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Over the past decades, object recognition has been
predominantly studied and modelled as a feedforward
process. This notion was supported by the fast response
times in psychophysical and neurophysiological
experiments and the recent success of deep feedforward
neural networks for object recognition. Recently,
however, this prevalent view has shifted and recurrent
connectivity in the brain is now believed to contribute
significantly to object recognition — especially
under challenging conditions, including the recognition
of partially occluded objects. Moreover, recurrent
dynamics might be the key to understanding perceptual
phenomena such as perceptual hysteresis. In this work
we investigate if and how artificial neural networks can
benefit from recurrent connections. We systematically
compare architectures comprised of bottom-up,
lateral, and top-down connections. To evaluate
the impact of recurrent connections for occluded
object recognition, we introduce three stereoscopic
occluded object datasets, which span the range
from classifying partially occluded hand-written digits
to recognizing three-dimensional objects. We find that
recurrent architectures perform significantly better than
parameter-matched feedforward models. An analysis of
the hidden representation of the models suggests that
occluders are progressively discounted in later time steps
of processing. We demonstrate that feedback can correct
the initial misclassifications over time and that the
recurrent dynamics lead to perceptual hysteresis. Overall,
our results emphasize the importance of recurrent
feedback for object recognition in difficult situations.

Introduction

The primate visual system is capable of recognizing
objects with remarkable speed (Potter, 1976; Thorpe
et al., 1996). In less than 150 ms, primates can not
only correctly classify an object, but also encode
visual information in a way that is invariant to scale,
translation, and viewing angle (Hung et al., 2005; Isik
et al., 2014). Based on this processing speed and the
physiological constraints of biological neurons, object
recognition in mammals has long been considered to
be a mostly feedforward process. The recent success of
deep feedforward neural networks in computer vision
and machine learning (Krizhevsky et al., 2012; LeCun
et al., 2015) lent further credence to this idea. In fact,
deep feedforward neural networks have been shown to
provide better predictions of neural and behavioral data
than previous approaches (Riesenhuber & Poggio, 1999;
Serre et al., 2007; Cadieu et al., 2014); Khaligh-Razavi
& Kriegeskorte, 2014; Yamins et al., 2014; Rajalingham
et al., 2015.

Not unlike the primate visual system, deep
convolutional networks use a hierarchy of filters
with local receptive fields. However, contrary to their
biological counterparts, they lack feedback connections,
which are ubiquitous in the ventral visual pathway of
primates (Felleman & Van Essen, 1991; Markov et al.,
2014). Both anatomical and physiological evidence hint
at the importance of recurrent feedback for biological
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object recognition. Feedback connections were found
to be numerous in the visual cortex and may even
outnumber feedforward ones (Callaway, 2004; Douglas
& Martin, 2004). Furthermore, electrophysiological
findings in mammals and humans show that the visual
processing of an object unfolds over time, beyond
what could be attributed to a pure feedforward process
(Sugase et al., 1999; Brincat & Connor, 2006; Cichy
et al., 2014). However, a growing number of studies
have highlighted the crucial computational role of
recurrent connectivity within visual processing (Oram&
Richmond, 1999; Mohsenzadeh et al., 2018; Kietzmann
et al., 2019; Ernst et al., 2019, 2020; Gwilliams et al.,
2020).

The computational advantage of recurrent feedback
might be especially prominent for challenging visual
input, such as occluded objects. The information
about an occluded stimulus is necessarily incomplete
and, therefore, prone to being ambiguous. Recurrent
processing may “explain away” missing parts of an
occluded object (Yuille &Kersten, 2006; Rust & Stocker,
2010) to disambiguate the situation. Specifically, past
studies have shown that the recognition of degraded
and occluded objects produces delays in behavioral
and neural responses, which are believed to be a result
of competitive processing within lateral recurrent
connections (Johnson & Olshausen, 2005; Adesnik &
Scanziani, 2010; Wyatte et al., 2012). For example,
object-selective responses have been found to emerge
about 50 to 100 ms later for objects that are occluded
(Kovacs et al., 1995; Kosai et al., 2014; Fyall et al.,
2017) and backward masking procedures, which are
believed to interrupt recurrent processing, more gravely
impact the recognition of occluded objects compared
with unoccluded ones (Wyatte et al., 2012; Tang et al.,
2018; Rajaei et al., 2019). In such situations, recurrent
connections could complement visual processing by
incorporating occluder information (Fyall et al., 2017)
or by actively reconstructing information hidden from
view (Tang et al., 2014, 2018).

More generally, psychophysical studies on the
perception of ambiguous objects have shown that
humans’ perception often depends on previous
experience. This gives rise to perceptual hysteresis and
can be demonstrated for auditory and visual stimuli
(Brady & Oliva, 2012; Chambers & Pressnitzer, 2014).
Recurrent connectivity also seems to mediate this
perceptual phenomenon (Kleinschmidt et al., 2002; You
et al., 2011).

However, it is less clear whether recurrent
connections in artificial neural networks can benefit
object recognition in similar ways. Over the last
couple of years, there has been a growing body
of computational studies addressing this issue.
In particular, recent studies have uncovered that
introducing recurrent connectivity post hoc can
significantly improve performance of feedforward

models (Herzog et al., 2020). Spoerer et al. (2020)
demonstrated that recurrent connections have the
flexibility to dynamically trade speed for accuracy and
(Kubilius et al. 2019) developed a neuroscience-inspired
recurrent model that performs competitively on
ImageNet. With regard to occlusion, past studies
could show that recurrent networks indeed perform
better on occluded stimuli, but so far the experimental
and computational approaches used highly restricted
datasets where artificial inputs were only partly faded
out or masked (Smith & Muckli, 2010; O’Reilly et
al., 2013; Tang et al., 2014, 2018; Spoerer et al., 2017)
and more recently (Ernst et al. 2019) and (Kang and
Druckmann 2020) indeed use occluder objects, but
either do not incorporate class-variability or spatial
depth and binocular processing.

Vision is an active process in a three-dimensional (3D)
world. Primates perceive occlusions stereoscopically,
with two eyes and the visibility of an object is highly
dependent on position and viewing angle. For this
reason we explored the idea of stereoscopic stimuli and
compared the classification performance of recurrent
and feedforward architectures (Ernst et al., 2019).
However, the objects considered were simplistic sans
serif digits, that incorporated perspective cues, but
lacked any in-class variability.

Ernst et al. (2020) introduced the first iteration
of a dataset called the Occluded Stereo Dataset
for Convolutional Architectures with Recurrence
(OSCAR). This version consisted of just two
components: the occluded stereo MNIST (OS-MNIST)
and the occluded stereo YCB (OS-YCB). The use of
MNIST digits enabled studying objects with in-class
variability for the first time, but target objects were
always centered in the middle, only allowing occlusion
from the left or the right. Moreover, digits were not
downscaled according to distance. The authors reported
first evidence that recurrent connections are able to
revise wrong first guesses for more sophisticated stimuli.
Also introducing images of occluded 3D objects, the
contribution was a step towards more natural stimuli,
but it lacked an analysis of the representation in the
latent space and insights into the evolution of recurrent
activity.

