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Abstract
Objective: To investigate the effects of adjunct ketamine treatment on chronic treat-
ment-resistant schizophrenia patients with treatment-resistant depressive symptoms 
(CTRS-TRD patients), including alterations in brain function.
Methods: Intravenous	ketamine	(0.5	mg/kg	body	weight)	was	administered	to	CTRS-
TRD	patients	over	a	1-hr	period	on	days	1,	4,	7,	10,	13,	16,	19,	22,	and	25	of	our	ini-
tial	pilot	study.	This	treatment	method	was	subsequently	repeated	58	days	after	the	
start of the pilot study for a secondary follow-up study. Calgary Depression Scale for 
Schizophrenia	(CDSS),	Positive	and	Negative	Syndrome	Scale	(PANSS),	and	regional	
homogeneity (ReHo) results were used to assess treatment effects and alterations in 
brain function throughout the entire duration of our studies.
Results: Between	day	7	and	day	14	of	the	first	treatment,	CDSS	scores	were	reduced	
by	63.8%	and	PANSS	scores	were	reduced	by	30.04%.	In	addition,	ReHo	values	in-
creased in the frontal, temporal, and parietal lobes. However, by day 21, depressive 
symptoms	relapsed.	During	the	second	treatment	period,	CDSS	and	PANSS	scores	
exhibited	no	significant	differences	compared	to	baseline	between	day	58	and	day	
86.	On	day	65,	ReHo	values	were	higher	in	the	temporal,	frontal,	and	parietal	lobes.	
However,	on	day	79,	the	increase	in	ReHo	values	completely	disappeared.
Conclusions: Depressive symptoms in CTRS-TRD patients were alleviated with ad-
junct ketamine treatment for only 1 week during the first treatment period. Moreover, 
after 1 month, the antidepressant effects of ketamine on CTRS-TRD patients com-
pletely disappeared. Correspondingly, ReHo alterations induced by ketamine in the 
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1  | INTRODUC TION

Approximately	 20%	 of	 chronic	 schizophrenia	 patients	 experi-
ence	moderate-to-severe	 depressive	 symptoms	 (Conley,	Ascher-
Svanum,	 Zhu,	 Faries,	 &	 Kinon,	 2007;	 Upthegrove	 et	 al.,	 2010).	
Prior models have suggested that there is a dichotomy be-
tween	 schizophrenia	 and	 depression	 (Craddock	 &	Owen,	 2010).	
However, recent evidence suggests that depressive systems may 
predict poorer outcomes in schizophrenia (Gardsjord et al., 2016; 
Upthegrove et al., 2010). Moreover, depressive symptoms have 
been linked to suicidality (Dutta et al., 2011), poor functional re-
covery, and poor quality of life in schizophrenic patients (Conley 
et	 al.,	 2007;	Dutta	 et	 al.,	 2011).	 Use	 of	 antidepressant	 drugs	 to	
treat depressive symptoms in schizophrenic patients taking anti-
psychotics	is	reported	to	have	poor	efficacy	(Gregory	et	al.,	2017;	
Helfer et al., 2016; Tiihonenl et al., 2016). Therefore, research-
ers	 have	 undertaken	 the	 development	 of	 animal	 models	 to	 ex-
plore possible depression treatments for schizophrenic patients 
(Samsom	&	Wong,	2015).

Ketamine is an effective antidepressant agent, especially in pa-
tients with treatment-resistant depressive (TRD) symptoms (Bobo 
et al., 2016; Krystal et al., 2019; Phillips et al., 2019; Silberner, 
2019). In healthy adults, a single administration of ketamine 
(0.5	 mg/kg)	 can	 induce	 immediate	 psychotomimetic	 symptoms,	
which recede within 2 hr (Krystal et al., 2019). The antidepressant 
effects of ketamine have been associated with alterations in brain 
functional	activity,	mainly	in	the	medial	prefrontal	cortex	(mPFC),	
anterior	cingulate	cortex	(ACC),	posterior	cingulate	cortex,	precu-
neus,	angular	gyrus,	orbitofrontal	cortex	(OFC),	subgenual	anterior	
cingulate	cortex,	superior	temporal	gyrus,	middle	temporal	gyrus,	
and	 hippocampus	 (Abdallah,	 Averill,	 et	 al.,	 2017;	 Carlson	 et	 al.,	
2013; Evans et al., 2018; Gartner et al., 2019; Li et al., 2018; Reed 
et al., 2018). These previous studies provide important informa-
tion to guide further investigations of mechanisms mediating the 
antidepressant effects of ketamine. They also provide insights re-
garding	optimization	of	ketamine	administration	and	they	expand	
the spectrum of diseases for which ketamine treatment may be 
applicable based on TRD symptoms.

