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Abstract: Traumatic brain injury (TBI) is associated with significant cognitive and psychiatric con-
ditions. Neuropsychiatric symptoms can persist for years following brain injury, causing major
disruptions in patients’ lives. In this review, we examine the role of glutamate as an aftereffect
of TBI that contributes to the development of neuropsychiatric conditions. We hypothesize that
TBI causes long-term blood–brain barrier (BBB) dysfunction lasting many years and even decades.
We propose that dysfunction in the BBB is the central factor that modulates increased glutamate
after TBI and ultimately leads to neurodegenerative processes and subsequent manifestation of
neuropsychiatric conditions. Here, we have identified factors that determine the upper and lower
levels of glutamate concentration in the brain after TBI. Furthermore, we consider treatments of
disruptions to BBB integrity, including repairing the BBB and controlling excess glutamate, as poten-
tial therapeutic modalities for the treatment of acute and chronic neuropsychiatric conditions and
symptoms. By specifically focusing on the BBB, we hypothesize that restoring BBB integrity will
alleviate neurotoxicity and related neurological sequelae.

Keywords: blood–brain barrier (BBB); blood glutamate scavengers; glutamate; neuropsychiatric
conditions; traumatic brain injury (TBI)

1. Introduction

Traumatic brain injury (TBI) has long-term cognitive and psychiatric effects, including
depression, anxiety, and aggression. While the condition’s psychiatric symptoms may at
first be attributable to the emotional burdens of TBI-related physical disability, it has been
established that neuropsychiatric symptoms, such as memory and cognitive impairment,
anxiety, depression, social withdrawal, or aggression [1–3], can persist for decades [4,5]
after the initial brain injury. These symptoms can delay rehabilitation and a return to
employment [6]. The associated psychiatric symptoms are not correlated with severity of
the initial injury or with pain [7–9].

An association between TBI and the development of a wide range of neuropsychiatric
diseases has been well established [1–3,10,11]. A possible explanation for the increase in the
incidence of neuropsychiatric illness after TBI lies in the general mechanisms underlying
the development of these diseases. However, to date, there is no unified theory that explains
this phenomenon. In this review, we hypothesize that long-term dysregulation of glutamate
as a result of TBI, modulated by variability in blood–brain barrier (BBB) permeability,
causes a process of neurodegeneration, which ultimately leads to the development of
neuropsychiatric consequences of TBI. Here, we detail the proposed pathways of the
process and provide evidence for this hypothesized relationship.
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2. Pharmacological Basis of Dementia, Anxiety, and Mood Disorders: The Role of
Glutamate

The relationship between depression, anxiety, dementia, aggression, and
glutamate [12–14] is well studied and documented in the scientific literature [3,15,16].
Traditionally, anxiety and mood disorders are treated with medications that act primarily
on monoamines [17], benzodiazepines [18,19], or cannabidiol [20]; however, there is a
burgeoning interest in the role of the major excitatory neurotransmitter glutamate in the eti-
ology and treatment of anxiety [13,21–23], mood disorders, and disorders of social behavior
and aggression [24]. Medications that attenuate glutamate release or block N-methyl-D-
aspartate (NMDA) receptors [21,24–26] are used to treat anxiety disorders. Glutamate is
the major excitatory neurotransmitter in the brain, essential for long-term potentiation and
mediating long-term depression, and provides the molecular and cellular mechanisms of
learning [27–29]. Poor long-term cognitive evaluation in patients with TBI was correlated
with higher levels of brain glutamate recorded one week [30] and one month after the
injury [31], confirming the link between glutamate excess and deficits in higher cognitive
function. Glutamate excess following loss of neurons and astrocytes is common in stroke,
dementia, and neurogenerative diseases, and after injury such as TBI [32,33].