In this article, we set out to conduct a thorough
and detailed study with novel versions of our OSCAR
datasets evaluated on new network models. We compare
recurrent and feedforward models on datasets that
cover the full spectrum from simple two-dimensional
(2D) objects with little in-class variability to real
3D objects including stereoscopic stimuli. We do
this to emphasize the generality of our findings and
to examine where along this spectrum a potential
benefit for recurrent models might disappear. To better
understand the benefits and mechanisms of recurrent
feedback, we propose a new overall architecture for our
models introducing a global average pooling (GAP)
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operation, that significantly reduces the amount of
learnable parameters and enables a quantification and
visualization of the effect of recurrent connectivity
over time.

Assuming the fundamental structure and naming
scheme of (Spoerer et al. 2017) and Liang and Hu
(2015), we distinguish bottom-up (B), top-down (T),
and lateral (L) connections. Bottom-up connections
model the information processing from lower to higher
processing regions, while top-down connections model
the communication from higher to lower regions.
Lateral connections process information within the
same region of the simulated ventral visual hierarchy. To
test whether recurrent connections benefit classification
performance in a natural occlusion scenario, the
different models were trained to classify an occluded
target object in monocular and stereoscopic input
images. Our results show significant performance gains
for recurrent networks compared to parameter matched
feedforward models. In contrast with earlier works
(Ernst et al., 2019, 2020) and in addition to the overall
architectural change, we adapt the properties of one of
the feedforward networks to more closely match their
recurrent counterparts and we add a new, conceptually
different, and deeper control model.

Additionally, we investigate how the recurrent
feedback shapes the dynamic internal representation of
stimuli across time. Representations of occluded stimuli
are driven to approximate the representations caused by
their unoccluded counterparts. This corroborates the
idea that feedback mechanisms can actively “discount”
the occluders. Furthermore, we use class-activation
mapping (CAM) to demonstrate that recurrent signals
can not only revise wrong first guesses, but they
are also focusing the network’s “attention” on the
target such that only informative image regions are
used for the final classification. Finally, when tasked
with classifying ambiguous stimuli over time, all of
our recurrent network models display perceptual
hysteresis. To summarize, we make the following four
contributions:

(1) We present a significantly enhanced and refined
version of our benchmark data set for occluded
object recognition called OSCAR v2, to capture the
full range of disparity and perspective cues for both
natural (handwritten digits) and computer-rendered
(3D objects) stimuli.

(2) We test new feedforward and recurrent convolutional
network architectures on this data set and present
evidence of systematic performance gains for
recurrent architectures.

(3) We use CAMs to analyze how recurrent connections
enable these networks to focus processing on the
target object and “discount” occluders.

(4) We demonstrate and discuss how the recurrent
connections give rise to perceptual hysteresis
reminiscient of psychological studies.

Methods

OSCAR

The OSCAR dataset, first introduced in (Ernst et al.
2020), is composed of stereo images for occluded object
recognition. It is intended to bridge the gap between
the largely artificial task of recognizing occluded
digits (Spoerer et al., 2017) and the natural task of
recognizing common 3D objects that are occluding
each other. Here, we present version 2.0 of this
dataset, which has seen significant improvements and
additions. First, we added a third flavor of the dataset
called (OS-fMNIST) complementing OS-MNIST and
OS-YCB (described elsewhere in this article). Second,
we added variants with uncentered-position objects
to enforce translational invariance and to make the
task more natural and challenging. This way, occlusion
can occur to all parts of the target and is not limited
to the left or right sides. Third, all the objects across
datasets were resized to account for perceived distance
and to have a more consistent scale. Finally, OS-YCB
now includes high-resolution (320 × 240 pixel) versions
of the images and metadata that enables dedicated
training by percentage of occlusion. For an overview
of the datasets see Figure 1B. OSCAR v2 is available
online together with a dataloader script for PyTorch
(https://doi.org/10.5281/zenodo.4085133).

OS-MNIST and OS-fMNIST
The OS-MNIST is a novel stereoscopic occluded

object dataset loosely inspired by the digit clutter
stimuli introduced in (Spoerer et al. 2017). Our dataset
progresses one step further toward realistic stimuli by
replacing the sans serif digits with samples from the
MNIST handwritten database. The in-class variability
of MNIST adds additional complexity to our input
data, compared with simple digit recognition and
encourages the networks to learn a representation that
generalizes to different shapes within a particular class.

The dataset comes in two variants, centered position
and random position. For the centered position, the
target object, that is, the hindmost digit, is kept centered
and fixed in the middle of the canvas. Occluding objects
are then added sequentially on top. We assumed a
distance of 50 cm from the target object to the viewer,
and 10 cm less for every added object. The y-axis
position of each occluder then is determined by the
distance from the viewer along z. Additionally, the size
of each added digit is scaled to account for perspective
and gives the objects a virtual size. For version 2.0 of

https://doi.org/10.5281/zenodo.4085133
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Figure 1. The setup of data generation and the used stimuli. (A) The central object is occluded by two objects arranged into a 3D scene.
(B) The stimuli of the new OSCAR version consisting of the three different datasets OS-MNIST, OS-fMNIST, OS-YCB, and their variants.

this dataset, we decrease the virtual size of the digits
resulting in downscaling of digit instances, making the
target smaller and preventing upscaling artifacts that
might have made occluders more identifiable in the
previous version. This procedure creates a pseudo-3D
environment with a virtual floor 5 cm below the viewer,
on which the objects are standing, making it comparable
to the real 3D objects in OS-YCB (discussed elsewhere
in this article). The x-axis positions are drawn from a
uniform distribution to guarantee images with varying
degrees of occlusion.

For the random-position variant, we lift the
restrictions of the virtual floor and draw target and
occluder positions from a uniform distribution.
Nonetheless, we keep the virtual size and scaling
according to distance. This, way, objects can be
occluded from all sides and angles, making the task
more natural and difficult. To create the binocular
image-pairs for each scene, the occluders were shifted
according to the right parallax given an interocular
distance of 6.8 cm. This means that for stereo input,
the target-object is always shown at zero disparity.
Occluders were chosen in a way that no two instances
of one class would appear in the same image.

For OS-fMNIST, we use the same generation
procedures and replace the MNIST digits with the
Fashion-MNIST clothes objects (Xiao et al., 2017).
The OS-fMNIST instances are more extensive covering
a larger ratio of the image, which results in a more
challenging object recognition scenario.

We created a datasets with 10 occluder combinations
per object resulting in 600,000 randomly generated
images for training, and 100,000 for testing. All
images were rendered at 32 × 32 pixels. The occlusion
percentage of each image is defined as the ratio of
occluded pixels to non–occluded pixels of the target
object averaged over the two stereo images. Occlusion
was constrained to range between 20% and 80% by
rejecting everything outside these limits.