Atypical	 brain	 activity	 findings	 have	 been	 reported	 for	 both	
schizophrenia	 (Dezhina,	 Ranlund,	 Kyriakopoulos,	 Williams,	 &	
Dima,	2019;	Glausier	&	Lewis,	2018;	Krajcovic	&	Fajnerova,	2019)	
and	 major	 depressive	 disorder	 (Arnone,	 2019;	 Marwood	 et	 al.,	
2018; Sankar et al., 2018). Local temporal homogeneity of re-
gional	blood	oxygen	level-dependent	signals,	referred	to	as	ReHo,	
has been used to assess resting-state neural activity (Chen et al., 
2013;	Wei	 et	 al.,	 2017,	2018;	Xia	 et	 al.,	 2019;	Yang	et	 al.,	 2019;	

Zang et al., 2004). Moreover, since ReHo focuses on similarities 
over time, it can also be used to assess functional brain alterations 
(Chen et al., 2013; Paakki et al., 2010). Interestingly, similarities 
have been identified between schizophrenia- and major depressive 
disorder-related brain alteration patterns, particularly in regard to 
ReHo	data.	Furthermore,	similar	antidepressant	and	antipsychotic	
brain activity normalization effects have been reported for these 
two patient populations, most notably in the temporal, parietal, 
and	 frontal	 lobes	 (Abbott,	 Jaramillo,	Wilcox,	 &	 Hamilton,	 2013;	
Arnone,	2019;	Kraus	et	al.,	2017;	Lesh	et	al.,	2015).	Interestingly,	
low-dosage ketamine does not appear to deteriorate psychotic 
symptoms in patients with schizophrenia, and it does not induce 
psychotic symptoms in depression patients or in patients with bi-
polar	or	post	 trauma	stress	disorders	 (Lener	et	 al.,	2017;	Liriano	
et al., 2019; Molero et al., 2018).

Considering the aforementioned findings, we decided to inves-
tigate the effects of combining ketamine with therapeutic agents 
on TRD symptoms and brain ReHo in chronic treatment-resistant 
schizophrenia (CTRS) patients. We hypothesized that augmentation 
with a ketamine treatment regimen would improve TRD symptoms 
in CTRS patients, and such effects would be accompanied by alter-
ations in pivotal regions of the brain.

2  | METHODS

2.1 | Patients

This study was approved by local institutional review boards. 
Inclusion criteria were as follows: (a) a diagnosis of CTRS, as de-
scribed	 by	Howes	 (Nierenberg	&	Amsterdam,	 1990);	 (b)	 comorbid	
TRD	symptoms,	according	to	Nierenberg's	criteria	(Akil	et	al.,	2018;	
Grover	 et	 al.,	 2017);	 (c)	 active	disorder	presentation;	 (d)	 an	 intelli-
gence	quotient	≥80;	and	(e)	willingness	of	the	patient	(and	guardian	
when	appropriate)	to	participate	in	this	study.	Exclusion	criteria	were	
as follows: (a) moderate-to-severe physical disease (e.g., respiratory, 
cardiovascular, endocrine, neurological, liver, or kidney disease) 
comorbidity; (b) personal or family history of substance abuse; (c) 
current nicotine addiction; (d) currently receiving electroconvulsive 
therapy;	 (e)	 loss	of	consciousness	 for	more	 than	5	min	due	 to	any	
cause;	 (f)	 left-handedness,	 as	 determined	 with	 the	 Annett	 Hand	
Preference Questionnaire; and (g) any magnetic resonance imaging 
(MRI)	contraindication,	including	claustrophobia.	According	to	these	
strict	enrollment	criteria,	a	total	of	15	patients	were	eligible	to	par-
ticipate	in	this	study.	All	of	them	and	their	guardians	provided	writ-
ten informed consent.

Multidisciplinary Team for Cognitive 
Impairment,	Grant/Award	Number:	
201705D131027

CTRS-TRD patients were not maintained for more than 3 weeks. These pilot findings 
indicate that adjunct ketamine treatment is not satisfactory for CTRS-TRD patients.

K E Y W O R D S

depressive symptoms, fMRI, ketamine, regional homogeneity, schizophrenia



     |  3 of 11ZHUO et al.

2.2 | Adjunct ketamine administration methods

Following	a	baseline	assessment	of	depressive	and	psychotic	symp-
toms, medication dosages were standardized during a 4-week ad-
junct ketamine treatment period. Briefly, intravenous ketamine 
(0.5	mg/kg	 body	weight)	 was	 administered	 over	 a	 1-hr	 period	 on	
days	1,	4,	7	,10,	13,	16,	19,	22,	and	25	of	the	study	starting	at	6	p.m.	
Heart	 rhythm,	 blood	 pressure,	 and	 blood	 oxygen	were	monitored	
during, and up to 2 hr after, the infusion of ketamine. Liver and renal 
function were tested twice a week. Heart rhythm, blood pressure, 
and	blood	oxygen	were	monitored	from	6	p.m.	to	8	p.m.	for	totally	
2 hr during the period of ketamine administration and thereafter. 
Physical signs and patient-reported symptoms were also noted dur-
ing	this	monitoring	period.	Adjunct	ketamine	treatment	was	imme-
diately	 discontinued	 if	 a	 patient	 exhibited	 any	 adverse	 secondary	
effects	(ASEs),	which	were	considered	high	risk	by	the	patient's	neu-
rologist or cardiologist.