3. TBI and Glutamate Dysregulation

Glutamate is the most abundant free amino acid in the brain [34]. Glutamate concentra-
tions in the plasma and whole blood are 50–100 µM/L and 150–300 µM/L, respectively [12];
in the whole brain, they are 10,000–12,000 µM/kg [35], but they are only 1–10 µM/L in ex-
tracellular fluids (ECF) [12]. The gradient between brain cells, blood, and ECF is maintained
by facilitative and active transport systems of the BBB [35]. A healthy BBB effectively pre-
vents glutamate from moving between the intraparenchymal and blood compartments [36].
There are a number of mechanisms that cause an increase in brain glutamate associated with
TBI: (i) neuronal death [37]; (ii) inflammation [38–42]; (iii) impaired glutamatergic recycling
and signaling [43]; (iv) prolonged stress [29]; (v) astrocytic release of adenosine triphos-
phate (ATP) [44]; and (vi) other sources of elevated intraparenchymal glutamate [36,45].
Above all, however, we find the mechanisms of BBB destruction to be a significant factor in
increased brain glutamate and its association with TBI [35].

3.1. The Mechanisms of Increase in Brain Glutamate Is Associated with Neuronal Death

The well-known process of neuronal death, which begins in the first minutes after
a traumatic brain injury, can potentially lead to an increase in the glutamate levels in
cerebrospinal fluid (CSF) and extracellular fluid (ECF) of the brain to the levels of glutamate
in the whole brain, up to 10,000–12,000 µM/kg [12]. However, in practice, such high levels
of glutamate in CSF and ECF of the brain do not occur, and glutamate concentrations are
usually limited to about 20–50 µM/L [46–50]. The explanation for this phenomenon is
that even with the complete destruction of the BBB, concentrations of glutamate in the
CSF and ECF of the brain cannot exceed the concentration of plasma glutamate, which is
approximately 50–100 µM/L [12]. Plasma effectively clears out excess glutamate, sending
it into other organs and even red blood cells. Due to this process, a concentration of
glutamate at 100 µM/L, at the upper level of plasma concentration, is the maximum that
can be recorded in the CSF and ECF of the brain. Rare exceptions may occur when whole
blood is included in CSF collection.

However, the concentration of glutamate can reach 150–300 µM/L at the expense of
red blood cells, since whole blood contains higher levels of glutamate. However, in most
cases, the functionality of the BBB is not completely lost. Consequently, the concentration
of glutamate that appears after partial destruction of the BBB will be lower than the
concentration of plasma glutamate (50 µM/L). The concentration of glutamate in the brain,
CSF, and ECF depends on the degree of BBB damage as its determining factor.

As established above, the process of neuronal death provides an explanation for
elevated levels of glutamate in the ECF and CSF of the brain shortly after TBI (from the first
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minutes to the first week). The initial impact from TBI leads directly to cell necrosis from the
impact, exacerbated by ischemia, hypoxia, axonal shearing, and gliosis [51–53]. Neuronal
damage occurs with a massive influx of calcium, which subsequently causes over-excitation
and additional release of glutamate [54,55]. This process begins immediately, in the first
minutes after injury, and is characterized by significant neuronal death followed by the
release of glutamate into the ECF. Cell death lasts up to several hours or days [56–59],
depending on the volume of brain destruction and on the size and duration of cerebral
edema and penumbra. This process, however, clearly does not fully account for the
occurrence of neuropsychiatric consequences after TBI that manifest themselves months,
years, and even decades after the head injury.

3.2. The Mechanism of Increase in Brain Glutamate Is Associated with Inflammation [42]

Cell death in TBI patients leads to inflammation in the injured brain (focal brain in-
flammation), which secondarily causes brain injury through brain edema and neuronal
death, even as it binds the damaged limitans and removes cellular debris. However, brain
inflammation can also disseminate to other areas of the brain beyond the injured part [42].
Inflammation through glutamate alterations may also be a cause of mood disorders, as
patients with mood disorders have been observed to have increased inflammation [38].
Inflammation and alterations in glutamate neurotransmission at the level of the glia in-
creases glutamate and disrupts extrasynaptic signaling. Glutamate diffusion outside the
synapse can produce lost synaptic fidelity and specificity of neurotransmission that leads
to circuit dysfunction and behavioral pathology [60]. It has also been suggested that in-
flammation may have an impact on altering behavior of glutamate metabolism, which can
cause depressive symptoms such as anhedonia and psychomotor slowing [38].

