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Protein self-assembly is one of the formation mechanisms of biomolecular condensates.
However, most phase-separating systems (PS) demand multiple partners in biological
conditions. In this study, we divided PS proteins into two groups according to the
mechanism by which they undergo PS: PS-Self proteins can self-assemble spontane-
ously to form droplets, while PS-Part proteins interact with partners to undergo PS.
Analysis of the amino acid composition revealed differences in the sequence pattern
between the two protein groups. Existing PS predictors, when evaluated on two test
protein sets, preferentially predicted self-assembling proteins. Thus, a comprehensive
predictor is required. Herein, we propose that properties other than sequence composi-
tion can provide crucial information in screening PS proteins. By incorporating phos-
phorylation frequencies and immunofluorescence image-based droplet-forming
propensity with other PS-related features, we built two independent machine-learning
models to separately predict the two protein categories. Results of independent testing
suggested the superiority of integrating multimodal features. We performed experimen-
tal verification on the top-scored proteins DHX9, Ki-67, and NIFK. Their PS behavior
in vitro revealed the effectiveness of our models in PS prediction. Further validation on
the proteome of membraneless organelles confirmed the ability of our models to iden-
tify PS-Part proteins. We implemented a web server named PhaSePred (http://predict.
phasep.pro/) that incorporates our two models together with representative PS predictors.
PhaSePred displays proteome-level quantiles of different features, thus profiling PS pro-
pensity and providing crucial information for identification of candidate proteins.

phase separation j metapredictor j self-assembly j partner-dependent j phosphorylation

Phase separation (PS) is one of the mechanisms mediating the formation of membraneless
compartments from macromolecules, such as proteins and nucleic acids (1). Multivalent
weak interactions between these molecules are the driving force of PS. The interactions can
generally be classified into two categories: one mediated by intrinsically disordered regions
(IDRs) and the other mediated by multiple modular domains or motifs (2, 3). Proteins with
high IDR content can interconvert between a range of different low-energy states. A single
species can undergo IDR-mediated PS. In contrast, multivalent interactions mediated by
multiple modular domains are more specific and usually require two or more different
protein species to participate in PS (2). For example, the IDRs of Ddx4 self-assemble sponta-
neously to form membraneless compartments in living cells and in vitro (4), while single pro-
teins within the LAT–Grb2–Sos1 PS system cannot undergo liquid–liquid PS (LLPS) (5).
Herein, we characterize proteins that can self-assemble to form condensates as self-assembling
PS (PS-Self) proteins, and we define proteins whose PS behaviors are regulated by partner
components (proteins or nucleic acids) as partner-dependent PS (PS-Part) proteins.
Many bioinformatics tools have been developed to predict PS-related features and

aid in screening PS proteins. Representative tools include PScore (6), PLAAC (7), cat-
GRANULE (8), LARKS (9), ZipperDB (10), and the recently published Fuzdrop (11)
and DeePhase (12). Among these tools, PLAAC and ZipperDB were not originally
developed to screen PS proteins. Instead, they predict prion-like domains (PLDs) and
fibril-forming segments, respectively. Although trained on the yeast proteome, PLAAC
was later extended to screen human proteins and displayed exemplary performance in
predicting PS proteins. PScore, catGRANULE, and LARKS were first-generation PS
predictors. However, the different training samples of these methods lead to differences
in their predictive behavior. For example, PScore and LARKS learned PS sequence pat-
terns from proteins that have self-assembling behaviors, while catGRANULE was
trained on granule participants. Compared with the first-generation predictors, Fuz-
Drop and DeePhase were developed on proteins collected from PS databases. Using a
larger number of training samples allows them to provide a broader perspective for
screening PS proteins.

Significance

Proteins that undergo phase
separation promote biomolecular
condensate formation and play a
significant role in many biological
processes. We divided these
proteins into two categories
according to their underlying
driving force when forming
condensates: self-assembling
proteins, which interact with the
same protein species, and
partner-dependent proteins,
which interact with different
biomolecule species. Most of the
current computational tools
preferentially predict self-
assembling proteins and perform
poorly in screening partner-
dependent proteins. We thus built
machine-learning models to
predict the two protein categories
separately. Further validation on
the condensate proteome
revealed that partner-dependent
proteins are widespread in cells.
We also developed a web server
that integrates multiple phase-
separation predictors, providing a
convenient way for biologists to
discover candidate phase-
separating proteins.
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Recently, we performed a comprehensive analysis of 6 PS
predictors on 278 PS proteins. The results showed that
although these tools perform well in predicting PS proteins,
they all prefer proteins with high IDR content (13). In addi-
tion, these first-generation predictors recognize vastly different
kinds of proteins because they were developed to screen various
sequence features (14). This calls for the development of a
comprehensive metapredictor. There is currently no computa-
tional tool that can identify partner-dependent PS proteins.
However, most PS systems involve multiple partners in biologi-
cal conditions (14), as observed for RNA-binding proteins (15)
and signaling complexes (5). The annotations collected from
PhaSepDB (16) display similar patterns, with more PS-Part
than PS-Self proteins (Dataset S1). Therefore, it is necessary to
develop a predictor for screening potential partner-dependent
proteins.
Here, we propose that the different amino acid patterns of

self-assembling and partner-dependent proteins allow us to
establish independent models to separately screen the two PS
protein categories. We found that sequence-based features can
distinguish PS proteins from non-PS proteins, and demon-
strated that properties other than sequence composition, such as
posttranslational modification (PTM) frequencies and immuno-
fluorescence (IF) images, can provide crucial information. By
incorporating multimodal features, we trained machine-learning
models on experimentally validated proteins. Results of indepen-
dent testing showed that our models outperform other tools in
predicting the two categories of PS proteins. We then performed
in vitro experiments on the top-scored candidates DHX9, Ki-67,
and NIFK. Their PS behaviors prove the accuracy of our meth-
ods. Further evaluation on a high-quality proteome from mem-
braneless organelles (MLOs) revealed the superiority of our model
in screening partner-dependent proteins. With benchmark data-
sets provided by PhaSepDB, our method incorporates multi-
modal features for prediction of PS-Self and PS-Part proteins,
and provides a metapredictor for identification of potential PS
proteins.

Results

Datasets of PS-Self Proteins, PS-Part Proteins, and Non-PS
Proteins. We collected 658 experimentally validated PS pro-
teins from PhaSepDB (16), LLPSDB (17), and PhaSePro (18)
(Dataset S1). The latest version of PhaSepDB provides compre-
hensive annotations of 592 nonredundant proteins (Fig. 1A),
from which we collected 203 PS-Self and 335 PS-Part proteins;
we used the remaining 54 PS proteins as an additional test set
to measure model performance (Materials and Methods). We
divided the PS-Self and PS-Part sets into training and indepen-
dent testing sets according to the version number, then applied
the CD-HIT algorithm (19) to all these sets with a sequence
identity cutoff of 0.4 to reduce sequence similarity (Materials
and Methods). We adopted the same classification criteria for
two protein sets collected from LLPSDB and PhaSePro.
Twenty-nine PS-Self and 28 PS-Part proteins were, respec-
tively, selected to supplement the independent testing set
(Materials and Methods). Finally, we grouped 658 proteins into
five sets: the training and independent testing sets of PS-Self
proteins (Fig. 1B, [SaPS, 128 proteins] Dataset S2, and [SaPS-
test, 73 proteins] Dataset S3), the training and independent
testing sets of PS-Part proteins (Fig. 1B, [PdPS, 214 proteins]
Dataset S2, and [PdPS-test, 113 proteins] Dataset S3), and the
independent PS test set (Fig. 1B and [PS-test, 53 proteins]
Dataset S3). Proteins without PS reports were defined as non-PS

proteins: 60,251 proteins collected from 10 representative species
were used as non-PS proteins (Materials and Methods), from
which we sampled 80% for training (NoPS, 48,187 proteins)
(Dataset S2), and the remaining 20% were used for independent
testing (NoPS-test, 12,064 proteins) (Dataset S3).