2.3 | Main and secondary effect assessments

The Calgary Depression Scale for Schizophrenia (CDSS) and 
Positive	and	Negative	Syndrome	Scale	 (PANSS)	were	used	to	as-
sess depressive and psychotic symptoms once a week. To detect 
ASE	 emergence,	 monitoring	 indices,	 consults	 with	 neurologists	
and cardiologists, and the Treatment Emergent Symptom Scale 
(Zhang, 1990) were used.

2.4 | Acquisition of brain MRI data

Functional	MRI	(fMRI)	data	were	collected	at	five	time	points	relative	
to the initiation of adjunct ketamine treatment: at baseline (pretreat-
ment)	and	 then	on	days	7,	14,	21,	and	28.	The	 fMRI	examinations	
were	performed	with	a	3.0-T	Discovery	MR750	system	(GE).	Briefly,	
each participant was instructed to lie still while staying awake with a 
relaxed	mind	during	scanning.	Each	participant	was	fitted	with	foam	
padding	 and	 earplugs	 to	 limit	 head	motion	 and	 the	 effects	 of	 ex-
ternal	noises.	A	single-shot	echo-planar	sequence	for	resting-state	
fMRI	was	applied	as	follows:	repetition/echo	times	=	2,000/45	ms,	
field of view = 220 mm2,	matrix	=	64	×	64,	flip	angle	=	90°,	slice	thick-
ness	=	4	mm,	and	gap	=	0.5	mm.	Each	functional	run	consisted	of	180	
image	volumes	over	a	32-axial-slice	brain	volume	for	each	patient.	
T1-weighted three-dimensional images (188 slices) were obtained 
with a brain volume sequence constituted by the following param-
eters:	repetition/echo/inversion	times	=	8.17/3.18/450	ms,	field	of	
view	=	256	mm2,	matrix	=	256	×	256,	and	slice	thickness	=	1	mm.

The	fMRI	data	were	preprocessed	by	using	SPM8	and	DPARSF	
V2.3	programs.	The	 first	 ten	 images	were	excluded	from	each	pa-
tient's scan dataset to allow signal equilibration. Slice timing was 
performed to correct for interslice temporal differences. Head mo-
tion was screened and corrected for by using the rigid body realign-
ment method (Zhang et al., 2016).

2.5 | Statistical analysis

Before versus after treatment, differences in ReHo were subjected 
to	family-wise	error	correction.	A	paired	t test was used to compare 
CDSS	and	PANSS	scores	to	ketamine	treatment-induced	changes	in	
ReHo. p-values	<	.05	were	considered	statistically	significant.

2.6 | Image data preprocessing

Pretreatment and posttreatment fMRI datasets were preprocessed 
separately	by	using	three	programs:	FMRIB	Software	Library,	version	
5	(fmrib.ox.ac.uk/fsl),	Analysis	of	Functional	NeuroImages	(afni.nimh.
nih.gov/afni/),	 and	 FreeSurfer,	 version	 5.3	 (surfer.nmr.mgh.harva	
rd.edu/). High-resolution T1 images aligned to the cortical surface of 
each	patient	were	reconstructed	 in	accordance	with	the	FreeSurfer	
pipeline. Briefly, after registering the images to the Talairach atlas 
and applying a bias-field correction, skull stripping, intensity nor-
malization, surface modeling, and spherical mapping were conducted. 
Subsequently, slice timing correction, deobliquing, and motion correc-
tion processes were applied to the data. Whole images were normal-
ized according to their mean intensity values and then were scaled 
10,000 times. Both linear and quadratic trends were removed from 
the	 signals.	 A	 transformation	matrix	 generated	 by	 boundary-based	
registration	was	applied	to	coregister	each	image	with	T1	images.	A	
principal component analysis of the time course to regress out five 
major components of white matter and cerebrospinal fluid was subse-
quently performed, thereby reducing physiological (and other) noise.

2.7 | ReHo estimation and analysis

Regional homogeneity analysis was performed to investigate spon-
taneous neuronal activity and short-range connectivity, without 
the need for an a priori hypothesis (Zang et al., 2004). Briefly, re-
gional similarity across the time series was determined by calculat-
ing Kendall's coefficient of concordance of target-region surrounding 
voxels	(n	=	26)	for	each	target	voxel.	Preprocessed	fMRI	data	were	
subjected to low band pass filtering (0.009–0.1 Hz) and then were 
resampled	as	3-mm	isotropic	voxels	without	spatial	smoothing.	Voxel	
ranks were computed at each repetition time. ReHo values were cal-
culated along the middle of the gray matter–white matter boundary 
and projected to surface vertices. Surface alignment of functional 
signals can reduce interindividual variability related to cortical fold-
ing and limit activation spread over distant regions in spatial smooth-
ing processes. Surface fMRI data obtained before and after ketamine 
treatment were subjected to pair-wise registration. Surface data 
were moved to a common spherical surface and then were smoothed 
spatially	with	 a	5-mm	 full-width	 at	 half-maximum	Gaussian	 kernel.	
The ReHo values obtained were transformed into Z scores in the sur-
face model, and these were used in a group-level statistical analysis.

To assess drug treatment effects, general linear modeling (with 
participant age and intelligence quotient controlled for) was applied. 

http://fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Criteria for identifying significant clusters were as follows: cluster 
p	<	.0001;	cluster	size	>	10	voxels	after	10,000	Monte-Carlo	z statis-
tic simulations; and cluster p	<	.05	after	two-tailed	test	and	correc-
tion for hemispheric tests.