However, inflammation cannot be the only explanation for psychiatric symptoms
following brain injury. If inflammation was closely associated with those symptoms, then
conditions with significant neuroinflammation and stress, such as encephalitis, meningitis,
and sepsis, would also present with associated neuropsychiatric diseases such as depres-
sion, anxiety, aggression, and dementia to a similar degree as after TBI. However, studies
show little if any association between those conditions of neuroinflammation and neuropsy-
chiatric disease or show the presence of neuropsychiatric diseases that are secondary to the
neuroinflammation itself [61,62].

3.3. The Mechanism of Increases in Brain Glutamate Is Associated with Impaired Glutamatergic
Recycling and Signaling

Disruption in brain glutamate impairs glutamatergic recycling and signaling [63]. In
neurodegenerative diseases, such as Alzheimer’s disease, the system of glutamate recycling
is significantly impaired [43,64].

3.4. The Mechanism of Increase in Brain Glutamate Is Associated with Prolonged Stress

Glutamate neurotransmission, through its mediation of mood function and stress
responses in the brain, has a relationship with the physical biochemical connections of
stress and depression [29].

The relationship between increased brain glutamate and stress has also been studied.
In one study of induced panic in healthy subjects, a significant rise in brain glutamate was
observed in the anterior cingulate cortex [65]. Some studies, however, have shown only a
slight correlation between increased glutamate and stress [66] or none at all [67].

3.5. The Mechanism of Increase in Brain Glutamate Is Associated with Astrocytic Release of
ATP [44]

Astrocytes release ATP, which prompts signaling between neurons and Schwann cells
in the peripheral nervous system. When it results from neuronal activity, released ATP
can also modulate central synaptic transmission. Glutamate release that occurs during
neuronal activity also initiates non-NMDA receptors of astrocytes and ATP release from
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them, which causes homosynaptic and heterosynaptic suppression. Glutamate, then, may
play a role in synaptic modulation [68].

3.6. The Mechanism of Increase in Brain Glutamate Is Associated with Other Sources of Elevated
Intraparenchymal Glutamate

The intraparenchymal–blood glutamate concentration gradient is governed by normal
baseline levels of glutamate in the blood and in the CSF. The difference between these con-
centrations is close to 50 µM, a level that creates a normal intraparenchymal concentration
gradient. The integrity of the BBB preserves this gradient, and alterations in BBB integrity
disrupt it. As a result of a variety of brain diseases, including both acute brain injury and
chronic disease, increased glutamate levels in the blood and CSF lead to disruptions in
the intraparenchymal–blood concentration gradient via compromised BBB integrity [36].
Thus, there are a number of mechanisms that can cause an increase in glutamate in brain
tissue. However, with a healthy BBB and well-functioning brain glutamate active transport
systems, the brain is able to quickly clear excess glutamate from the brain into the plasma
and maintain physiologically low levels of glutamate.

4. Disruption of the BBB

A critical process that can induce an increase in brain glutamate in the CSF and ECF
is a disruption of the BBB. The destruction of the BBB after brain injury is described as
biphasic [69]. The peak of the first phase occurs 5 h after the injury [69], and the second
phase peaks in rats after 72 h [70–72] and in humans on day 3 [73–75] after injury. Recent
data show that recovery of the integrity of the BBB in rats can take 1–3 months [76] or
even up to 10 months [77], and up to many years after the brain injury in humans [78–80].
It is known that damage to the BBB impedes thorough clearance of cerebral glutamate
from ECF into the bloodstream, in which excitatory amino acid transporters (EAAT) on
endothelial cells underlie the mechanisms for modulating the intraparenchymal–blood
glutamate concentration gradient [36].

The integrity of the BBB is a natural limiter of the pathological increase in the levels
of ECF/CSF glutamate in the phase of neuronal death and plays a key role in setting the
upper level of the concentration of ECF/CSF glutamate in the brain after TBI. However,
this is only one aspect of the process. It is the integrity of the BBB that also controls the
lower level of the brain glutamate level in all phases of both the healthy and the affected
brain after TBI.