Together, we constructed three datasets for training: the pos-
itive sets SaPS and PdPS, and the negative set NoPS (Fig. 1B
and SI Appendix, Dataset S2). We also defined four datasets as
independent test sets: the positive sets SaPS-test, PdPS-test and
PS-test, and the negative set NoPS-test (Fig. 1B and SI
Appendix, Dataset S3).

Previous Tools Prefer PS-Self Rather than PS-Part Proteins.
Interactions like electrostatic, hydrophobic, π–π stacking and
cation–π stacking drive biological macromolecules to aggregate
and undergo PS (20, 21). Specific physical properties of differ-
ent amino acids elicit specific interactions. For example,
charged residues play a role in forming electrostatic interac-
tions, aromatic residues and nonaromatic amino acids with π
bonds in their side chains contribute to π–π stacking (2).
Therefore, the amino acid composition of a PS protein may
reflect the underlying driving force to some extent.

We compared the amino acid composition of self-assembling
and partner-dependent proteins by calculating the fold-changes
of amino acid frequency against the non-PS proteins (SaPS,
PdPS, NoPS) (Materials and Methods and Dataset S2). After
ranking the amino acids by their propensity to form disordered
regions (22), we found that both PS protein groups possess
high proportions of such residues (Fig. 1C). Prions can switch
from nonaggregated states to self-templating highly ordered
aggregates (7). We found that PLD-promoting amino acids
were more common in PS-Self proteins than in PS-Part pro-
teins. We also found a decreased frequency of charged residues
in the SaPS set and an increased frequency of charged and
hydrophilic residues in the PdPS set (Fig. 1C). To further verify
the results, we performed the same statistical analysis on the
human proteome (hSaPS, hPdPS, hNoPS) (Dataset S2). Simi-
lar results were obtained (SI Appendix, Fig. S1A).

Due to amino acid composition differences, a PS predictor
may have different performances when distinguishing the two
types of PS proteins from non-PS proteins. We chose PScore
(6), PLAAC (7), catGRANULE (8), and FuzDrop (11), which
have batch prediction interfaces or provide predicted results, as
representative tools to compare their prediction performances.
By scoring proteins in the SaPS, PdPS, and NoPS sets, the
receiver operating characteristic (ROC) curve was plotted for
each tool. The area under the curves (AUCs) showed that these
predictors are excellent at predicting self-assembling proteins
(Fig. 1D), but are unsatisfactory when screening PS-Part pro-
teins (Fig. 1E). We performed the same analysis on the human
proteome and achieved similar results (SI Appendix, Fig. S1 B
and C).

Together, these results showed that current tools perform
poorly in predicting PS-Part proteins compared to PS-Self pro-
teins, yet both kinds of proteins are enriched in disorder-
associated residues. Our previous work found that the scores of
PS predictors are significantly correlated with the IDR scores
(13). The two protein categories likely possess different IDR
patterns, leading to different performances of current PS pre-
dictors in distinguishing them from non-PS proteins.

Multimodal Features Provide Information for Identifying
PS-Self and PS-Part Proteins. Next, we compared the distribu-
tion of PS-related features between the two PS protein sets and
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the non-PS protein set. As mentioned above, sequence proper-
ties such as disorder are closely related to protein PS. We used
the PLAAC score to indicate prion-like propensity (7), the cat-
GRANULE score to indicate granule-formation propensity (8),
the IDR score from the ESpritz algorithm (23), and the low-
complexity region (LCR) score from the SEG algorithm (24) to
reflect a protein’s propensity to form IDRs and LCRs
(Materials and Methods). Non-IDR interacting elements like
coiled-coil (CC) structures can also drive PS (25, 26). We used
the DeepCoil algorithm to detect potential CC structures (27)
(Materials and Methods). In addition, we used the hydropathy
score, the fraction of charged residues (FCR), and PScore to
illustrate multivalent interactions including hydrophobicity,
electrostatic interactions, and π–π stacking (6, 28) (Materials
and Methods). Apart from amino acid sequence composition,
features such as PTM frequencies and IF images can also
provide information in screening PS proteins. PTMs play an
extensive role in PS by regulating the reversibility of a binding
reaction or altering a protein’s physical properties (3). Our
previous studies showed that the PTM frequencies of PS
proteins are significantly higher than those of background
proteins (13). Here we chose phosphorylation (Phos) as the

representative PTM type and calculated the Phos frequency for
human proteins recorded in PhosphoSitePlus (29) (Materials
and Methods). PS proteins usually appear as spherical-shaped
structures in IF images. Trained on proteome-level IF images,
the DeepPhase algorithm estimates the probability of proteins
to be droplet-forming (30). We collected DeepPhase scores of
11,982 human proteins and used them for further comparison
(Materials and Methods).

To test whether these features can discriminate the two pro-
tein categories from non-PS proteins, we used corresponding
tools (Dataset S4) to score proteins in positive and negative
datasets. We first compared the different sequence-based fea-
tures in the datasets from the human proteome (hSaPS, hPdPS,
hNoPS) (Dataset S2). As shown in Fig. 2A, most features are
significantly different between the two PS protein sets and the
non-PS set. Proteins in the hSaPS set possess higher IDR,
LCR, PScore, PLAAC, and catGRANULE scores than those in
the hPdPS set. The hPdPS set, but not the hSaPS set, has sig-
nificantly higher levels of FCR than the hNoPS set. About 5%
of the PS-Self proteins were predicted to contain a CC struc-
ture, compared to 2% of PS-Part proteins and only 1% of non-
PS proteins (Fig. 2A). We then compared these features for all

A

C

D E

B

Fig. 1. PS-Self and PS-Part proteins possess different amino acid patterns. (A) Species distribution of 592 nonredundant proteins that collected from Pha-
SepDB. (B) PS proteins collected from PhaSepDB, LLPSDB, and PhaSePro are divided into five nonoverlapping sets. (C) Amino acid frequency fold-changes of
the SaPS set and the PdPS set are calculated against the NoPS set. Amino acids are ranked by their propensity to form IDRs. (D) To measure the perfor-
mance of four representative PS predictors in screening self-assembling proteins, we plotted the ROC curve for each predictor by scoring proteins in the
SaPS and NoPS sets. (E) ROC curves of four predictors are plotted for the PdPS and NoPS sets. The AUCs show the poor performance of these tools in
screening partner-dependent proteins.
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species data and found similar patterns (SaPS, PdPS, NoPS)
(Fig. S2A and Dataset S2). When focusing on sequence-
irrelevant features, we found that both PS sets have high levels
of Phos frequency and IF-based droplet-forming propensity
(Fig. 2A). Since PTM sites are enriched in IDRs, we down-
sampled the hNoPS set with similar IDR distributions of the
hSaPS and the hPdPS sets (Materials and Methods and Dataset
S5). The significance of the P value suggests that the enrich-
ment of Phos frequency in self-assembling and partner-
dependent proteins is IDR-independent (Fig. 2 B and C).
Together, these results show that our selected properties can

provide information to distinguish PS proteins from non-PS
proteins.