OS-YCB
To see whether our findings also generalize to a

true 3D object scenario, we introduce the OS-YCB
dataset. The OS-YCB contains stereo image pairs of 79
common household objects occluding each other. The
objects were chosen from the YCB object set, which is
an assortment of more than 100 different objects for
robotics applications (Calli et al., 2015, 2017). For each
image, we placed three virtual 3D objects according to
Figure 1A. Analogous to OS-MNIST, the target object
is also placed at a distance of 50 cm from the viewer
and occluders are placed sequentially 10 cm in front
of the last object. In line with the centered-position
variants of our other datasets, the target object is kept
in the middle of the canvas and occluders are randomly
distributed along the y-axis. All objects are placed in
an upright position and turned by a random yaw angle
to provide in-class variability. Objects are placed on a
floor 5 cm below the line of sight and a background
was chosen to simulate a context with natural image
statistics. We repurposed a robotic simulator to serve as
a stereoscopic camera. For version 2 of this dataset we
use the occlusion percentage metric to divide the dataset
into four subsets: 20%, 40%, 60%, and 80% occlusion.

We generated 1,000 images per object for each of
the four subsets, resulting in 316,000 stereo image
pairs, split 80/20 for training and testing. Stimuli were
rendered at 320 × 240 pixels. For our experiments, we
downsample the images to 80 × 60 and center crop to
32 × 32 pixels.

Network models

To evaluate the benefit of recurrent feedback in
artificial neural networks we compare a range of
two-layer neural networks implemented in PyTorch
(Paszke et al., 2019). Following the naming scheme
of (Liang and Hu 2015) and (Spoerer et al. 2017), the
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Figure 2. Network overview and details. (A) A sketch of the seven network architectures named after their connectivity. B stands for
bottom-up, L for lateral and T for top-down connections. (B) A detailed illustration of the BLT network unfolded for training.

four possible network types are bottom-up only (B),
bottom-up and top-down (BT), bottom-up and lateral
(BL), and bottom-up, lateral, and top-down (BLT).

Unless noted otherwise, each model consists of an
input layer, two hidden recurrent convolutional layers,
and an output layer, see Figure 2A. Convolutional
layers with a stride of 1 × 1 serve as the basis for the
bottom-up connections present in all architectures.
Following the flow of information the convolved images
then go through a 2 × 2 maxpooling operation with a
2 × 2 stride, effectively decreasing the dimensionality
of the input. Lateral connections are also implemented
as convolutional layers with stride of 1 × 1, whereas
top-down connections are transposed-convolutional
layers with output stride 2 × 2 to match the input size
one layer below (Zeiler et al., 2010).

As lateral and top-down connections introduce
cycles into the computational graph, models using
these connections are recurrent neural networks. These
networks have internally generated temporal dynamics
that set them apart from feedforward networks.
Where feedforward networks can be seen as universal
function approximators, recurrent neural networks
can be thought of as universal dynamical system
approximators. To train these networks, we unroll them
for a fixed number of time steps and use truncated
backpropagation through time (Figure 2B). Unless
stated otherwise, we unroll the network structures
for four time steps. Thus, the weights for a particular
connection within the unrolled network are shared

across time. At each time step during training, we feed
the same input image into the network and receive a
readout from the last layer.

Owing to the surplus of connections, recurrent
models have more learnable parameters than their
nonrecurrent counterparts for a given number of layers.
To address this issue we introduce three additional
feedforward network models named B-K, B-F, and B-D.
The B-F model doubles the number of convolutional
filters from 32 to 64, giving it more features to represent
the input data. B-K increases the convolutional kernel
sizes from 3 × 3 to 6 × 6 compared with the standard B
model. The larger kernel of B-K effectively increases the
local connectivity of each layer and, thus, we consider it
to be the most adequate control model to compare with
the recurrent networks. Our third feedforward variant,
B-D, adds two more layers of 32 3 × 3 filters together
with the corresponding max-pooling operations
in-between. Although this deeper network has the same
amount of parameters as the recurrent BL model,
its feedforward nature combined with the additional
maxpooling layers makes it capable of learning more
abstract and potentially more powerful features than
all other networks. To provide an additional baseline
to our models we also trained a generalized linear
model (GLM) on our datasets. This GLM consists of
a single fully connected layer with a sigmoid activation
function. For a full comparison of model architectures
and their numbers of learnable parameters, see
Table 1.



Journal of Vision (2021) 21(13):6, 1–25 Ernst, Burwick, & Triesch 6

B B-F B-K B-D BT BL BLT GLM

Kernel size 3 × 3 3 × 3 6 × 6 3 × 3 3 × 3 3 × 3 3 × 3 –
Hidden units 32 64 32 32 32 32 32 –
Layers 2 2 2 4 2 2 2 1
Channels Number of learnable parameters (OS-MNIST, 10 classes)

1 9,898 38,218 38,410 28,394 19,146 28,394 37,642 10,250
2 10,186 38,794 39,562 28,682 19,434 28,682 37,930 20,490
Channels Number of learnable parameters (OS-YCB, 79 classes)

3 12,751 43,855 40,714 31,247 21,999 31,247 40,495 242,767
6 13,615 45,583 44,170 32,111 22,863 32,111 41,359 485,455

Table 1. Number of learnable parameters for all models and input channels.

Recurrent convolutional layer

The central building block of all networks considered
here is the recurrent convolutional layer. Each input to
one of these layers is denoted by a(t,l )i, j,k, which represents
the input from a patch centered on location (i, j)
in layer l , computed at time step t of feature map
k. Following this notation a(t,0)i, j,k represents the input
stimulus, that is, the image of occluded objects. Before
convolution, each input to the layer is batch-normalized
to counter covariate shift and speed up learning (Ioffe &
Szegedy, 2015; Cooijmans et al., 2017). This technique
normalizes an activation a using the mean μB and
standard deviation σB over a minibatch of activations
B.

h(t,l )i, j,k = BNγ ,β (a(t,l )i, j,k) = γ
(l )
k ·

a(t,l )i, j,k − μB
σB

+ β
(l )
k , (1)

where γ and β are additional learnable parameters.
We can then rewrite the batch-normalized output as
a vector across all feature maps indexed by k, namely,
h(t,l )i, j .

For the feedforward models B, B-K, B-F, and B-D
there are no recurrent connections present, thus the
preactivation z for a unit in layer l at position (i, j) and
time step t can be simply written as:

z(t,l )i, j,k =
(
w(l )B
k

)�
h(t,l−1)
i, j + b(l )k , (2)

where t ≡ 0, because feedforward networks cannot be
unrolled in time. Here, w(l )B

k is the convolutional kernel
for bottom-up connections and b(l )k the bias for feature
map k in layer l .