To identify potential cluster-wise ReHo change relationships 
with changes in symptoms (which initially varied across participants), 
a correlation analysis between percent changes in ReHo values 
and symptom presentation measures was performed. Spearman's 
rank-order method was used for correlation analysis (N = 12 par-
ticipants), which was conducted by using in-house code written in 
MATLAB	(MathWorks,	Inc.).	Changes	in	ReHo	values	were	subjected	
to family-wise error correction.

3  | RESULTS

3.1 | Demographic and clinical characteristics of the 
analyzed cohort

All	15	enrolled	CTRS	patients	with	TRD	symptoms	 (CTRS-TRD	pa-
tients) completed the adjunct ketamine treatment (0% drop-out). 
However, complete fMRI data could not be obtained for three of the 
15	enrolled	participants.	Therefore,	our	final	analysis	only	 included	
data from 12 participants. Demographic and clinical characteristics of 
this final cohort are summarized in Table 1. None of the participants 
complained	 of	 ketamine-induced	 ASEs,	 although	 one	 patient	 re-
ported	experiencing	visual	hallucinations.	The	latter	patient	reported	
seven hallucinations within 30 min after the first ketamine infusion. 
The hallucinations were of objects (e.g., an apple and an eggplant), 
and the longest duration for an individual hallucination was 2 min.

3.2 | Treatment effects of ketamine

Adjunct	 ketamine	 (0.5	 mg/kg,	 intravenous	 [i.v.]	 over	 1	 hr)	 was	
found	 to	 reduce	 both	CDSS	 (depressive	 symptoms)	 scores	 (63.7%	
decrease)	 and	PANSS	general	psychopathological	 symptom	scores	
(30.04%	 decrease)	 significantly	 between	 days	 7	 and	 14	 after	 the	
first ketamine treatment (Table 1). The mean CDSS score for the co-
hort subsequently increased between days 14 and 21. Then by day 
28, the mean CDSS score increased to a level that was statistically 
similar to the mean CDSS score at baseline, despite maintenance of a 
fixed	ketamine	treatment	strategy.	Trajectory	of	the	change	in	CDSS	
scores	 is	 shown	 in	 Figure	 1.	 Meanwhile,	 PANSS	 negative	 (0.23%	
decrease)	and	positive	 (0.06%	decrease)	scores	did	not	exhibit	sig-
nificant changes between pre- and post-ketamine adjunct treatment 
time points (Table 1). The latter results indicate that the adjunct 
ketamine treatment regimen did not induce activation of psychotic 
symptoms,	and	none	of	the	patients	exhibited	or	reported	ASEs	re-
quiring medical intervention.

3.3 | Alterations in ReHo values

Compared to pretreatment observations, an increase in ReHo values 
was	observed	mainly	in	the	mPFC,	ACC,	posterior	cingulate	cortex,	
precuneus,	angular	gyrus,	and	bilateral	OFC,	beginning	from	day	7	
after	the	start	of	ketamine	administration	(Figure	2a).	ReHo	values	
subsequently	peaked	on	day	14	(Figure	2b),	they	remained	high	on	
day	21	(Figure	2c),	and	then,	they	exhibited	a	notable	decrease	on	
day 28. The latter level did not differ significantly from baseline (it 
was	 unable	 to	withstand	 family-wise	 error	 correction;	 Figure	 2d).	

TA B L E  1   Mean demographic and clinical characteristics of CTRS-TRD patients undergoing augmentation ketamine treatment in our 
initial pilot study (N = 12)

Variable Before treatment
After 2 weeks of 
treatment

After 4 weeks of 
treatment F p-value

Age,	years 35.16	±	7.63 – – – –

Education, years 16.62	±	3.96 – – – –

Illness duration, years 5.38	±	1.42 – – – –

Male/female ratio 7/5 – – – –

Chlorpromazine equivalent dose 1,250.70	±	200.80 – – – –

CDSS score 16.50	±	3.94 5.98	±	1.94 14.28	±	2.30 14.298 <.001

PANSS	scores

Total 83.90	±	9.23 73.04	±	10.10 80.23	±	8.51 3.051 .016

Positive 25.60	±	3.75 25.44	±	4.05 26.11	±	5.14 0.198 .921

Negative 27.71	±	5.19 27.31	±	4.93 26.00	±	5.36 0.194 .848

General psychopathological 
symptoms

29.90	±	5.41 20.81	±	4.97 26.00	±	3.85 4.286 <.001

TESS score 22.57	±	6.55 21.54	±	5.33 20.99	±	4.70 0.688 .433

Note: Mean	values	are	reported	±	standard	deviation.
Abbreviations:	CDSS,	Calgary	Depression	Scale	for	Schizophrenia;	CTRS-TRD,	chronic	treatment-resistant	schizophrenia	with	treatment-resistant	
depressive	symptoms;	PANSS,	Positive	and	Negative	Syndrome	Scale;	TESS,	Treatment	Emergent	Symptom	Scale.
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Furthermore,	CDSS	and	PANSS	alterations	which	occurred	between	
days	7	and	14	did	not	correlate	with	any	regional	changes	in	ReHo.