In a healthy brain with stable BBB integrity, control of low glutamate levels is main-
tained by facilitative and active transport systems of the BBB that efficiently remove
glutamate from the brain into the blood [81]. When the BBB is destroyed, these systems
cannot effectively remove glutamate from the CSF and ECF into the blood and cannot
balance its concentration with the blood. Previously, it was believed that the BBB is restored
a short time after TBI and after a week its integrity does not significantly differ from those
of the control groups without TBI [82]. However, recent data show that disruption of the
BBB does not recover within hours, days, or even weeks but continues for many months,
years, and even decades after TBI [78–80]. Newly developed, highly sensitive methods for
determining BBB permeability based on molecular complexes with a molecular size starting
from 103 Da [83] register the difference between the control and TBI groups in human and
rat populations months and even years after TBI [78–80]. These methods are more sensitive
and accurate than previous methods to measure BBB permeability, such as with Evans Blue
staining, which may explain why a theory of long-term (chronic) glutamate neurotoxicity
had not developed until recently [77,78].

Despite a high correlation of sensitivity between nervous tissue and high concentra-
tions of glutamate, studies suggest that a prolonged increase of even 10% of extracellular
brain glutamate (considered glutamate neurotoxicity) may induce neurodegenerative pro-
cesses [12].
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Other processes described above are well documented in the scientific literature and
can also increase glutamate levels both locally in brain tissue and in CSF. However, it is
the degree of integrity of the BBB that is the key factor controlling the range of glutamate
concentration in both healthy and damaged brains. Thus, for the first time, we hypothesize
that it is the integrity of the BBB that is the key factor that modulates glutamate in CSF
and ECF after brain damage and specifically after TBI, which, via high levels of glutamate,
causes neurodegenerative processes which ultimately lead to mental disorders (Figure 1).
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5. Glutamate Neurotoxicity and Its Association with Neurodegeneration

There is well-established evidence that shows a relationship between glutamate neu-
rotoxicity and neurodegeneration [29]. Glutamate excitotoxicity describes the process of
excessive glutamate causing neuronal degeneration and dysfunction, resulting in neurotoxi-
city [29,84,85]. Its role in mood disorders has informed recent research into new therapeutic
modalities, with drugs that target glutamatergic systems proposed as anti-depressants and
related therapies [86–88].

Increased extracellular glutamate can prompt excitotoxicity, via overaction of ionotropic
glutamate receptors, after acute brain insults such as ischemic stroke, cerebral ischemia, TBI,
hypoglycemia, and epilepsy [85,89–94]. In addition to these acute conditions, a process of
chronic glutamate neurotoxicity has also been suggested as a factor in many neurodegener-
ative diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, and Huntington’s
disease [92]. In these cases, it is possible that chronic excitotoxicity occurs in diseases
where nerve cell death occurs over a longer period of time, in which neurons exposed
to glutamate at higher-than-normal levels can gradually lead to cell death or impaired
neuroplasticity [92]. We hypothesize that therapeutic modalities for these diseases may
work by specifically restoring glutamatergic homeostasis through stimulating glutamate
uptake and releasing extracellular glutamate. The process of glutamate neurotoxicity lead-
ing to neurodegeneration leads to new possibilities for treatments for acute and chronic
neurological diseases that target the glutamatergic system.