For the BL network, the preactivation gains an
additional input owing to the lateral connectivity. This

yields:

z(t,l )i, j,k =
(
w(l )B
k

)�
h(t,l−1)
i, j +

(
w(l )L
k

)�
h(t−1,l )
i, j + b(l )k , (3)

where w(l )L
k is the vectorized form of the lateral

convolutional kernel and h(t−1,l )
i, j represents the

activation from one time step before.
The BT model adds top-down inputs instead of

lateral inputs and yields:

z(t,l )i, j,k =
(
w(l )B
k

)�
h(t,l−1)
i, j +

(
w(l )T
k

)�
h(t−1,l+1)
i, j + b(l )k (4)

for the preactivations. The top-down kernel for the
transposed convolution is denoted by w(l )T

k . Because
top-down connections are only received from hidden
layers above, the two-layer nature of our models only
allows for one top-down connection, compared with
two lateral connections.

Adding both lateral and top-down connections
to the B architecture yields the BLT model and the
corresponding preactivations are computed as:

z(t,l )i, j,k=
(
w(l )B
k

)�
h(t,l−1)
i, j +

(
w(l )L
k

)�
h(t−1,l )
i, j

+
(
w(l )T
k

)�
h(t−1,l+1)
i, j + b(l )k . (5)

Both lateral and top-down connectivity depend
on activations from earlier time steps. For t = 0,
where there would be no previous time step, we set all
recurrent inputs to be a tensor of zeros. Following the
flow of information for all models the z(t,l )i, j,k is passed to
an activation function (ReLU, σz):

σz

(
z(t,l )i, j,k

)
= max

(
0, z(t,l )i, j,k

)
. (6)
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The final output of a recurrent convolutional layer at
time step t then becomes:

a(t,l )i, j,k = σz

(
z(t,l )i, j,k

)
. (7)

Network output

After the hidden recurrent convolutional layers
the information is passed to a GAP layer, which
computes the mean over activations for each feature
map. This significantly decreases the amount of
learnable parameters compared with the networks in
our previous work (Ernst et al., 2019, 2020). These
average activations then constitute the input to a fully
connected segment with as many output units as
there are classes. For classification we use a softmax
activation layer, defined as:

softmax(a)i = exp(ai)∑
j exp(a j )

. (8)

The softmax guarantees that the output sums to 1 and
can be interpreted as the probability distribution over
all possible classes of the dataset.

Learning

The class memberships of the objects are encoded
as one-hot vectors meaning that the target vector y is
comprised of elements yi defined as:

yi =
{
1 if i = ỹ
0 else , (9)

where ỹ is the target object label of the image. The
cost-function to make the networks’ output ŷ(τ ) match
the target vector y was chosen to be the cross-entropy
summed across all time steps τ and all N output units:

J(ŷ(0,... ,τ−1), y)= −
τ−1∑
t=0

N∑
i=0

yi · log ŷ(t)i

+ (1 − yi) · log(1 − ŷ(t)i ). (10)
For stochastic gradient descent, we used the adam
optimizer with an initial learning rate of η = 0.004
Kingma and Ba (2015). Unless stated otherwise
training occurred for 100 epochs with minibatches
of size 500. The maximum dynamic learning rate of
adam was cut to 10% of its value at epochs 75 and
90. The GPUs for accelerated learning were of type
NVIDIA GeForce RTX 2070 SUPER and RTX 2080
Ti. The source code used to define and train all the
networks described in the paper is available on github
(https://github.com/mrernst/CAR_torch).

Comparing classification accuracy

As recommended in Dietterich (1998), we use
McNemar’s test to compare the model performance
of two different architectures fa, fb. McNemar’s test
(McNemar, 1947) is a statistical test used on paired
nominal data. It is applied to a 2 × 2 contingency table
with a dichotomous trait to determine whether the
marginal frequencies of row and column are equal. The
corresponding test statistic is:

χ2 = (a1,2 − a2,1)2

a1,2 + a2,1
, (11)

where ai, j corresponds with cells in the following
four-fold table.

a1,1: number of samples
misclassified by both fa
and fb

a1,2: number of samples
misclassified by fa but

not fb

a2,1: number of samples
misclassified by fb but
not fa

a2,2: number of samples
misclassified by neither

fa nor fb

This methodology does not require repeated training
and saves computational resources when evaluating an
array of different models. To compare two network
architectures with McNemar’s test, the same image is
classified by both models. Apart from giving the right
or wrong answer, the two outcomes can agree with each
other or not, resulting in one of the four possible cases
of the four-fold table. This procedure is repeated for
every image in the test set and thus yields a measure of
how different the two networks perform incorporating
information about how much the models agree with
each other.

To control for the false discovery rate (FDR) when
performing all pairwise comparisons of the seven
different network architectures, we turn to the following
Bonferroni-type correction procedure developed
by Benjamini and Hochberg (1995): When testing
hypotheses H1,H2, . . . ,Hm based on the corresponding
p-values P1,P2, . . . ,Pm one shall sort the p-values so
that P(1) ≤ P(2) ≤ . . . ≤ P(m). Let k be the largest i for
which holds:

P(i) ≤ i
m
q∗, (12)

where q∗ is the level at which the FDR is controlled. All
hypotheses H(i) where i = 1, 2, . . . , k are to be rejected.
To compare each of our seven different models with
each other m = 21 hypotheses need to be tested. For the
experiments we chose to control the FDR at q∗ = .05.

https://github.com/mrernst/CAR_torch
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Class activation mapping

In contrast with previous works, we significantly
decreased the number of learnable parameters using
GAP in the output layer of our networks. This also
enables us to use a visualization technique known as
CAM (Zhou et al., 2016). CAMs arise from training
the network architecture itself and do not require any
further optimization. Moreover, they have been shown
to be suitable for object localization and semantic
segmentation (Selvaraju et al., 2020). CAM combines
the relative importance of all feature maps of the last
layer given the output class and generates a saliency
map for each output class. This saliency map represents
the importance of each image region for the belief in a
specific class. This approach grants a novel perspective
on what image regions the network “attends to” during
recognition of an object. To statistically compare the
evolution of these 2D saliency map distributions we
quantify the concentration in two distinct ways. First,
we make use of the Gini coefficient,

gc =
∑n

i=1 2i − n − 1
n

∑n
i=1 xi

, (13)

where n is the length of the flattened activation array
and xi is the entry at index i. To compare the two
distributions across time we use a Kolmogorov-Smirnov
two-sample test (Smirnov, 1939) with the Bonferroni
procedure by Benjamini and Hochberg (1995), as
described before. The nonparametric Kolmogorov-
Smirnov test was chosen because the data did not
meet the assumption of normality nor the assumption
of homogeneity of variance necessary for a t-test.
To compare four different time steps with each other
m = 6 hypotheses need to be tested. Second, we use the
ground truth segmentation to analyze the sensitivity
of CAM activations to the objects being classified. To
accomplish this, we assign each pixel of the input image
to one of the four categories: background, occluder,
overlap, and target. We then compare how much of the
total activation mass is captured by an average pixel
of each type. To statistically compare the distributions
of pixel types within each time step we again use a
Kolmogorov-Smirnov two-sample test with Bonferroni
correction.