3.4 | Secondary follow-up study

In our pilot study (described above), ketamine augmentation treat-
ment only alleviated depressive symptoms for 1 week. In addition, 
an increase in ReHo values in the brain was not maintained for more 
than 3 weeks. We hypothesize that rapid neurotransmitter desensi-
tization weakens a synergistic ketamine effect and is responsible for 
these	results	(Bolton,	Phillips,	&	Constantine-Paton,	2013;	Glasgow	

et	al.,	2017).	Based	on	these	initial	findings	and	the	fact	that	no	seri-
ous	ASEs	were	observed	in	our	pilot	study,	we	designed	a	follow-up	
study to further investigate the effects of ketamine augmentation 
treatment on our cohort. To avoid neurotransmitter desensitization, 
the augmentation treatment protocol was repeated in the same pa-
tients	58	days	after	the	start	of	the	pilot	study.	This	time	frame	was	
selected so that normalization of neurotransmitter desensitization 
could occur after completion of the pilot study.

The secondary follow-up study included all of the original pa-
tients, it employed the same method as the pilot study, it was ap-
proved by local institutional review boards, and written informed 
consent was obtained from each patient. During the interval be-
tween the end of the pilot study (day 28 from baseline) and the start 
of	 the	 follow-up	 study	 (day	58	 from	baseline),	 repetitive	 transcra-
nial magnetic stimulation (rTMS) was adopted as an aided method. 
During	 rTMS	 treatment,	 CDSS	 and	 PANSS	 scores	 did	 not	 exhibit	
significant differences compared to baseline. Then, 1 week before 
starting	the	secondary	ketamine	treatment	(day	51),	rTMS	treatment	
was discontinued to avoid a confounding factor.

Ketamine augmentation treatment in the secondary study was 
started	on	day	58	 from	baseline.	Alterations	 in	ReHo	values	were	
subsequently	observed	at	days	65,	72,	and	79.	At	day	58	 (just	be-
fore augmentation ketamine treatment was started), fMRI data were 
acquired and used as the baseline reference for the secondary fol-
low-up	 study.	After	 7	 days	 of	 ketamine	 treatment	 (on	 day	65),	 an	
increase in ReHo values was observed in the temporal, frontal, and F I G U R E  1   CDSS scores at each assessment timepoint

F I G U R E  2  Adjunct	ketamine	
treatment-induced changes in ReHo 
values	assessed	at	day	7	(a),	day	14	(b),	
day 21 (c), and day 28 (d) compared with 
baseline
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parietal	 lobes	compared	to	that	on	day	58.	However,	after	further	
7	days	of	ketamine	treatment	 (on	day	72),	although	an	 increase	 in	
Reho	 values	 remained	observed	 compared	 to	 that	 on	 day	 58,	 the	
ReHo T-value was lower than the T-value	observed	on	day	65.	On	
day	79,	the	increases	in	ReHo	values	had	disappeared	compared	to	
day	58	(Figure	3).

During the secondary follow-up study, assessments of clinical symp-
toms	by	CDSS	and	PANSS	were	performed	four	times	(every	1	week).	
Compared	to	baseline,	none	of	the	CDSS	or	PANSS	scores	exhibited	
significant differences. There were also no significant differences in 
CDSS	or	PANSS	scores	at	the	two	assessments	(days	65	and	72)	com-
pared	to	day	58	(after	completion	of	the	pilot	study;	Table	2).	Finally,	
there	were	no	significant	differences	in	the	CDSS	and	PANSS	scores	
between	baseline	and	day	79	(CDSS:	16.50	±	3.94	vs.16.12	±	2.30,	65th	
day,	72nd	dayp	=	.800;	PANSS:	83.90	±	9.23	vs.	81.99	±	8.87,	p	=	.555,	
respectively, in each case). Taken together, these findings indicate that 

efficacy of the secondary ketamine augmentation treatment was insig-
nificant, despite observed alterations in brain activity.

4  | DISCUSSION

To the best of our knowledge, this pilot study and secondary follow-
up	 study	 are	 the	 first	 to	 examine	 the	effects	of	 adjunct	 ketamine	
treatment on depressive symptoms in patients with CTRS-TRD. In 
the initial pilot study, depressive symptoms were only alleviated for 
1 week with adjunct ketamine treatment. Meanwhile, an increase in 
ReHo values in the patients' brains was not maintained for more than 
3 weeks. In contrast, adjunct ketamine treatment was ineffective in 
the secondary follow-up study, and ReHo values were also not main-
tained for more than 3 weeks. Of particular note, the brain regions 
with increased ReHo values differed between the pilot study and the 

F I G U R E  3  Adjunct	ketamine	treatment-induced	ReHo	changes	during	the	secondary	follow-up	study.	ReHo	values	were	compared	for:	
day	65	(a),	day	72	(b),	and	day	79	(c)	versus	day	58	(just	prior	to	the	start	of	augmentation	ketamine	treatment	for	the	secondary	follow-up	
study)

