the two channels. Because of the restrictive size of the channels, the primary flow
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in the x direction does not gradually dissipate in the y direction as in the analogous case
with cylindrical beams, but rather leads to the occurrence of two counter-rotating vortices,
one above and one below the primary horizontal flow. These vortices are clearly visible
as purple lobes in the vertical columns in Figure 7e,f. The counter-rotating character of
the two vortices is evident from the different signatures of the flow in y direction above
and below the horizontal mid plane in Figure 7a,b. For a more clear visualization of the
counter-rotating vortices, please refer to the animations of the simulations provided in the
supplementary material. Furthermore, in these two subfigures, the characteristic flattening
of the velocity profile in the channels is clearly visible for the polymer solution flow vis-a-vis
the parabolic Poiseuille flow profile for the Newtonian solvent flow.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Snapshots of simulation (in porous-media-view) at different times showing development of
polymer positions over time for flow through a cuboidal porous medium with pressure applied in
the positive x direction. (a) t = 0 s; (b) t = 25 s; (c) t = 50 s; (d) t = 100 s; (e) t = 150 s; (f) t = 200 s.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of velocity profiles for flow of polymer solution with the flow of solvent
through a cuboidal porous medium with pressure applied in the positive x direction. (a) vx for flow
of polymer solution. Here, vx varies from −0.12 to 6.1 σ/s, i.e., −0.6 to 30.5 µm/s; (b) vx for flow
of solvent. Here, vx varies from −0.35 to 24 σ/s, i.e., −1.75 to 120 µm/s; (c) vy for flow of polymer
solution. Here, vy varies from −1.3 to 1.3 σ/s, i.e., −6.5 to 6.5 µm/s; (d) vy for flow of solvent. Here,
vy varies from −4.3 to 4.3 σ/s, i.e., −21.5 to 21.5 µm/s; (e) v for flow of polymer solution. Here, v
varies from 0 to 6.1 σ/s, i.e., 0 to 30.5 µm/s; (f) v for flow of solvent. Here, v varies from 0 to 24 σ/s,
i.e., 0 to 120 µm/s.

6.2.2. Pressure Drop along the Positive x-y Diagonal

Finally, we present results of flow simulations through our cuboidal porous medium,
driven by an applied pressure drop in the diagonal direction 45 degrees to the positive x
and y directions. As in the previous cases, the pressure drop is imposed in the simulation
through body forces along the positive x and y directions, which together produces an
acceleration of 0.1 m/s2 along the diagonal direction. In Figure 8, we show the positions
of polymers at different times in our simulation box in porous-media-view. Hardly any
difference between upstream and downstream regions is visible. The low density streak
along the diagonal in the cross section of the two channels is relatively weak. Again, at late
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times, layered structures appear near the walls. This goes along with rather large velocity
gradients near the walls as seen in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Snapshots of simulation (in porous-media-view) at different times showing development of
polymer positions over time for flow through a cuboidal porous medium with pressure applied along
the positive x-y diagonal. (a) t = 0 s; (b) t = 25 s; (c) t = 50 s; (d) t = 100 s; (e) t = 150 s; (f) t = 200 s.

In Figure 9, we show the comparison between the velocity profiles for our model
polymer solution vs. the Newtonian flow of the solvent. It can be observed from the last
two sub-figures of the above figure, i.e., Figure 9e,f that there is a characteristic flattening of
the polymer solution flow through the channels as compared to the parabolic Poiseuille
flow of the Newtonian solvent. Furthermore, as we expect by now, there is also a qualitative
difference between the velocity profile of the polymer solution and that of the fluid, which in
this case is more evident from the comparison of the velocity components, i.e., comparison
of the vx heat maps in Figure 9a,b and comparison of the vy heat maps in Figure 9c,d,
respectively. This can be correlated with the polymer concentration at steady state in
Figure 8f. As the polymers at the intersection of the two primary flows get sheared, a
depletion occurs in this zone due to the transient forces of the polymers, which then affects
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the fluid flow profile. For a more clear visualization of the evolution of polymer positions,
please refer to the animations of the simulations provided in the supplementary material.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparison of velocity profiles for flow of polymer solution with the flow of solvent
through a cuboidal porous medium with pressure applied along the positive x-y diagonal. (a) vx