Perceptual hysteresis

A classic way to illustrate perceptual hysteresis is
via viewing a sequence of bistable stimuli. In one
approach, the observer sees a series of images in which
the stimulus gradually morphs from one class, for
example, a man’s face to that of another class, for
example, a kneeling woman. Subjects at one point
perceive a jump in perception from the man’s face
to the kneeling woman, when watching the sequence
of morphed images. However when watching the
sequence in the opposite order, the transition between

Figure 3. Bistable digit transition The figures from left to right
morph from the handwritten digit “9” to the digit “4.” When
viewing the pictures from left to right versus right to left,
perception can switch from one interpretation to the other at a
different image. This reflects perceptual hysteresis.

the two ambiguous interpretations occurs for a different
image. Thus, the perception of the intermediate images
depends on what has just been perceived before. We use
a variant of this classic task to investigate whether our
networks display a similar hysteresis effect.

For our hysteresis analysis, we use unoccluded
MNIST as a starting point. We aim to generate a
morphing time series between two classes that is
ambiguous and bistable during the transition. To create
image transitions that fulfill these prerequisites we train
a variational autoencoder as described in (Sohn et al.
2015) and then linearly interpolate between hidden
representations of the classes. This approach results
in 45 morphing time series (see example in Figure 3)
with a smooth transition between two different classes.
The variational autoencoder is symmetric and has three
encoder and decoder layers with 784, 500, and 500
neurons. The latent code is of size 20. It was trained
for 100 epochs on MNIST with a batch size of 128
and η = 10−3. We export the resulting images as a time
series of size 40. There is no definitive time step where
one class supercedes the other, as it is dependent on the
representation learned by the autoencoder.

We also test the hysteresis effects for superimposed
(blended) MNIST stimuli. To generate the equivalent
of the 45 transitions we first calculate the geometric
centroid of each class in the high dimensional space
generated by the raw images. We then choose the one
sample for each class that has the smallest Euclidean
distance to the centroid. The resulting ten prototypes
are superimposed and linearly cross-faded for 40 time
steps.

We train the models BLT, BL, and BT on MNIST
without occluders. To ensure stability for longer time
series, we unfold the models for 21 time steps instead of
just four during training. We use a batch size of 100
and train for 25 epochs. Otherwise we proceed with
the same hyperparameters as in the occluded object
recognition experiments. For testing we unrolled the
networks for the length of the morphing time series and
present one image of the time series at each time step.

Results

Recurrent connections improve recognition of
occluded objects

To evaluate the benefit of recurrent networks,
we trained the seven competing network models
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Figure 4. Performance comparison of different network architectures. Error bars indicate the standard error based on five repetitions
of the training and testing procedure. Matrices depict results of pairwise two-sided McNemar tests with an FDR of 0.05, black squares
indicating significant differences at p < .05. (A) OS-MNIST, mono. input. (B) OS-MNIST, stereo. input. (C) OS-fMNIST, mono. input.
(D) OS-fMNIST, stereo. input. Vertical axes are not on the same scale.

to recognize the target objects in our datasets. We
compared test performance in the form of classification
error (1 − accuracy). Figure 4 depicts the error rates
for the models trained with the random position
variants of OS-MNIST monocular (A), stereoscopic
(B) and OS-fMNIST monocular(C), stereoscopic
(D). The results indicate that recurrent architectures
consistently outperform their feedforward counterparts
of near-equal complexity. When evaluated on our
novel random position variants of OS-MNIST and
OS-fMNIST we observe that all but two pairwise
comparisons indicate significant differences (FDR =
0.05).

While B-F have the most parameters of any
feedforward model, it only shows a clear advantage
over the basic B model for this task. Only for stereo
OS-fMNIST B-F displays a higher accuracy than B-K
(χ2(1,N = 100.000) = 3.926, p = .048). B-K, with its
larger 6 × 6 kernels, performs significantly better in all
other cases. Among feedforward networks, B-K is only
surpassed by the deeper B-D model with respect to
accuracy. Although best among feedforward models,
the higher representational power of this deeper
network is not enough to significantly outperform any
of the recurrent models. The lower 4 × 3 rectangle
in the significance matrix, highlighted by a white
line, depicts the comparisons of all feedforward
with all recurrent models. The figure shows that
in all but one case any of the recurrent networks
significantly outperforms any of the feedforward
networks. The only exception is for the monocular
stimuli of OS-fMNIST (Figure 4C), where the test
between B-D and BT did not indicate any significant
difference.

When comparing the monocular with the
stereoscopic case, we observe consistently lower
error rates for the latter. Additionally, the relative
performance gain of the recurrent models is consistently
higher for stereoscopic input. This is most obvious for
the B-D and BT models in OS-fMNIST. While for the
monocular case B-D does not perform significantly
different (χ2[1,N = 100.000] = 3.821, p = .051), for
the stereoscopic case BT significantly outperforms B-D
(χ2[1,N = 100.000] = 24.845, p < .001).

When training on our dataset variants with centered
object positions, we observe that the recurrent networks
also significantly outperform the three feedforward
models B, B-F, and B-K, which we consider the most
adequate control model. However, for the centered
position task, recurrent models are usually on par
or slightly outperformed by B-D. Combined with
our results for the novel random position data,
we hypothesize that the higher representational
power of B-D is responsible for learning a better
representation of the particular parts of the objects
which are usually left unoccluded owing to the scene
arrangement on the virtual floor (in particular the
upper middle part). All network weights are initially
drawn from a uniform distribution normalized by
the kernel size. After training, the mean of weights
for bottom-up connections is sometimes positive and
sometimes negative depending on the run. For recurrent
weights, however, we find that the mean is consistently
negative (BLT, mono., layer 1: M = −0.123,
SD = 0.013, BLT, mono. layer 2: M = −0.129,
SD = 0.023).

Table 2 contains the model error rates for all
the different datasets of OSCAR v2. When trained
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OS-MNIST

Variant B B-F B-K B-D BT BL BLT GLM

Mono Centered .432 ± .002 .355 ± .001 .305 ± .001 .160 ± .001 .199 ± .001 .180 ± .001 .173 ± .001 .500 ± .000
Random .513 ± .002 .446 ± .002 .429 ± .001 .338 ± .001 .315 ± .002 .252 ± .000 .245 ± .002 .891 ± .000

Stereo Centered .209 ± .001 .165 ± .000 .139 ± .001 .087 ± .000 .102 ± .001 .086 ± .000 .085 ± .001 .325 ± .000
Random .284 ± .001 .237 ± .001 .223 ± .001 .192 ± .000 .175 ± .000 .137 ± .000 .138 ± .000 .887 ± .000

OS-fMNIST

Variant B B-F B-K B-D BT BL BLT GLM

Mono Centered .424 ± .001 .351 ± .001 .292 ± .001 .214 ± .000 .250 ± .000 .242 ± .001 .234 ± .000 .407 ± .000
Random .617 ± .001 .537 ± .001 .514 ± .002 .408 ± .000 .412 ± .001 .362 ± .001 .352 ± .002 .895 ± .000