Models Integrating Multimodal Features Outperform Current
Tools. Using the properties mentioned above, we constructed
two independent machine-learning models to separately predict
self-assembling and partner-dependent proteins (31) (Fig. 2D).
We first tested the learning effects of incorporating eight
sequence-based features (hydropathy, FCR, IDR, LCR, PScore,
PLAAC, catGRANULE, DeepCoil) on all-species data (SaPS,
PdPS, NoPS) (Dataset S2). To increase the generalizability of
our trained models, we adopted a cross-validation strategy for
both positive and negative samples (Materials and Methods).
Average AUCs on the validation sets revealed that the
sequence-based features can work together to provide insights
into the prediction of PS proteins (Table 1). To further com-
pare the performance between our models and four PS predic-
tors, we trained final models with all the positive samples
(Materials and Methods). Evaluation on the independent test
sets of self-assembling and partner-dependent proteins showed
that our models have more stable prediction performance when
faced with different PS protein categories (SaPS-test, PdPS-test,
NoPS-test) (Fig. S2 B and C and Dataset S3). When scoring
PS proteins without Self or Partner annotations, we found that
the AUC value of PScore is relatively low (PS-test) (Fig. S2D
and Dataset S3). This indicates that features other than
π-contacts participate in the PS process of these proteins.
We next built and tested models with 8 and 10 features (the

8 features described above plus Phos frequency and DeepPhase)
on the human proteome (hSaPS, hPdPS, hNoPS) (Dataset S2).
The averaged AUCs of cross-validation indicated the signifi-
cance of increasing the number of incorporated features, with a
5% increase on the hSaPS set and a 6% increase on the hPdPS
set when comparing the 10-feature model to the 8-feature
model (Table 1). We then evaluated the performance of the
8- and 10-feature models on the independent test sets (hSaPS-test,
hPdPS-test, hNoPS-test) (Materials and Methods and Dataset S3).
Although current PS predictors already perform well in screening
self-assembling proteins, AUCs from the hSaPS-test set revealed
that our model understands this type of protein better than any of
the existing predictors (Fig. 2 E, Left). Evaluation on the hPdPS-
test set showed that the PdPS model incorporating Phos frequency
and DeepPhase score has an outstanding performance compared
to the existing methods, with a 12%, 20%, and 20% increase
compared with catGRANULE, PLAAC, and PScore, respectively
(Fig. 2 E, Center). We also evaluated our 10-feature models on
the hPS-test set (Dataset S3). The high AUC of the PdPS model
suggests that these proteins are more likely to phase separate
through interaction with other components than through self-
assembly (Fig. 2 E, Right).
Taking these results together, we conclude that even though

the current PS predictors perform well in predicting self-
assembling proteins, the increased number of sequence-based

features in our method may provide additional information for
model decisions. Furthermore, constructing an independent
model for predicting partner-dependent proteins is essential,
and incorporating multimodal features like Phos level and
IF images is of great importance in improving prediction
performance.

The PdPS Model Performs Better in Screening MLO
Participants. As mentioned before, PS biomolecular conden-
sates usually contain multiple proteins (5, 14, 15), which we
refer to as MLO participants. We tested the ability of the cur-
rent tools to screen these proteins. We applied our 10-feature
models and the other four PS predictors to estimate the pro-
teins capable of undergoing PS in four human MLO partici-
pant datasets: the OpenCell nuclear punctae set (32), the
DACT1-particulate proteome set (33), the G3BP1 proximity
labeling set (34), and the PhaSepDB high-throughput set (16)
(Materials and Methods and SDataset S6). To prevent self-
validation, we removed the proteins that were included in the
training sets. We then used the remaining proteins in these
datasets and the human NoPS-test set as positive and negative
samples, respectively, to calculate AUC values (hNoPS-test)
(Dataset S3). As shown in Fig. 3A, our two methods have the
highest confidence in predicting PS proteins in all four datasets.
Significantly, the PdPS model has excellent ability in screening
these MLO participants. Since catGRANULE screens for
granule-localized proteins, it performs well in analyzing the
G3BP1 proximity-labeling proteome and the PhaSepDB high-
throughput dataset (Fig. 3A). We also created datasets for the
human mitochondrial proteome and the amyloid fiber-forming
proteome, most of which have not yet been assessed for under-
going PS (35, 36) (Materials and Methods and Dataset S6). We
applied the same analytical strategy for these two sets. The
AUCs showed that none of the tools had high confidence in
predicting these proteins as PS proteins, which indicates that
amyloid fiber-forming proteins and mitochondrial proteins dif-
fer significantly from PS proteins in the properties compared
above (Fig. 3A).

To further verify the results, we collected a BioID interac-
tome that localizes 4,424 proteins to 20 intracellular locations
(37) (Materials and Methods and Dataset S7). Using these
annotated proteins as positive samples, we adopted the same
strategy as in Fig. 3A to calculate AUC values for each method,
then we ranked the 20 compartments according to the total
prediction performance of these methods. Results showed that
all the six tools performed well in predicting MLO participants
and ignored proteins within membrane-bound organelles, such
as the Golgi apparatus and lysosomes (Fig. 3B). Among the
high-ranking MLOs, microtubules and the actin cytoskeleton
have been reported previously to be constructed regionally with
the help of a large pool of interacting proteins (2). Therefore,
proteins within these two MLOs are more likely to phase sepa-
rate in a partner-dependent manner. For example, short actin
filaments form spindle-like tactoids in vitro through PS in the
presence of Filamin (38). We found that the PdPS model better
screens cytoskeleton-related proteins and outperforms existing
PS predictors when distinguishing possible PS-Part proteins.

To evaluate how each of the incorporated properties contrib-
utes to the predictive ability of our methods, we adopted the
model interpreter SHAP on proteins in the OpenCell nuclear
punctae set to measure the importance of each feature to the
model decision (39) (Materials and Methods). The averaged
absolute value of the SHAP score indicates that the Phos fre-
quency is more important than other features (Fig. 3C),
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suggesting a significant role of Phos in distinguishing PS pro-
teins. We also found that the PLAAC score has a higher SHAP
value in the SaPS model than in the PdPS model, while the
FCR score is more critical in the PdPS than in the SaPS model
(Fig. 3C). This result is consistent with the amino acid compo-
sition analysis (Fig. 1C and SI Appendix, Fig. S1A), which
shows that PS-Self proteins are enriched in prion-like amino
acids, while PS-Part proteins are enriched in charged amino
acids. As shown in Fig. 2A, IDRs and LCRs are more signifi-
cant discriminating properties than IF image for PS proteins.
However, these two features displayed lower importance for
model decisions than IF image (Fig. 3C). One possible reason
is that these two features are strongly correlated with PLAAC
and PScore (SI Appendix, Fig. S3), thus their information is
redundant with PLAAC and PScore ranked second and fourth

for model decision. Nevertheless, IF images can provide orthog-
onal information besides PLAAC and PScore.