TA B L E  2   Mean demographic and clinical characteristics of CTRS-TRD patients undergoing augmentation ketamine treatment in our 
secondary follow-up study (N = 12)

Variable
At day 58 before 
treatment

At day 65 of 
treatment

At day 72 of 
treatment F p-value

Age,	years 35.16	±	7.63 – – – –

Education, years 16.62	±	3.96 – – – –

Illness duration, years 5.38	±	1.42 – – – –

Male/female ratio 7/5 – – – –

Chlorpromazine equivalent dose 1,250.70	±	200.80 – – – –

CDSS score 15.79	±	2.20 14.98	±	1.97 16.12	±	2.30 0.557 .429

PANSS	scores

Total 82.52	±	7.58 80.44	±	7.89 81.99	±	8.87 0.751 .236

Positive 24.30	±	1.78 25.17	±	5.40 25.07	±	5.14 0.562 .403

Negative 26.10	±	2.59 26.13	±	2.97 26.90	±	5.36 0.147 .888

General psychopathological 
symptoms

32.12	±	3.78 29.59	±	4.02 30.02	±	5.38 0.373 .607

TESS score 22.57	±	6.55 21.54	±	5.33 20.99	±	4.70 0.122 .877

Note: Mean	values	are	reported	±	standard	deviation.
Abbreviations:	CDSS,	Calgary	Depression	Scale	for	Schizophrenia;	CTRS-TRD,	chronic	treatment-resistant	schizophrenia	with	treatment-resistant	
depressive	symptoms;	PANSS,	Positive	and	Negative	Syndrome	Scale;	TESS,	Treatment	Emergent	Symptom	Scale.
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secondary	follow-up	study.	The	areas	of	the	brain	which	exhibited	
an	 increase	 in	ReHo	values	were	more	extensive	 in	the	secondary	
follow-up study than in the pilot study, yet the strength (T-value) of 
the ReHo values was lower compared with the pilot study.

Regarding the findings of our pilot study, we postulate that the 
antidepressant effect of our ketamine augmentation treatment can 
be	explained	as	follows.	First,	the	mPFC,	anterior	cingulate,	posterior	
cingulate, precuneus, and angular gyrus (all identified as components 
of	 the	 default	mode	network	 [DMN]),	 as	well	 as	 the	OFC	 (part	 of	
the affective network), are key regions related to mood processing 
(Ismaylova	et	al.,	2018;	Smith	et	al.,	2018;	Soares	et	al.,	2017;	Timbie	
&	Barbas,	2015).	Notably,	neural	activities	in	the	DMN	and	OFC	have	
been reported to be markedly reduced in depressed patients (Cheng 
et al., 2018; Hao et al., 2019; Levenson et al., 2014; Schmaal et al., 
2017;	Subramaniam	et	al.,	2018;	van	Eijndhoven	et	al.,	2013).	Deficits	
in	the	DMN	and	OFC	have	also	been	related	to	affective	and	memory	
processing disturbances in schizophrenic patients (Chakirova et al., 
2010;	Jackowski	et	al.,	2012;	Nakamura	et	al.,	2008;	Qiu	&	Lin,	2019;	
Reske	 et	 al.,	 2007;	 Rodriguez	 et	 al.,	 2019;	 Tendolkar	 et	 al.,	 2004;	
Zong et al., 2019). In our pilot study, increased ReHo values indicate 
that	ketamine	can	enhance	activity	in	the	DMN	and	OFC,	while	re-
ducing depressive symptom severity. These findings are consistent 
with those published by Reed et al. (2018) which demonstrate that 
ketamine can normalize brain activity during emotionally valenced 
attentional processing in depressive subjects. Previous studies have 
also reported that a single ketamine treatment may alleviate treat-
ment-resistant depression by normalizing aberrant activity in DMN 
components	and	in	the	frontal	cortex	(Maltbie	et	al.,	2017;	Mueller	
et	al.,	2018;	Murrough	et	al.,	2015).	Thus,	 the	 findings	of	our	pilot	
study support the postulation of previous studies.

The antidepressant effect of ketamine has been related to ket-
amine-induced	increases	in	glutamate	release	(Duman	&	Shinohara,	
2019). However, ketamine has been used to establish an animal 
model of schizophrenia, which would suggest that ketamine possi-
bly activates psychotic symptoms. In our pilot study, no evidence 
of ketamine-induced psychotic symptoms was observed. It may be 
that such effects require a higher dose of ketamine, considering 
that mid-range doses of ketamine are currently used for both ani-
mal model induction and psychedelic use. Meanwhile, high doses of 
ketamine are used for anesthesia. Thus, low doses of ketamine may 
be antidepressive. Indeed, low-dose ketamine has been associated 
with	repair	of	disrupted	dendrites	in	the	frontal	lobes	(Ferenczi	et	al.,	
2016). Hence, we postulate that low-dose ketamine does not trigger 
negative	effects	in	schizophrenic	patients,	but	rather,	exerts	positive	
effects.	In	this	context,	 it	 is	also	interesting	to	note	that	the	gluta-
matergic system has been reported to affect the efficacy of antipsy-
chotic medications (Wang et al., 2018). Thus, it has been suggested 
that	pharmacological	modulation	of	NMDA	receptor	 function	may	
reverse abnormal glutamatergic transmission, which is hypothesized 
to occur in schizophrenia (Parkin et al., 2018).