for flow of polymer solution. Here, vx varies from 0 to 4.2 σ/s, i.e., 0 to 21 µm/s; (b) vx for flow of
solvent. Here, vx varies from 0 to 17 σ/s, i.e., 0 to 85 µm/s; (c) vy for flow of polymer solution. Here,
vy varies from 0 to 4.2 σ/s, i.e., 0 to 21 µm/s; (d) vy for flow of solvent. Here, vy varies from 0 to
17 σ/s, i.e., 0 to 85 µm/s; (e) v for flow of polymer solution. Here, v varies from 0 to 5.9 σ/s, i.e., 0 to
29.5 µm/s; (f) v for flow of solvent Here, v varies from 0 to 19 σ/s, i.e., 0 to 95 µm/s.

7. Conclusions and Scope for Further Research

We have proven the feasibility of large scale particle based simulations of polymer
solutions through model porous media. A particle based model was chosen because of its
ability to reproduce density and velocity fluctuations on a wide range of time and length
scales. In order to reproduce memory in the friction forces acting on the coarse-grained
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degrees of freedom, originating from very slow relaxation processes in the eliminated
degrees of freedom that are not captured by the conservative potential of mean force, we
included so-called transient forces in the coarse model, depending on slowly developing
structural parameters. Furthermore, the polymers which were represented as Finitely
Extensible Non-Linear Elastic (FENE) dumbbells obeying Brownian dynamics were coupled
to the SPH fluid particles in a momentum conserving way using our Hydrodynamically
Coupled Brownian Dynamics (HCBD) technique, thus guaranteeing correct hydrodynamic
interactions. With all these physical aspects correctly represented in our model, it turned
out that large scale simulations of tens of thousands of particles could easily be run, even
in geometries that pose severe difficulties to constitutive model simulations.

The model porous media were made of periodic arrays of (1) cylindrical beams with
circular cross-sections and (2) cuboidal beams with square cross-sections. The axes of the
beams were perpendicular to a plane, on which they are arranged with a square pitch. Two
extreme angles of approach were studied in both cases. In all cases, it was easy to impose
no-slip boundary conditions at the boundaries of the systems using embedded particles
inside the solid regions.

We have compared our results of polymer solution flows with those of Newtonian
flows through the same geometries, modeled by simple SPH simulations. We observed that
there are significant quantitative and qualitative differences between the Newtonian flow
of the solvent and the non-Newtonian flow of our model polymer solution through the
same porous media for the same applied pressure drop. The addition of the polymers to
the solvent increases the viscosity of the solvent, which leads to a reduction in the velocity
of the flow of the polymer solution through the porous media. Furthermore, this increased
viscosity of the polymer solution is not constant but rather shear dependent. In this paper,
we see how this leads to a flatter velocity profile of the shear-thinning polymer solution in
the channels as compared to the parabolic Poiseuille flow profile of the Newtonian solvent.

As scope for future research, we envisage that a hybrid model may be constructed
where our technique could be used to feed information from the scale of pore throats to
larger scale Computational Fluid Dynamics (CFD) simulations of oil reservoirs. In this
initial study, we did not model the oil phase but rather focused on the single phase
flow of polymer solution through the porous media, as that in itself is a complex subject.
In principle, it should not be very difficult to add another Newtonian oil phase to our
non-Newtonian polymer solution simulation but it will still require tuning the interaction
between the aqueous and the oil phase in order to produce the proper thermodynamic
interaction between the two phases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14071422/s1: Vedio S1. Animation showing development
of polymer positions over time from the simulation of the polymer solution flowing through a
cylindrical porous media with pressure applied in the positive x direction. Vedio S2. Animation
showing development of polymer positions over time from the simulation of the polymer solution
flowing through a cylindrical porous media with pressure applied along the positive x-y diagonal.
Vedio S3. Animation showing development of polymer positions over time from the simulation of
the polymer solution flowing through a cuboidal porous media with pressure applied in the positive
x direction. Vedio S4. Animation showing development of polymer positions over time from the
simulation of the polymer solution flowing through a cuboidal porous media with pressure applied
along the positive x-y diagonal.
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