Stereo Centered .260 ± .001 .225 ± .000 .209 ± .001 .177 ± .000 .203 ± .001 .190 ± .000 .195 ± .000 .303 ± .000
Random .363 ± .001 .318 ± .001 .322 ± .000 .299 ± .001 .295 ± .001 .257 ± .001 .261 ± .001 .884 ± .000

OS-YCB

Variant B B-F B-K B-D BT BL BLT GLM

Mono All .376 ± .002 .259 ± .001 .284 ± .001 .199 ± .001 .252 ± .001 .224 ± .001 .212 ± .000 .250 ± .000
Stereo All .166 ± .001 .092 ± .001 .105 ± .001 .064 ± .000 .090 ± .001 .071 ± .001 .069 ± .000 .091 ± .000

Table 2. Error rates for different OSCAR v2 datasets and all model architectures. Standard error based on five independent training
runs. Training occurred for 100 epochs, batchsize 500. Best two performances per dataset are highlighted in bold.

separately on the four subsets of OS-YCB with varying
percentages of occlusion, we observe qualitatively
similar patterns (see Appendix A). While the error
rates grow with percentage of occlusion, we also see
relatively higher performance gains for recurrent models
at stereoscopic input. With the exception of B-D,
recurrent networks always produce the lowest error rate
for all datasets.

Recurrent connections help to discount
occluders

To shed light on the mechanisms behind the
improved performance of the recurrent networks, we
studied how network activity unfolds over time. For
each recurrent model, we obtain a softmax distribution
over all possible classes for every time step. The readout
can be interpreted as the probability distribution
over classes and serves to illustrate how the feedback
can revise the models’ beliefs over time. Our analysis
reveals that correct initial guesses tend to be reinforced,
whereas wrong initial guesses are frequently corrected.
Figure 5A shows specific examples of this behavior for
the BLT network and OS-MNIST (random position).

The shown results are qualitatively very similar when
analyzed on BL or BT and when being evaluated on
our other occluded datasets. We observe reinforcement
of correct first guesses in roughly 80% (panel 1) and
revision in 20% (panel 2-5) of the test set images. For
example, the second panel from the left shows how the

target “2” is initially mistaken for a “5” (blue) and only
later is correctly classified.

The softmax activation averaged over all samples of
a specific target class is shown in Figure 5B. It reveals
that the probabilities assigned to incorrect answers
decrease over time. Furthermore, we observe that the
network tends to make systematic mistakes at the early
time steps which appear to be an expression of visual
similarity. For example, the networks often misclassify
a “3” as a “5” or an “8” (fourth panel in upper row
marked by blue frame) and vice versa.

The softmax output only gives limited insight into
the internal dynamics of the recurrent networks. To
further investigate how recurrent connections shape
the networks’ internal representation we consider one
layer before the softmax readout. After GAP each
input stimulus invokes a 32-dimensional activation
pattern a(t), that changes with time. We visualize
this high-dimensional space using t-SNE (Maaten &
Hinton, 2008); see Figure 6. The different columns of
the figure correspond to the unrolled time steps of the
network, while the rows highlight different parts of
the test set. Each time step is given to the clustering
algorithm separately, thus clusters tend to change their
position from time step to time step. The visualization in
Figure 6A shows that the internal representations at the
first time step are very conflated, but over time become
well-separated. Figure 6B includes the representations
of unoccluded stimuli (black outline) for all different
classes. It is important to note that the network was
not trained with this additional data, it was merely



Journal of Vision (2021) 21(13):6, 1–25 Ernst, Burwick, & Triesch 11

Figure 5. Softmax output of BLT network, trained/tested on OS-MNIST, random position. (A) Specific stimuli illustrating the effect of
recurrent feedback. In the example highlighted by a red frame, an incorrect initial guess of “5” (see maximum of blue curve
representing the first time step) is corrected to the correct interpretation “2” at the later time steps. (B) Mean softmax output over all
test stimuli of all 10 classes revealing systematic reduction of softmax probabilities of nontarget classes with time. The probabilities
also reflect systematic visual similarities between different classes such as “3,” “5,” and “8” (see example marked by blue frame).
Shaded areas correspond to standard error estimated with a sample size of 10,000 images taken from the test set. Dashed lines and
colored digits in the lower corners indicate correct target class. Note the logarithmic scales on the y-axes in (A) and (B).

given as another test set. The analysis shows that the
representations of unoccluded inputs are completely
separated from the rest, but are already forming clear
clusters for time step t0. In contrast, for the occluded
stimuli the representations start out rather intermingled
but separate over time such that the occluded stimuli
come to lie near their unoccluded variants. The inset
shows the relative positions of two samples of class
“2.” The effect can be seen more clearly when looking
at Figure 6C: here, the class “3” is highlighted and we
only show the geometric centroid for each unoccluded
class representation. The inset pictures show that while
two same class pictures are far away in the beginning,
they cluster around the average representation of the
unoccluded data at later time steps.

Based on these results, we hypothesize that the
recurrent connections are capable of steering the
internal representation of an occluded stimulus
toward the one of an unoccluded, “pure” stimulus.
Thus, we investigate and compare the distances

between activations caused by OS-MNIST input and
unoccluded input, see Figure 7. We use the Euclidean
distance metric extended to the high-dimensional space:

distd (x, y) =
d∑
i=1

[
(xi − yi)2

]1/2
. (14)

Our analysis considers the relative distances between
activation patterns that are invoked by the occluded
stimulus, and the centroids of activation patterns
caused by unoccluded stimuli corresponding to the
target and occluder classes. In contrast with our
preliminary analysis concerning stimuli without in-class
variability (Ernst et al., 2019), we now examine stimuli
that vary in appearance within each class. The result
indicates that, over time, the representation of the
input approaches that of the unoccluded target class
rather than that of the unoccluded occluder classes.
The distributions of relative distances for each time
step are significantly different (p < .001, one-sided
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Figure 6. Visualization of the network’s internal representation T-SNE depiction of the network’s representation of occluded (A) and
occluded plus unoccluded (black outline) stimuli (B) evolving in time. (C) highlights the specific class “3” and depicts the geometric
centroid of unoccluded classes (black outline), colors represent different classes as shown in the legend.

Kolmogorov-Smirnov two-sample test, Bonferroni
corrected). These findings provide further evidence that
the recurrent feedback allows the network to discount
occluders.

To further investigate the effect of recurrent
feedback and visualize it in the image domain, we
use CAM (Zhou et al., 2016). The CAM illustrates
the relative importance of each pixel given the output
class. Figure 8A shows one specific example stimulus
(OS-MNIST) per row and illustrates the change of
CAM through recurrent processing. Most of the
time the network correctly classifies the target object
even at time step t0; however, it attributes a very
large area to be important for the classification of
that object. Over time, the internal dynamics shape
the representation to contract on the specific pixels
corresponding to the true target object. Notably, the
area of the occluders becomes less important over time
as shown by increasingly darker areas at time step t3.
The panel titled �t displays the difference of the CAMs
from time steps t3 and t0 with the digits superimposed.
It highlights the areas that get amplified and dampened
over time relative to the locations of the target object
and the occluders.