The findings of our pilot study demonstrate a dissociation be-
tween clinical and functional changes in the brain following adjunct 
ketamine	 administration.	 For	 example,	 while	 a	 clinical	 effect	 was	

attenuated within the first week of treatment, attenuation of brain 
function was not obvious until the second week of treatment. This 
dissociation phenomenon raises issues to be addressed in future 
research. We postulate three possible reasons for this dissociation 
phenomenon.	First,	neuronal	interactions	depend	on	action	poten-
tials and synaptic transmission. It may be that fMRI-detected blood 
oxygenation	level-dependent	signals	(which	are	delayed	relative	to	
real-time neuronal activity) remain after they are no longer reflective 
of current neural electric activity, or the changes they reflect are no 
longer sufficient to affect ongoing neural network activity. However, 
this possibility is challenged by the fact that the duration of a week 
far	exceeds	a	delay	between	electric	activity	and	blood	oxygenation	
level-dependent signals. Second, our CTRS-TRD patient cohort may 
undergo rapid neurotransmitter desensitization, thereby weakening 
a synergistic ketamine effect. However, 1 week would be a short pe-
riod	of	time	for	such	desensitization.	Moreover,	if	these	patients	ex-
hibit	rapid	desensitization	characteristics,	it	would	be	expected	that	
desensitization would also affect their addiction tendency. Third, we 
postulate that DMN ReHo values may not be suitable indices of clini-
cal effects given that ReHo data are derived from calculations rather 
than directly from microimaging. Thus, ReHo does not provide direct 
evidence for neural structural alterations or discharge activities.

A	more	notable	phenomenon	which	should	be	addressed	in	ad-
ditional secondary follow-up studies is the observed inefficacy of 
the ketamine augmentation treatment regimen tested. The finding 
that ReHo alterations differed between our pilot and secondary fol-
low-up studies is also of great interest. While we are able to provide 
possible reasons for the dissociation between clinical and functional 
brain changes, and for rapid attenuation of ReHo by “desensitiza-
tion inference,” we cannot account for the inefficacy of the ketamine 
augmentation treatment in our secondary follow-up study. We can 
only postulate that ketamine may induce long-term tolerance in pa-
tients with CTRS-TRD. If this is true, then great vigilance must ac-
company administration of ketamine to patients with any type of 
mental disorder. However, if this is not the case, further study is 
needed, including animal studies, to investigate a possible reason for 
the observed “desensitization inference.”

4.1 | Limitations

The	pilot	study	we	conducted	had	several	limitations.	First,	since	
this	 line	 of	 research	 is	 an	 exploratory	 stage,	 information	 in	 the	
literature regarding the effects of low-dose ketamine is limited. 
Moreover, the present evidence we collected is based on a small 
sample size since we only included patients with TRD and treat-
ment-resistant schizophrenia. While our evidence is not strong 
enough to influence clinical practice at this stage, it does provide 
valuable direction for further studies. Ideally, large cohort studies 
are	 needed	 to	 delineate	 and	 explain	 the	 effects	 of	 ketamine	 on	
depressive symptoms in schizophrenia. Second, the patients in our 
cohort were taking a variety of antidepressants, with most taking 
drugs from two different chemical constitution categories at the 
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same time. Because we did not transfer antidepressant dosages 
to a uniform dosage, we cannot isolate the possible influence of 
antidepressants on our ReHo data. However, during our study, we 
did	fix	the	dosage	of	all	the	therapeutic	agents	to	reduce	dynamic	
antidepressant influences on ReHo. Third, although ketamine has 
previously been reported to normalize aberrant functional con-
nectivity	 (Abdallah,	Jackowski,	et	al.,	2017;	Gartner	et	al.,	2019),	
we observed that functional connectivity alterations did not with-
stand family-wise error correction. This result may be due to our 
small	sample	size,	which	did	not	provide	sufficient	power.	Fourth,	
when we calculated amplitudes of low-frequency fluctuation be-
fore and after ketamine treatment (data not shown due to space 
limitations),	we	observed	that	regions	of	the	brain	which	exhibited	
increased fluctuation amplitudes following ketamine administra-
tion	 overlapped	 to	 a	 large	 extent	 with	 brain	 regions	 exhibiting	
increased	ReHo	values.	Furthermore,	the	latter	increases	did	not	
correlate	with	 symptom	 changes.	 Fifth,	 to	 better	monitor	 ASEs,	
we	only	 included	patients	with	 full	 insight,	which	excludes	most	
schizophrenics. Thus, the generalizability of the current findings 
is	 potentially	 limited.	 Sixth,	 we	 only	 compared	 symptoms	 and	
changes in ReHo values before versus after ketamine treatment in 
a single group sample. Thus, although the strength of this study is 
not comparable to that of a randomized controlled trial, our find-
ings provide important clues for future trials. Seventh, although 
most	 studies	 examining	 potential	 adverse	 effects	 of	 ketamine	
interactions	with	antidepressants	have	not	 found	any	 (Duman	&	
Shinohara, 2019), such effects were suggested in a recent study 
(Duman	&	Shinohara,	2019).	 In	the	present	study,	 liver	and	renal	
function test results for our cohort were each within normal 
ranges.	 Because	 ketamine	 is	 metabolized	 by	 3A4	 and	 2B6	 en-
zymes,	which	are	expressed	primarily	in	the	liver,	potential	meta-
bolic	ASEs	are	a	serious	concern.	Eighth,	although	ketamine	alone	
has	 been	 reported	 to	 alleviate	 TRD	 symptoms	 (Andrade,	 2017),	
we did not ask our patients to stop taking their prescribed anti-
depressants in order to prevent a possible worsening of psychotic 
symptoms. Ninth, the secondary follow-up study we conducted 
was based on the findings of our pilot study. Thus, validation of 
this method is needed, as well as further confirmation of our re-
sults. Tenth, prior to the secondary follow-up study, the patients 
accepted rTMS treatment. Thus, it is possible that rTMS treatment 
may have influenced the findings of our follow-up study, despite 
the treatment being discontinued prior to the start of our second-
ary follow-up study. Eleventh, it is well established that ketamine 
can decrease functional activity in the DMN and other brain re-
gions (Cheng et al., 2018; Hao et al., 2019; Ismaylova et al., 2018; 
Levenson	 et	 al.,	 2014;	 Nakamura	 et	 al.,	 2008;	 Qiu	 &	 Lin,	 2019;	
Rodriguez	 et	 al.,	 2019;	 Schmaal	 et	 al.,	 2017;	 Smith	 et	 al.,	 2018;	
Soares	 et	 al.,	 2017;	 Subramaniam	et	 al.,	 2018;	 Timbie	&	Barbas,	
2015;	 van	 Eijndhoven	 et	 al.,	 2013;	 Zong	 et	 al.,	 2019).	 However,	
ReHo values were increased in the DMN of the CTRS-TRD pa-
tients in our pilot study. We hypothesize that this seemingly 
contradictory finding may be related to neuropathological fea-
tures of schizophrenia. Indeed, the neuropathological features of 