We next compared the differences of the six methods by
overlapping their top-scored proteins (Materials and Methods).
Considering the impact of the training samples on protein scor-
ing, we removed the proteins included in the positive training
sets for each method (Dataset S8). Among 2,667 selected pro-
teins, only 12 were predicted as PS proteins by all predictors
(Fig. 3D). In contrast, most of these top-scored proteins are
identified by only one method. Although the PLAAC, PScore,
and catGRANULE scores are integrated into the SaPS and
PdPS models, the high weight given to Phos frequency makes
our models distinct from these three methods (Fig. 3C).

In summary, using protein annotations provided by high-
throughput technology, we verified the ability of PS predictors

A

B

E

C D

Fig. 2. Constructing self-assembling and partner-dependent protein predictors with PS-related features. (A) Comparison of 10 PS-related features between
the two PS protein sets and the non-PS set. P value is calculated through the two-sided Mann–Whitney U test (*P < 0.05; **P < 0.01; ***P < 0.001). (B) The
hNoPS set is downsampled according to the IDR distribution in the hSaPS set. The Phos frequency of the hSaPS set is still significantly higher than that of
the sampled hNoPS set. (C) The Phos frequency of the hPdPS set is significantly higher than that of the sampled hNoPS set with similar IDR distribution.
(D) Schematic view of the SaPS and PdPS models. (E) Evaluating model performance using the independent test sets of self-assembling (hSaPS-test, Left),
partner-dependent (hPdPS-test, Center), and PS protein sets (hPS-test, Right).

Table 1. AUCs of our models with a fivefold cross-validation training strategy

Model category Species Feature no. Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Average

SaPS All species 8 0.881 0.853 0.856 0.865 0.855 0.862
hSaPS Human 8 0.921 0.88 0.871 0.859 0.858 0.878
hSaPS Human 10 0.988 0.95 0.898 0.896 0.889 0.924
PdPS All species 8 0.762 0.739 0.732 0.732 0.732 0.739
hPdPS Human 8 0.765 0.786 0.777 0.762 0.765 0.771
hPdPS Human 10 0.828 0.834 0.815 0.83 0.828 0.827
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to distinguish proteins in MLOs from those in membrane-
bound organelles. Specifically, the PdPS model was excellent at
identifying MLO participants. Using the model interpreter
SHAP, we found differences in the contribution of incorpo-
rated features to model decisions. However, the Phos frequency
has outstanding importance in both the SaPS and PdPS mod-
els, leading to better predictive performance.

Experimental Validation of DHX9, Ki-67, and NIFK Show the
Effectiveness of the SaPS and PdPS Models. We performed
in vitro PS experiments to test the effectiveness of our methods
(Fig. 4A). We first selected protein DHX9 from the nine candi-
dates that were predicted as PS proteins in both SaPS model,
PLAAC, and PScore to test the ability of our model in screen-
ing PS-Self proteins (Fig. 3D and Dataset S8). DHX9 contains
1,270 amino acids, which is too long to ensure high-quality
purification of the protein. We therefore used its short isoform
(isoform2), which contains C-terminal RGG and disordered
regions to perform PS experiments (Materials and Methods and
SI Appendix, Fig. S4 A and B). The phase diagram showed that
GFP–DHX9 isoform2 form green puncta, and the quantitative
fluorescence recovery after photobleaching (FRAP) analysis
indicated the dynamicity of formed puncta (Materials and

Methods and Fig. 4B). Together, these results suggest that
DHX9 isoform2 can self-assemble to undergo PS in vitro.

We next selected another protein, Ki-67, from 46 candidates
that ranked top-500 only in our SaPS and PdPS models
(Fig. 3D and Dataset S8). Previous research has reported that
Ki-67 promotes cell proliferation through its interaction with
NIFK (40), which is also present among the top-ranking pro-
teins by our PdPS model (Fig. 3D and Dataset S8). A recently
published article showed that Ki-67 acts as a scaffold for mitotic
chromosome proteins, and NIFK formed aggregates in Ki-67
knockout cells (41). Therefore, we chose these two proteins as
candidates to verify their ability to undergo PS (Materials and
Methods and SI Appendix, Fig. S4 C and D). The full length of
Ki-67 is 3,256 amino acids, which makes Ki-67 difficult to
purify. Since the deletion of Ki-67 repeats did not affect the dis-
tribution of Ki-67 into nucleolar heterochromatin during the
interphase (42, 43), we performed PS experiments using Ki-67
truncation. As is shown in SI Appendix, Fig. S4 E and F, both
GFP–Ki-67 and mCherry–NIFK can only form puncta with
slow recovery after bleaching in the presence of PEG8000.
However, Ki-67 phase separates at a lower concentration when
mixed with DNA, suggesting its partner-dependent PS ability
in vitro (Fig. 4C). Since NIFK and Ki-67 interact with each

A

C

B

D

Fig. 3. Comparing the SaPS and PdPS models with another four representative PS predictors. (A) Comparison of six PS predictors on four datasets of pro-
teins that participate in MLOs and two datasets of proteins located in membrane-bound organelles. AUC values are calculated by, respectively, using
proteins in these datasets as positive samples and proteins in the human NoPS-test set as negative samples. (B) Comparison of 6 PS predictors on a BioID
interactome with 20 intracellular locations. The value and the color of each block corresponds to the AUC value, which is calculated by, respectively, using
proteins in these datasets as positive samples and proteins in the human NoPS-test set as negative samples. (C) The averaged SHAP values of the SaPS and
PdPS models are calculated on the OpenCell nuclear punctae set. Phos frequency has the highest weight among the 10 incorporated features. (D) Overlap
of top-scored proteins from six PS predictors. Only 12 of the 2,667 collected proteins are predicted as PS proteins by all predictors. The red arrows indicate
the location of candidate proteins DHX9, Ki-67, and NIFK.
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other, we further mixed NIFK, Ki-67, and DNA and found
that NIFK can incorporate into the condensate of DNA and
Ki-67 (Fig. 4D). NIFK does not possess a DNA binding
domain, the interactions between NIFK and Ki-67 should be
the driving force for its partition into the condensates.
Besides the above top-ranking proteins, we chose MBP and

SUMO, whose SaPS scores were lower than 0.1, as the negative
controls. Results show that both proteins cannot undergo PS (SI
Appendix, Fig. S4 G and H). To conclude, the results above demon-
strate that our methods can help to identify potential PS proteins.