Figure 8B depicts the mean activation map averaged
more than 10,000 test set samples with target objects
in three different locations. For all time steps, we
display the activation map for the final prediction of
the network. Each row shows a test set where the target
objects are fixed at a different position on the canvas
as indicated by the black crosshairs. Each column
shows the evolution over time. The figure illustrates
that the network indeed correctly locates the target
and shows how the importance assigned to different
image locations contracts toward the target location,
resembling the network focusing its “attention” on the
target.

To better quantify this intuition, we evaluate how
concentrated the activations are for each timesteps
using the Gini coefficient gc. The result of this analysis
are shown in the form of line plots on the right.
Over time, the concentration of the activation maps
rises continuously. All comparisons between time
steps are statistically significant (p < .001, two-sided
Kolmogorov-Smirnov two-sample test, Bonferroni
corrected).

Figure 8C illustrates the second concentration
analysis. We divide the input images according to the
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Figure 7. Analysis of the internal representation of occluded stimuli. (A) We define a relative distance measure to quantify if the
activation of a stimulus is relatively closer to the centroid of the unoccluded target representations compared to the centroids of the
unoccluded occluder stimuli. Values of less than 1 indicate relative proximity to the target. (B) Violin plot displays the relative
distances to occluder 1 and 2 at different time steps. Dashed line represents the mean of the distribution at t0.

Figure 8. Evolution of CAMs over time, BLT network. (A) Specific samples of OS-MNIST and corresponding CAM. (B) Mean activation
map over time for final network prediction. Gaussian fit depicted as four contour lines, crosshairs indicate true position of target. Line
plots depict Gini coefficient gc over time, errorbars represent the corresponding standard deviation. (C) Activation mass percentage
per pixel for target, occluder, overlap, and background.
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ground truth segmentation and assess the different
pixel types separately. For every time step, we compare
each pixel type distribution with each other using a
two-sample Kolmogorov-Smirnov test. All comparisons
show significant differences (p < .001 after Bonferroni
correction). On average a target pixel at t0 aggregates
M = 0.112% of the total activation mass (SD = 0.027)
and reaches an average percentage of M = 0.209% at
time step t3 (SD = 0.103). The general progression
of target pixel percentages mirrors the analysis of the
Gini coefficient. For t3 the target pixel aggregates the
most activation mass, followed by the overlap pixel
which can be interpreted as part of the target or the
occluder (M = 0.170, SD = 0.083). The background
pixel (M = 0.090, SD = 0.006) holds significantly less
mass than the occluder pixel (M = 0.093, SD = 0.009)
and the least mass of all pixel types for t3. This general
assessment holds true for all time steps. Note that
the average occluder and the average background
pixel activation mass declines over time. In contrast,
the average overlap and target pixel activation mass
increases over the same time period.

Perceptual hysteresis

So far, our experiments have revealed that recurrent
network dynamics unfold over time, altering the
output and the hidden representation in significant
ways. At any time, the representation of the input
does not only depend on the input itself, but also on
the state of the network in the previous time step.
Thus, the network retains information from one time
step to the next. It has an implicit memory trace of
the stimulus. We wondered if this implicit memory
owing to recurrent processing give rise to perceptual
hysteresis as seen in human perception. To answer
this question we designed an experiment where we
tested the network with sequences of inputs that
gradually morph from one class to another and back.
Figure 9 shows four representative samples out of
the 45 transitions and the softmax output for the two
relevant classes along a time series of 40 frames. As
can be seen, the decision boundary (vertical lines)
between the two classes depends on the inputs from the
previous time steps, thus demonstrating hysteresis. This
is the only experiment where networks are trained with
unoccluded data, that is, the standard MNIST dataset.
The training procedure, however, remains the same.
Because the recurrent networks BT, BL, BLT have
never experienced changing stimuli during training, this
experiment shows that the recurrent connections carry
important information through time. Additionally, we
found that the characteristic curves observed cannot
be reproduced by a simple low-pass filtering system
that lags behind its input (see Appendix B). We observe
these hysteresis effects for all created morphing stimuli,

however only approximately 50% of transitions lead to
strictly bistable percepts. We define a bistable percept
as a forward and backward pass where the model only
outputs one of the two relevant classes. To account for
the effect of recurrent feedback being able to correct
initial guesses, the first and last three time steps are
ignored. For percepts that are not bistable, we still
observe hysteresis as the forward and backward pass
do not yield the same classification. One of these cases
is illustrated in Figure 9D, where instead of two, four
classes are involved when transitioning between “1” and
“0.” For blended transitions we observe qualitatively
similar results. Out of 45 transitions, 23 to 26 of the
stimuli become bistable percepts for the recurrent
networks and hysteresis can be seen for all transitions.

Depending on the ambiguity of the morph, we see
stronger or weaker hysteresis in terms of the size of
the blue shaded area in Figure 9. We compare the
width of the hysteresis curves defined by the number
of time steps between the vertical decision boundaries
for the different recurrent network types. A one-way
ANOVA was performed to compare the effect of
recurrent network type on hysteresis curve width.
The ANOVA revealed that there was a statistically
significant difference in width between at least two
groups, F (2, 62) = 21.222, p < .001. We compared
the individual groups post hoc with a t-test. The 19
transitions that displayed bistable hysteresis for the
BL network (M = 9.421, SD = 2.160) compared with
the 23 transitions of the BLT network (M = 5.870,
SD = 1.191) demonstrated significantly stronger
hysteresis, t(40) = 6.580, p =< .001. Also, the BT
network (M = 8.870, SD = 2.213) demonstrated
significantly larger hysteresis widths than BLT,
t(44) = 5.6, p < .001. There was no significant effect,
t(40) = .793, p = .432, comparing BL with BT.

Discussion

We investigated whether feedback connections in
artificial neural networks can benefit occluded object
recognition. Past studies attempted to answer this
question using simplistic stimuli which fail to represent
the full complexity of natural vision. On the one hand,
(Spoerer et al. 2017) used computer rendered digits
without any in-class variability. On the other hand, the
stimuli used by (O’Reilly et al. 2013) and (Tang et al.
2014, 2018) only blurred out parts of the image rather
than introducing occluding objects. More recently,
(Kang and Druckmann 2020) tackled in-class variablity,
but their test data still lack depth, perspective, and
stereoscopic vision.

To overcome these limitations, we have presented
a version 2 of our stereoscopic occluded object
dataset (OSCAR) that captures the natural variability
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Figure 9. Bistability and perceptual hysteresis, BLT network. Vertical lines correspond with decision boundaries, and blue shaded areas
highlight discrepancy in classification between forward and backward sequence. (A) 9 ↔ 4, (B) 6 ↔ 0, (C) 8 ↔ 3. (D) 1 ↔ 0, multiple
classes involved denoted by color.

of object appearance and a range of disparity and
perspective cues. With its different subsets (OS-MNIST,
OS-fMNIST, and OS-YCB) the dataset bridges the gap
from handwritten digit recognition to full 3D object
recognition.