6. New Treatment Strategies for Neuropsychiatric Consequences of TBI Associated
with the Hypothesis of Impaired BBB Permeability and Brain–Blood Glutamate
Equilibrium

Immediately following TBI, the concentration of cerebral glutamate increases, then
decreases. However, it does not reduce to normal levels; excess levels can persist for months
or years [74,75]. As noted above, an excess of glutamate in CSF and ECF over time causes
neurodegenerative processes that ultimately lead to the development of neuropsychiatric
pathology (Figure 1). Modulating excess glutamate, therefore, is a critical factor in limiting
the spread of brain damage. According to our hypothesis, BBB permeability is a key factor
controlling the upper and lower levels of CSF and ECF glutamate. Therefore, we propose
two promising strategies to reduce the level of brain glutamate. The first strategy involves
the treatment and reconstruction of the BBB. The goal of the second strategy is to reduce
CSF and ECF glutamate levels by lowering plasma glutamate levels.
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6.1. Treatment Aimed at Recovery of the Integrity of the BBB [95,96]

Treatments to restore BBB function and integrity consist of several approaches
(Table 1) [95]. However, some treatments solely aimed at restoring the BBB have not been
shown to be effective in treating neurodegenerative diseases [97,98]. Thus, this approach
alone may be inadequate in treating symptoms of BBB dysfunction.

6.2. Reducing Post-Injury Glutamate Excess Based on Manipulation of Brain–Blood Glutamate
Equilibrium

Excess brain glutamate can also be modulated by changing the brain–blood glutamate
equilibrium and sending excess glutamate from the brain’s interstitial fluid (ISF) into the
body’s circulatory system [99]. Glutamate transporters on the endothelial cells of brain
capillaries enable extrusion of glutamate from ISF [37,100]. Synaptic glutamate receptors
are not directly stimulated or impeded through this process, allowing mechanisms of
learning to continue.

Treatments shown in a rat model to lessen the early neuroanatomical and neurological
detriments caused by TBI include administration of the enzymes glutamic oxaloacetic
transaminase (GOT), serum glutamic pyruvic transaminase (GPT), and their co-substrates
oxaloacetic acid (OxAc) and pyruvate, which reduces excess brain glutamate by altering
the balance between blood and brain glutamate [101–103]. This reduction in glutamate is
referred to as blood glutamate scavenging (BGS).

It has been shown that low levels of GOT and GPT are associated with poor neurologi-
cal outcomes following stroke, whereas high GOT and GPT levels correlate with a better
neurological outcome [104,105]. The enzymes GOT and GPT use glutamate as a substrate
and pyridoxal phosphate as a cofactor to reversibly convert glutamate into the inactive
metabolite 2-ketoglutarate.

This process prompts blood glutamate levels to fall below basal levels, causing a
much steeper gradient of glutamate levels between the ISF or CSF and blood. To attain an
equilibrium again, glutamate is moved from the brain to the blood, thus reducing the high
level of glutamate in the brain. As long as glutamate stays at a low level in the blood, this
brain-to-blood efflux will continue. To maintain the proper functionality of GOT and GPT
to convert glutamate into 2-ketoglutarate, their respective substrates OxAc and pyruvate
must be administered at doses at least double their Km values. The conversion of glutamate
to 2-ketoglutarate is reversible. Thus, upon glutamate transformation via an enzymatic
reaction into 2-ketoglutarate, there is an accrual of 2-ketoglutarate which can cause the
enzyme to convert 2-ketoglutarate into glutamate. Thus, it is advantageous to break down
2-ketoglutarate fully to ensure the continual metabolism of glutamate. 2-ketoglutarate
(with lipoamide) is reversibly metabolized by the enzyme 2-ketoglutarate dehydrogenase to
S-succinyldihydrolipoamide and carbon dioxide [74]. The increased concentration gradient
between blood and brain glutamate accelerates the efflux of glutamate from brain to plasma,
thereby minimizing excitotoxicity caused by excess brain glutamate.

OxAc and pyruvate infusions reduce the severity of neurological deficits and symp-
toms of depression in rats after stroke [106] and traumatic injury in the brain [46]. The
therapeutic effect of pyruvate on aggression and anxiety symptoms in a rat model of TBI
has been observed in our laboratory (data yet to be published). The efflux of glutamate
with pyruvate or OxAc is blocked by adding exogenous glutamate, demonstrating the
dependence of the scavenging method on lowering blood glutamate [37,103]. GOT and
GPT likely enhance the efflux of glutamate from the brain and blocking the function of GOT
and GPT exacerbated the behavioral and morphological deficits following ischemia [107].