Enriched Pathways and Domains Reveal the Functions of Two
PS Protein Categories. Next, we analyzed the pathways and
domains that are enriched among the high-scoring proteins of
our SaPS and PdPS models. To compare the enriched pathways
generated by our two methods and the other four PS predic-
tors, we used the single-sample gene set enrichment analysis
(GSEA) on the Reactome database (44). Nine representative
pathways were selected for each method to comprise a non-
redundant set with 37 pathways (Materials and Methods and
Fig. 5A). We found that Phos plays an essential role in these
top-ranking pathways, including the transcriptional activity of
RUNX1 and the signaling activity of PTK2. In addition,
PTMs such as SUMOylation and O-glycosylation are also
enriched in regulating these top-ranking pathways (Fig. 5A).
When examining individual pathways, we found that Hippo
signaling was enriched in both the SaPS and PdPS models. The
Hippo pathway regulates several biological processes through
the main effectors, YAP and TAZ (45). Although YAP and

TAZ were not used to train the PdPS model, they were predicted
to have high PS-Part scores, which is in line with a report that
TAZ forms PS droplets with interacting proteins in cells, and
YAP forms droplets in the presence of specific crowding agents
(46). A recently published article indicated that LATS1, another
core component of the Hippo pathway, can self-assemble through
its PLD and also interact with partners like small nucleolar RNA
host gene 9 (SNHG9) and phosphatidic acids to undergo PS
(47). LATS1 was not used for training, but scored highly in both
SaPS and PdPS models (Fig. 5B).

Multivalent interactions mediated by modular domains are
the main driving force of PS for PS-Part proteins. Therefore,
we checked which domains were enriched and how they were
distributed in 1,609 proteins with PdPS score greater than 0.8.
Using a sequence-embedding method, we encoded each protein
sequence to a 3,705-dimension vector (48). We then clustered
these proteins into five groups according to vector similarity
and analyzed the domain enrichment with the DAVID web
server (49) (Materials and Methods and Fig. 5C). As is shown in
Fig. 5D, the RNA recognition motif was the most enriched
domain, suggesting the significance of RNA-binding proteins
in partner-dependent PS. We also found enrichment of the
PDZ, the SH2, and the SH3 domains, which are well-studied
PS-promoting domains (3, 5, 50–52).

In summary, our methods can uncover pathways that are
enriched in PS proteins and find domains that facilitate PS.
Systematic analysis of the human proteome may suggest the
involvement of PS-Self or PS-Part proteins in multiple biologi-
cal processes, with profound implications for future studies.

A

C

D

B

Fig. 4. Experimental validation of DHX9 isoform2, Ki-67 truncation, and NIFK. (A) Schematic diagram of in vitro PS assay to illustrate the PS capacity of GFP
or mCherry fused proteins after MBP removal. N-terminal MBP tags of MBP–GFP–DHX9 Isoform2, MBP–GFP–Ki-67 truncation and MBP–mCherry–NIFK were
cleaved before droplet assembly with TEV protease overnight. Further droplet assembly for these proteins was performed on 384-well confocal plate. (B)
Phase diagrams with blow-up images of GFP–DHX9 Isoform2 (Left). Quantitative results for FRAP analyses of the average recovery traces of GFP–DHX9
Isoform2 (Right). (C) Phase diagrams with blow-up images of GFP–Ki-67 truncation with DNA (Left). Quantitative results for FRAP analyses of the average
recovery traces of GFP–Ki-67 truncation (Right). (D) Phase diagrams of GFP–Ki-67 truncation with DNA and mCherry–NIFK (Left). Quantitative results for FRAP
analyses of the average recovery traces of GFP–Ki-67 truncation and mCherry–NIFK (Right).
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Discussion

Multivalent interactions are the driving force of protein PS (3).
However, these interactions are extremely complex. For exam-
ple, the hydrophobicity, electrostatic interactions, and cation–π
interactions are insufficient by themselves to rationalize the PS
behavior of Ddx4 (21). In this study, we divided PS proteins
into two categories, self-assembling proteins and partner-
dependent proteins, based on their corresponding multivalent
interactors. Unlike the driver/client theory in which clients are
recruited into the condensates formed by drivers, partner-
dependent proteins can also drive the droplet-forming process,
such as LAT, Sos1, and Grb2 in the T cell receptor PS system.
Using the collected datasets, we constructed separate predictors
for the two protein categories. Independent testing indicated
the excellent performances of the SaPS and PdPS models, and
experimental validation of the top-scored proteins DHX9,
Ki-67, and NIFK suggested the accuracy of our methods.
Many IDR-containing proteins can self-assemble to undergo

PS. Although first-generation PS predictors are sufficient to
screen such proteins (13), a comprehensive method that incor-
porates these sequence-based features yields better performance.
Moreover, the involvement of multimodal features, such as
Phos frequency and IF image-based droplet-forming propen-
sity, can further improve prediction accuracy. However, the

detected Phos sites may be affected by protein abundance. Con-
sidering the high weight of Phos frequency in the model deci-
sion, proteins with low abundance may rank low in our
10-feature model. Therefore, careful consideration of the scores
from our 8-feature and 10-feature models may be helpful.

The development of high-quality proximity labeling and
image-based subcellular localization technology provides
insights in screening potential PS proteins. Based on AUCs, the
PdPS model outperforms other tools in predicting MLO partic-
ipants. We assume that these predicted MLO participants
might act in a partner-dependent manner to undergo PS. How-
ever, our understanding of the regulatory relationship between
these participants is limited, even though the underlying rela-
tionship is essential in explaining the PS behavior (5). There-
fore, information like protein–protein interaction networks
should be considered to find potential PS regulatory relation-
ships in future studies.

We performed in vitro PS and FRAP experiments for all
three candidate proteins (Fig. 4 B–D and SI Appendix, Fig. S4
E and F). FRAP assays are measured immediately after droplet
formation, and all three proteins can recover partially in vitro.
The recovery percentage indicates that the assemblies formed
by three proteins, or at least Ki-67 and NIFK, are more gel-like
rather than liquid-like. In fact, of the 342 PS proteins used to
train the SaPS and PdPS models, 297 have their material state

A

C D

B

Fig. 5. Functional analysis of self-assembling and partner-dependent candidates in the human proteome. (A) Single-sample GSEA of SaPS, PdPS, and
another four representative PS predictors in the human proteome. Thirty-seven representative pathways are shown. If a method enriches any of the 37
pathways, the corresponding block would be colored according to its NES. (B) GSEA plot of Hippo pathway according to the scores of SaPS in the human
proteome (Left). Schematic view of the Hippo pathway, in which the core components are shown as an ellipse, and the other regulators are shown as a rect-
angle. All components are colored according to their SaPS score (Right). (C) Clustering of 1,609 proteins with PdPS score greater than 0.8 into five sets
according to the similarity of embedded protein sequences. The distance between clusters is measured by Ward’s minimum variance method. (D) Enriched
domains in the five clustered sets of PdPS candidates. Nineteen representative domains are shown. If a cluster enriches any of the 19 domains, the corre-
sponding block would be colored by �log10 P value.
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recorded in PhaSepDB, of which 94 could undergo hydrogel-
like or solid-like PS, including well-studied PS protein TDP43
(53), HP1α (54), NUP98 (55), and NUP153 (56). Since we
did not distinguish between the different material states of PS
proteins when training, some proteins that rank high in our
method may possess a gel-like rather than a liquid-like state
when undergoing PS.
We compared the top-scored proteins from our methods and

four representative PS predictors. Low overlap ratios between
different candidate sets and enriched pathways suggest the vari-
ety of different tools. Therefore, a gallery that displays the
scores of multiple PS predictors may provide convenience for
biologists when screening candidate proteins or specific regions.
In this study, we implemented a comprehensive web server
named PhaSePred (predict.phasep.pro) (SI Appendix, Fig. S5),
which incorporates residue-level scores of several PS predictors
and PS-related features. The radar chart shows the proteome-
level quantiles of different features, profiling the propensity for
protein PS.
In conclusion, our study provides methods to predict self-

assembling and partner-dependent proteins, and the web server
PhaSePred may act as a metapredictor for researchers to system-
atically identify potential PS proteins.