depressive symptoms in patients diagnosed with major depressive 
disorder have been reported to differ from those of depressive 
symptoms	in	schizophrenic	patients	 (Jiang	et	al.,	2017;	Schilbach	
et al., 2016; Shao et al., 2018). Hence, we posit that ketamine-
induced ReHo alterations in schizophrenics may also differ from 
those	 in	 patients	 with	 major	 depressive	 disorder.	 Further	 re-
search	is	needed	to	explain	these	findings.	Twelfth,	we	observed	
that ReHo values were more widely increased in our secondary 
follow-up study than in our pilot study. This is an unusual phe-
nomenon and one that we reluctantly postulated to be related to 
an unstable feature of ReHo. It is important that further studies 
be conducted to more thoroughly investigate this phenomenon. 
Thirteenth, in this pilot study, we could not detail anhedonia, a 
pivotal symptom of depression and one of the symptoms which is 
observed in patients with substance abuse issues (Garfield et al., 
2014;	Upthegrove	et	al.,	2017).	Considering	 that	ketamine	has	a	
potential addiction risk (although low dosages of ketamine gener-
ally do not induce an addiction risk), this does not mean that an 
addiction	 risk	 is	 excluded.	 Furthermore,	we	 also	 observed	 rapid	
desensitization in our pilot study. Thus, alterations in anhedonia 
should be considered in patients undergoing ketamine augmenta-
tion treatment. However, because we lack an ideal tool for assess-
ing alterations in anhedonia in patients with CTRS-TRD, we did 
not detail this assessment in the present study. This is an obvious 
flaw in our study, and further studies are needed to clarify this 
event. Previous studies have reported that anhedonia is a common 
feature in both depression and negative symptoms of schizophre-
nia.	However,	consummatory	anhedonia	(pleasure	experienced	in	
better anticipation or in response to rewards) and difficulty in an-
ticipating future pleasure may be more consistent with depression, 
whereas motivational anhedonia (motivation to pursue rewards) 
may	be	considered	a	primary	negative	symptom	(Strauss	&	Gold,	
2012;	Upthegrove	et	al.,	2010,	2017).	Hence,	further	studies	are	
needed to establish an ideal tool for assessing anhedonia symp-
toms in patients with CTRS-TRD.

5  | CONCLUSION

To the best of our knowledge, this pilot study and secondary 
follow-up study are the first study to investigate the effects of 
adjunct ketamine treatment on TRD symptoms and concomitant 
functional brain alterations in patients with treatment-resistant 
schizophrenia. Moreover, the present study represents a relatively 
long-term study compared with previous studies. We observed 
that alleviation of depressive symptoms in CTRS-TRD patients 
with adjunct ketamine treatment only lasted 1 week during the 
first treatment. Moreover, after 1 month, the antidepressant ef-
fect of ketamine had completely disappeared. Correspondingly, 
ReHo alterations induced by ketamine in our CTRS-TRD patients 
were not maintained for more than 3 weeks. Thus, these findings 
indicate that adjunct ketamine treatment is unsatisfactory for 
CTRS-TRD patients.
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