OxAC, pyruvate, GPT, and GOT have been proposed as treatments for TBI and
stroke [46,106,108–110]. The safety of OxAc and pyruvate has been shown in elderly
patients [111–120], and its potential in alleviating symptoms of anxiety, depression, suicidal
ideation, and aggression in women with PMS was suggested in a clinical trial [121].
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Table 1. Treatments to restore blood–brain barrier function and integrity.

Intervention Description

Targeting paracellular permeability

Targeting junction molecules (adherens junctions, tight
junctions), or their regulators (microRNA, transcription

factor) in order to limit or reverse paracellular
permeability [95,122]. Examples include chelerythrine

chloride [123].

Targeting transcellular permeability
Inhibition of transcytosis in brain endothelial cells,

important to maintain neurological function and BBB
integrity [95,124,125].

Restoring efflux transporter activity
Restoring efflux transporter activity, such as

ATP-binding cassette (ABC) transporters [95,126],
important for clearing neurotoxins from the brain.

Repair of the neurovascular unit

Reestablishing normal function of the neurovascular
unit (neurons, astrocytes, endothelial cells, pericytes,

and the basal lamina), by restoring microvascular bed
cerebral blood flow, limiting neuronal death, and
promoting neurogenesis and angiogenesis [127].

Examples include bone-marrow-derived mesenchymal
stem cells (MSCs) [128], pericytes [129,130], endothelial

progenitor cells (EPCs) [131], neural and vascular
progenitor cells [132,133], bone-marrow-derived

macrophages [134], and vascular endothelial growth
factor (VEGF) [135].

Targeting inflammation

Targeting inflammation and downstream sequalae to
restore the BBB. Examples include COX-2 inhibition
[136], AQP4 inhibition [123], docosahexaenoic acid

(DHA) [137], inhibition of Na-K-Cl cotransporter [138],
and bone marrow mononuclear cells (MNCs) [139,140].

Matrix metalloproteinases (MMP)

Limiting pathologically elevated MMP expression
elevated after brain insult [127]. Examples include
progesterone [141], TGF- β1 [142], exendin-4 [143],

melatonin [144], regulatory T cells [145], EP1
antagonists [146], and minocycline [147].

7. Other Factors That Play a Role in the Pathophysiology of TBI

Although we propose in this paper that a disruption to BBB integrity is associated
with neurological deterioration, other factors may also play a role. These factors include
age at the time of injury, hormonal status, medical history, and environmental factors with
an impact on general stress [148]. While a discussion of these other factors is beyond the
scope of this manuscript, we anticipate future research will provide more information
on the possibility of multifactorial pathophysiology of neuropsychological symptoms of
brain injury.

8. Conclusions

There are several mechanisms that potentially influence an increase in brain glutamate
associated with TBI: (i) neuronal death; (ii) destruction of the BBB; (iii) inflammation;
(iv) impaired glutamatergic recycling and signaling; (v) prolonged stress; (vi) astrocytic
release of ATP; and (vii) other sources of elevated intraparenchymal glutamate. These
mechanisms start in the first minutes after brain injury and continue for many years and
even decades after TBI.

Regardless of how much glutamate is released into the CSF and ECF compartment via
the above mechanisms, BBB disruption is one component that determines the maximum
levels of CSF and brain ECF glutamate. The degree of disruption of BBB integrity controls
the glutamate range in both healthy and TBI brains based on two parameters: BBB perme-
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ability and the ability of facilitative and active transport systems to remove glutamate into
the bloodstream.

Thus, we novelly hypothesize that it is the integrity of the BBB that is the key factor
in the context of the control of glutamate in CSF and ECF after brain damage. Specifically,
this occurs after TBI, in which neurotoxicity involving high levels of glutamate causes
neurodegenerative processes which ultimately lead to mental disorders. Consequently,
targeting reparation of BBB integrity through controlling increased glutamate may together
have a significant impact on neuropsychological symptoms of acute and chronic brain
conditions. We anticipate that future research will explore the role of the BBB as a central
location for the development of neuropsychiatric consequences of TBI.
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