Materials and Methods

Collecting PS and Background Proteins.
Datasets of proteins representing two droplet-forming mechanisms. The
newly released version of PhaSepDB (db.phasep.pro/) provides detailed informa-
tion about experimentally validated PS proteins; it contains 592 nonredundant
proteins localized in 59 different organelles (16). The annotated proteins were
divided into two groups: PS-self and PS-other. “PS-self” refers to those proteins
that can undergo self-assembling PS in vitro. “PS-other” refers to those proteins
contributing to the formation of biomolecular condensates. If a protein partici-
pates in an MLO with partner components, its partners will be recorded in the
“Partner” column. Since proteins may rely on interaction with different kinds of
biomacromolecules to form MLOs, we only selected those with protein or nucleic
acid partners as our defined partner-dependent proteins. Using these criteria, we
collected 203 PS-Self and 380 PS-Part proteins, constituting a nonredundant set
with 538 proteins. Forty-five proteins possess annotations of both PS categories.
We used them as PS-Self proteins in downstream analysis (203 PS-Self proteins
and 335 PS-Part proteins) (Dataset S1). We further divided the two protein sets
according to the version number: those labeled “v1” and “v2_1” were used for
training, and the remaining proteins were used for independent testing. For
some proteins in PhaSepDB, it is unknown whether they undergo PS through
self-assembly or through partner proteins. We did not utilize these proteins for
training but used them as an additional test set to verify the prediction effect (54
PS proteins) (Dataset S1).

We applied the CD-HIT algorithm to the five protein sets with a sequence
identity cutoff of 0.4 as a quality-control process (19). This yielded the following
final sets: the training and independent testing sets of PS-Self proteins [SaPS
(Dataset S2), SaPS-test (Dataset S3)], the training and independent testing sets
of PS-Part proteins [PdPS (Dataset S2), PdPS-test (Dataset S3)], and the indepen-
dent testing set of PS proteins [PS-test (Dataset S3)]. In addition to PhaSepDB,
two other databases provide annotations of both in vivo and in vitro PS experi-
ments: LLPSDB (17) (bio-comp.org.cn/llpsdb/) and PhaSePro (18) (https://
phasepro.elte.hu/). LLPSDB collects annotations of 1,192 entries from 295 inde-
pendent proteins, which provides various in vitro experimental conditions and
indicates whether the protein can undergo PS under this condition. Since
LLPSDB groups experimental information according to the number of compo-
nents involved in MLOs, we selected proteins from one-component droplets with
in vitro experimental annotations and defined them as self-assembling proteins.
We then selected proteins from multicomponent droplets with in vivo or in vitro
experiments and defined them as partner-dependent proteins. PhaSePro con-
tains only 121 PS proteins, but it provides a wide range of information on the
biophysical driving forces and the regulation of these molecular systems, such as

PTM regulation and the interaction partner. Using these annotations, we defined
the proteins labeled “partner dependent” as partner-dependent proteins. We
merged the protein groups from the two databases and excluded proteins
involved in our PS dataset (Dataset S1). We then applied the CD-HIT algorithm
to the remaining proteins to remove similar sequences. Finally, we collected 29
PS-Self proteins and 28 PS-Part proteins and grouped them into our indepen-
dent test set (SaPS-test, PdPS-test) (Dataset S3).

Altogether, we collected 201 self-assembling proteins, of which 128 were
used for training and 73 were used for independent testing (Fig. 1B; SaPS, see
Dataset S2; SaPS-test, see Dataset S3); we also collected 327 partner-dependent
proteins, of which 214 were used for training and 113 were used for indepen-
dent testing (Fig. 1B; PdPS, see Dataset S2; PdPS-test, see Dataset S3).

Datasets of non-PS proteins. Since our PS proteins were retrieved from 49
organisms, we collected the corresponding proteomes from the Swiss-Prot data-
base as the background proteins. To reduce data redundancy, only 10 organisms
with 5 or more records of PS proteins in our datasets and with protein numbers
greater than 3,000 were retained for further usage (Homo sapiens, Saccharomy-
ces cerevisiae, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans,
Rattus norvegicus, Xenopus laevis, Arabidosis thaliana, Escherichia coli, Schizosac-
charomyces pombe). We then removed the protein sequences recorded in the
three PS databases (PhaSepDB, LLPSDB, PhaSePro). The remaining proteins
were submitted to the CD-HIT algorithm with a sequence identity cutoff of 0.4 to
reduce sequence similarity (19). Finally, 60,251 proteins that passed the quality-
control process were used as the non-PS protein set. Since we collected addi-
tional PS proteins as positive samples in the independent test set, we randomly
sampled 20% of the proteins from the non-PS set and used them as the nega-
tive samples of the independent test set (NoPS-test) (Dataset S3). The remaining
80% of the proteins were used for training (NoPS) (Dataset S2).

Fold-Changes of Amino Acid Frequencies. The amino acid frequency was
defined as the proportion of a certain amino acid type of all amino acids in the
sequence. Therefore, the frequency of all amino acid types in a protein sequence
sum to 1. For a certain amino acid type, we calculated the averaged amino acid
frequency for proteins in the positive and negative sets, then divided the fre-
quency of the positive set by the frequency of the negative set to get the fold-
change value.

Calculating PS-Related Properties at the Proteome Level. We used the
tools introduced in Dataset S4 to calculate sequence-based PS-related features.
The hydropathy and FCR score of a protein was calculated by localCIDER using
the default parameter (28). The hydropathy score was defined as the average
hydropathy of each residue from a normalized Kyte–Doolittle hydrophobicity
scale (57), and the FCR score was calculated by dividing the total number of D,
E, R, and K residues by the sequence length. We used the ESpritz DisProt pro-
gram with the decision threshold set at a 5% false-positive rate to predict poten-
tial disordered regions (23), and we used the SEG local package with default
parameters to detect LCRs within a given protein sequence (24). The fraction of
IDR or LCR was defined as the number of amino acids in the corresponding
domain divided by the sequence length. Each protein’s PScore, PLAAC, and
catGRANULE score was calculated using the corresponding tools under the
default parameters (6–8). However, PLAAC provides three summary scores for a
given sequence, including LLR, CORE, and PRD. Since the LLR score is more
appropriate in whole-proteome screening, we used the normalized LLR score to
represent the PLD-forming propensity. The Python package DeepCoil was used
to detect potential CC structures (27). We used 0.82 as the threshold for CC
structure detection and changed the score to 0 and 1 to indicate whether a
protein contains the predicted CC structure.

Other PS-related features were integrated to help model decisions, such as
Phos frequency and IF images. To calculate the Phos frequency, we downloaded
the Phos sites of human proteins from PhosphoSitePlus (29) (retrieved 8 Septem-
ber 2020). The Phos frequency was defined as the number of Phos sites divided
by the protein sequence length. IF image-based droplet-forming propensities
were collected from supplementary table 2 of ref. 30, DeepPhase. We submitted
12,073 human Ensembl gene IDs provided by DeepPhase to UniProtKB and
retrieved 11,982 UniProt entries for further analysis.
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Downsampling the hNoPS Set to Eliminate the Effect of IDR
Distribution on Phos Frequency. In order to eliminate the influence of IDRs
on Phos frequency, we downsampled the hNoPS set according to the IDR distri-
butions of the hSaPS set and the hPdPS set. Since the IDR scores generated by
ESpritz range from 0 to 1, we divided proteins in the negative and positive sets
into 10 groups with a step size of 0.1, respectively. For each of the 10 groups,
we can divide the number of proteins in the negative set by the number of pro-
teins in the corresponding positive set and define this value as the N/P ratio.
Then, except for the group with the smallest N/P ratio, we randomly sampled
proteins in the negative set of remaining groups to make the N/P ratios of the
10 groups identical. Finally, we combined proteins in the 10 sampled negative
sets to get the downsampled hNoPS set with a similar IDR distribution to the
positive set.

Constructing Machine-Learning Models for Predicting Two PS Protein
Categories.
XGBoost classification model. Our models were constructed using the Python
package XGBoost, a tree-based machine-learning algorithm with high efficiency
and exemplary performance in handling tabular data (31). Since the different
tools introduced in Dataset S4 have different restrictions on the input data, there
are some missing values when calculating features for the protein sequences.
Fortunately, the XGBoost algorithm provides a strategy to deal with these miss-
ing values. Therefore, our models have a higher tolerance for the input data.
Data used for training and testing. As introduced above, we have 128 PS-Self
proteins, 214 PS-Part proteins, and 45,484 non-PS proteins for training (SaPS,
PdPS, NoPS) (Dataset S2). In addition, we have 73 PS-Self proteins, 113 PS-Part
proteins, 53 PS proteins, and 12,064 non-PS proteins for independent testing
(SaPS-test, PdPS-test, PS-test, NoPS-test) (Dataset S3).
Model training.We first adopted the fivefold cross-validation strategy to test the
performance of the XGBoost model in distinguishing two PS protein sets from
the non-PS set. The training process of the SaPS model and the PdPS model are
separate, and both involved five rounds of training. For each training round, the
positive training, positive validation, and negative validation sets were fixed,
then 10 models were generated with 10 different negative training sets to pre-
vent the overuse of negative samples. The negative validation set and 10 nega-
tive training sets were randomly sampled from the NoPS set. These generated
sets contained twice the number of proteins as the positive validation set and
the positive training set, respectively. Using the 10 trained models, we defined
the prediction score of a single round as the average prediction score of these
models. Due to utilization of a fivefold cross-validation strategy, the final predic-
tion score was averaged on the five-round training. AUCs for validation sets indi-
cate good performance of the SaPS and PdPS models, and increasing the
number of features can further improve the predictive performance (Table 1).

Since we collected additional PS proteins as the independent test set, we did
not use the cross-validation strategy in the final training. Therefore, the final
model was determined with all the positive samples as the training set. To pre-
vent the overuse of negative samples, 10 different subsets of negative samples
were randomly sampled from the NoPS set with twice the number of proteins in
the positive set to train the 10 models. The parameters of all models were set as
default to prevent model overfitting on the training set, and the averaged predic-
tion scores of the 10 trained models were used as the final prediction score.

Collecting Annotations of MLO Participants and Control Proteins. We
collected four MLO participant datasets from previously published databases and
articles (Dataset S6). OpenCell is a human protein localization resource gener-
ated from 1,311 CRISPR-edited cell lines harboring fluorescent tags. We col-
lected 140 proteins annotated with “nuclear punctae” and defined them as the
“OpenCell nuclear punctae” set (32). A recently published article (33) reveals
that DACT1 forms PS proteinaceous cytoplasmic bodies to repress Wnt signaling.
The authors performed liquid chromatography coupled to tandem mass spec-
trometry (LC-MS/MS) and quantified the DACT1-particulate proteome. We col-
lected proteins with relative abundance greater than 0.01 compared to DACT1
and defined them as the “DACT1-particulate proteome” set (33). Yang et al. (34)
reported that the G3BP1-centered protein–RNA interaction network drives stress
granule (SG) formation. They analyzed the proximity proteomics of SGs using
APEX2-labeled G3BP1. We collected proteins with relative abundance greater
than 0.01 compared to G3BP1 and defined them as the “G3BP1 proximity label-
ing” set. PhaSepDB provides collections of PS-associated proteins that can be

identified with a high-throughput method, including organelle purification, prox-
imity labeling, IF image-based screening, and affinity purification. We defined
them as the “PhaSepDB high-throughput” set (16).

In addition to the MLO participant datasets, we collected two control sets for
comparison (Dataset S6). The proteome of human mitochondria was collected
from the Human Protein Atlas. Among 1,156 experimentally detected proteins,
1,126 are recorded by UniProt and were used for further comparison (35). Amy-
loid fiber-forming proteins were collected from the AmyPro database, which con-
tains 162 entries of validated amyloid precursor proteins and prions. These
entries make up a nonredundant set of 154 proteins, 68 of which were from
humans. Since the performance of the 6 PS predictors was evaluated on the
human proteome, we used these 68 human proteins for evaluation (36).

We also collected the intracellular location annotations of 4,424 proteins
from the BioID interactomes of 192 subcellular markers (Dataset S7). The appli-
cation of nonnegative matrix factorization localized these proteins to 20 compart-
ments, including membrane-bound organelles, like the Golgi apparatus, and
MLOs, like nuclear bodies (37).

To prevent self-validation, we removed the training proteins included in
above datasets before using these datasets to calculate the AUC values (Datasets
S6 and S7).

Selecting Top-Scored Proteins. We selected top-scored 500 proteins from
SaPS, PdPS, PLAAC, PScore, and catGRANULE with the corresponding positive
training samples removed, respectively. There are 1,733 proteins with a FuzDrop
score of 1 after training-data removal, we kept all these proteins for comparison
(Dataset S8). Together, these proteins make up a nonredundant set with 2,667
proteins, from which we selected DHX9, Ki-67, and NIFK for experimental
verification.

Model Explanation Using SHAP Value. SHAP is a game-theoretic approach
to explain the output of the machine-learning model. It provides an interface for
tree models and ensembles of tree models (39). The SHAP values can reflect
how features work together to push the model output from the base value to
the model output for a single sample. Therefore, the absolute value of SHAP
measures the importance of each feature for model decisions. We used proteins
in the OpenCell nuclear punctae set that are supported by microscopy images as
candidates, then we selected the top-scored proteins of the SaPS model and the
PdPS model by setting the false-positive rate at 0.1. To get a global model expla-
nation, we calculated the SHAP value for all the features of each sample with our
trained models. The averaged absolute value on 10 models was used as the final
score of a feature’s importance.

Experimental Materials.
Construction of recombinant plasmids. cDNA encoding for Human DHX9 iso-
form2 (235 amino acids, with 1 to 1,035 residues missing while C-terminal RGG
and disordered regions remaining), human Ki-67 truncation (821 amino acids,
with a deletion of the Ki-67 repeat domain in 494 to 2,928 residues), and
human NIFK (293 amino acids, full length) were synthesized (Genewiz) and
cloned into a modified pET11 expression vector (a solubility MBP tag followed
by a tobacco etch virus (TEV) cleavage site and a GFP or mCherry at the N termi-
nus, and a noncleavable 6×His tag located at the C terminus) (Novagen) for
expression and purification, respectively. cDNA encoding for SUMO protein was
synthesized (Genewiz) and cloned into a pET28a vector (SUMO at the N termi-
nus, 6×His at the C terminus) for expression and purification.
Protein purification. Three modified pET11-based plasmids and the pET28a-
SUMO plasmid were transferred into BL21 (DE3) bacteria cells (Tiangen). Trans-
ferred cells were cultured to OD600 = 0.8 at 37 °C in LB media with ampicillin
(Inalco) or kanamycin (Inalco) and induced in the presence of 0.1 mM isopropyl
β-D-1-thiogalactopyranoside (Inalco) at 16 °C overnight. Then, bacteria cells were
harvested and resuspended in lysis buffer (20 mM Hepes, pH 7.4, 500 mM
NaCl, 1 mM PMSF). The cells were next lysed using a high-pressure homoge-
nizer (ATS Engineering) and centrifuged. The supernatants were loaded onto
Ni-NTA affinity columns (GenScript), washed sufficiently with lysis buffer supple-
mented with 20mM imidazole, and then eluted using reaction buffer (20 mM
Hepes, pH 7.4, 100 mM NaCl) supplemented with 200mM imidazole. The
eluted solutions were collected, concentrated, and applied to gel-filtration for fur-
ther purifications.
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All proteins were further purified by a HiTrap Heparin HP (5 mL; Cytiva) to
remove nucleic acid impurity. MBP–GFP–DHX9, MBP–GFP–Ki-67, and
MBP–mCherry–NIFK were digested by 6×His-TEV protease at 4 °C overnight.
Cleaved MBP tags were removed from Ki-67 and NIFK proteins by Ni-NTA affinity
columns (GenScript). The removed MBP tag was collected for further in vitro PS
experiments. MBP–GFP–DHX9 solution became turbid after TEV digestion even
in a high-salt buffer (2 M NaCl). The cleaved MBP tag cannot be removed by
either Ni-NTA affinity columns or MBPTrap HP (5 mL; Cytiva), thus the PS experi-
ments of DHX9 were conducted after TEV digestion without further purification.
Preparation of DNA template. DNA template of mono 177-bp of the Widom
601 sequence was cloned and purified as previously described (58). The
sequence for the 177-bp DNA sequence is listed as following with 601
DNA sequence:

GAGCATCCGGATCCCCTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGA-
CAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGG-
GATTACTCCCTAGTCTCCAGGCACGTGTCACATATATACATCCTGTTCCAGTGCCGGACCC
In vitro PS assay. Proteins concentration was measured after purification. PS
in vitro assays of GFP–DHX9 was performed after TEV protease digestion, while
that of GFP–Ki-67 and mCherry–NIFK were performed after removing the
N-terminal MBP tags via mixing proteins with/without DNA. DNA was labeled
with DAPI. In vitro PS assays were performed in reaction buffer (20 mM Hepes,
pH 7.4, 100 mM NaCl), with various protein or DNA concentrations on 384 low-
binding multiwell 0.17-mm microscopy plates (In Vitro Scientific) and sealed
with optically clear adhesive film.

Imaging or in vitro FRAP experiments were conducted with a NIKON A1
microscope equipped with a 100× oil immersion objective. NIS-Elements AR
Analysis was used to analyze these images.

Droplets were bleached with the corresponding laser pulse (three repeats,
20% intensity, dwell time 1.9 s). Recovery from photobleaching was recorded for
the indicated time.

Finding Enriched Pathways with GSEA. We performed the single-sample
GSEA on 1,214 human pathways collected from the Reactome database (44).
P values for each pathway were calculated with a 1,000-round permutation. We
selected pathways with P value less than 0.05, then ranked them according to
the normalized enrichment score (NES). If the overlap of proteins in two path-
ways exceeds 50%, the pathway with lower NES will be removed. The 9 most-
enriched pathways in each method were selected to comprise a nonredundant
set with 37 pathways.

Sequence Embedding. We embedded protein sequences with a pretrained
language model, which was developed on structural information including pair-
wise residue contact maps within individual proteins and global structural simi-
larity between proteins (48). This model can map every amino acid of a protein
into a 3,705-dimensional vector. Therefore, this model returns a 3,705 × N
matrix (if a matrix hasm rows and n columns, it is anm × nmatrix) for a protein
sequence with N amino acids. We then averaged the matrix along the axis of
sequence length to get a 3,705 × 1 vector.

Protein Clustering and Domain Enrichment Analysis. We performed hier-
archical clustering for embedded vectors of 1,609 top-scored PS-Part candidates.
We adopted Ward’s minimum variance method to calculate the distance
between clusters, then grouped these proteins into five clusters. For each cluster,
domain items retrieved from DAVID were ranked by �log10 P value, and the

top-ranked four items were chosen for further analysis. These items together con-
stitute a nonredundant set with 19 domains.

Developing a Comprehensive Web Server that Integrates Current PS
Predictors. We implemented a metapredictor named PhaSePred (http://
predict.phasep.pro/) to access residue-level predictions of multiple PS predictors
and PS-related features, including PLAAC for PLD detection (7), PScore for
π-contact prediction (6), catGRANULE for granule-formation propensity prediction
(8), ESPritz for IDR detection (23), SEG for LCR detection (24), CIDER for hydropa-
thy prediction (28), DeepCoil for CC detection (27), and InterProScan for modular
domain prediction (59) (SI Appendix, Fig. S5A). As of August 2021, integrated
predictions for 116,806 sequences from 18 species are available (SI Appendix,
Fig. S5B).

Users can search a protein’s name or the UniProt entry in the “Home” page.
The query results are presented as a responsive table. The UniProt entry in
the “Query result” page can be clicked to navigate to the detailed page. Take the
protein DHX9 as an example (http://predict.phasep.pro/detail/Q08211/), the
detailed page includes four sections. 1) Protein information: This includes
the gene name and organism (SI Appendix, Fig. S5C, green dotted box). 2)
PhaSePred and related scores: This includes predictions made by the 8- and
10-feature SaPS and PdPS models and other PS predictors. The ranks for these
scores in the corresponding organism are displayed in a radar chart to provide
the PS profile. For the immunofluorescence image-based method DeepPhase,
the IF image from The Human Protein Atlas is shown (SI Appendix, Fig. S5C,
red-dotted box). 3) Protein feature viewer: The PS-related predictions with
residue-level scores are displayed in an interactive and scalable interface created
by the neXtProt feature viewer. Residue-level annotations shown in the blue-
dotted box of SI Appendix, Fig. S5C indicate that the functional region associated
with PS is located at the C terminus of DHX9, which includes the low-complexity
region predicted by SEG, prion-like domain predicted by PLAAC, granule-
forming region predicted by catGRANULE, and π-contact region predicted by
PScore. 4) Protein sequence viewer: The amino acid sequence for the protein is
shown, and the regions with higher PS-related scores are highlighted (SI
Appendix, Fig. S5C, orange-dotted box).

Detailed instructions and a data summary are described in the PhaSePred
“Guide” and “About” pages, respectively. All data in PhaSePred can be freely
downloaded in the “Download” page.

Data Availability. All study data are included in the main text and supporting
information.
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