We trained a set of seven different network models
with and without recurrent connectivity to classify
occluded objects. Similar to past studies (Spoerer et al.,
2017), but with more naturalistic stimuli, we found that
recurrent models reached significantly higher accuracy
levels on classification tasks. Additionally, recurrent
architectures similar to the ones presented here have

been shown to also outperform parameter-matched
control models when no occlusion is present (Liang
& Hu, 2015), suggesting a rather general benefit of
recurrence for object recognition. This is in line with
biological observations of how object information in
the brain unfolds over time during recognition (Oram &
Richmond, 1999; Brincat & Connor, 2006). We cannot
completely rule out that the performance gains might
disappear when another training regime is used, and the
necessity to compare against four feedforward models
underscores the challenge to define an appropriate
control model. We believe that B-K with its increased
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local connectivity conceptually matches the recurrent
models best. An alternative approach would be to
generate a model with the same computational graph
as the recurrent model unfolded. However, that would
result in a severe mismatch regarding the number of
learnable parameters.

Among feedforward models, the deeper architecture
B-D performed best. Notably, this deeper network
can learn higher order representations than all other
networks. We found that B-D can reach comparable
performance on centered position data, but not random
position data. This suggests that the recurrent networks
may have discovered a more general way to reason
about occlusions, while the deeper network merely
found a way to exploit a bias in the data, which does
not generalize to the case of random object positions.
The relatively small gap in performance could also be
a sign that B-D can approximate recurrent networks
due to its additional layers. All other feedforward
control models are consistently outperformed by their
recurrent counterparts. This includes B-K, which has
a larger 6 × 6 kernel. Within the recurrent ensemble,
BT performs worst. The models BL and BLT clearly
demonstrate the importance of lateral connections. As
lateral feedback is transmitted within one layer and
does not have to go through up- and downsampling it
may preserve information better.

Evidently, any recurrent computation could also be
performed by an appropriately unfolded (and therefore
deeper) feedforward network (Liao & Poggio, 2016).
This might be one of the reasons why the deeper
B-D variant almost reaches the accuracy levels of the
recurrent models in our tests. The recurrent network can
be viewed as equivalent to such a deeper feedforward
version, with certain weights constrained to be identical.
Thus, recurrence implies a form of weight sharing in
the temporal domain similar to how convolutional
layers implement a form of weight sharing in the
spatial domain. We speculate that this is the chief
reason for the observed performance gains of recurrent
networks.

For stereoscopic data, we observe consistently higher
accuracy rates than for monocular input. This is most
likely due to the fact that stereo input introduces a novel
point of view, potentially revealing more information
about the target. Additionally, when observed with
two eyes, the target is presented at zero disparity,
whereas the occluder objects are not. This provides an
additional cue regarding what objects are to be ignored.
Qualitatively, the results of the statistical network
comparisons resemble the ones obtained for monocular
stimuli. Interestingly, however, the relative performance
difference between recurrent and feedforward models
was usually higher for stereoscopic stimuli. This
suggests that the recurrent connections are effective
in using the additional cues provided by the binocular
viewing conditions. Interestingly, during training of the

recurrent networks, the sum of both the lateral and the
top-down weights became negative on average. This bias
towards negative weights might contribute to inhibiting
or discounting occluders. As the network’s dynamics
are governed by the ReLU activation function, a slight
bias towards inhibitory weights might also be important
to keep activations centered around the nonlinearity
and thus facilitate learning.

Our results regarding the performance eval-
uation are consistent with earlier experiments
(Spoerer et al., 2017), but address the issue with more
natural image data. The advantages shown for recurrent
networks relate to several other interesting phenomena.
For random position data it is crucial to assign border
ownership at the edge between target and occluders
to be able to identify which object is the target before
classification. Specialized border ownership cells have
been found in the macaque visual cortex that are
responsible for this specific task (Zhou et al., 2000).
As a common trait, computational models of these
cells always incorporate some form of lateral and
top-down connections (Zhaoping, 2005; Craft et al.,
2007). Thus, it is possible that our recurrent networks
also learn some kind of border ownership mechanism
to suppress occluders. Such an analysis is left for
future work. Interestingly, recurrence has also recently
been implicated in the phenomenon of (un)crowding.
Crowding describes the phenomenon of an object being
harder to perceive when it is presented together with
surrounding elements (Bouma, 1973). It is particularly
strong in the visual periphery. Doerig et al. (2020) have
investigated local versus global processing with deep
artificial neural networks and found that feedforward
networks cannot explain (un)crowding sufficiently.
This is in line with a recent study by (Jastrzębowska
et al. 2021), suggesting that recurrent top-down
connections might be one of the keys to understanding
uncrowding. Thus, there is converging evidence for
recurrent processing playing a prominent role in the
interpretation of stimuli that are difficult to perceive
due to flankers producing crowding or occluders partly
hiding the stimulus.

That a recurrent neural network is capable of
perceptual hysteresis is not surprising by itself.
Nonlinear dynamical systems have long been known
to display such behavior. The hysteresis effects we
observe are qualitatively similar to experimental results
for bistable visual stimuli (Fisher, 1967) and motion
perception (Hock et al., 1993), but also see (Stöttinger
et al. 2016). However, the functional benefits of
hysteresis are still a matter of some debate (Trapp et
al., 2021), as well as the impact of psychiatric disorders
on hysteresis (Martin et al., 2014). Here we have shown
that hysteresis arises in a network that is trained solely
for classification. It is not self-evident that optimizing
classification performance should lead to hysteresis. Yet,
it is consistent with the view of (Poltoratski and Tong
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2014) that “hysteresis aids in disambiguating perception
during naturalistic visual transitions.” Finally, while
the hysteresis typically studied in experiments and
exhibited by our network is sometimes referred to
as “positive” hysteresis, more recent work has also
characterized a “negative” hysteresis, which may be
rooted in neuronal adaptation mechanisms and serve
a different computational function (Liaci et al., 2018;
Sayal et al., 2020). We feel that more work is needed
to understand both the mechanisms and functions of
these different forms of hysteresis.

In contrast with the majority of work on object
recognition, our study considers binocular images and
demonstrates clear performance gains for recognition
of occluded objects during binocular presentation.
A limitation of our approach is our assumption that
the target object lies in the plane of fixation, that is, it
is seen at zero disparity, while the occluding objects
are presented at negative disparities. A more complete
model would include a vergence control mechanism
that controls the plane of fixation autonomously.
Self-calibrating models capable of doing so have been
proposed in the active efficient coding framework (Zhao
et al., 2012; Eckmann et al., 2020). Another potential
avenue for future research is to focus on the stereoscopic
networks and analyze whether the individual filters
become sensitive to certain disparities that might help
to ignore occluders.

We could demonstrate that the recurrent feedback
is able to reinforce and even revise first guesses over
time. This is in line with the hypothesis that recurrent
feedback might “explain away” different alternative
hypotheses about the target data (Yuille & Kersten,
2006; Rust & Stocker, 2010). The used loss function
consists of a sum over time steps and thus the networks
are encouraged to output the correct target at every
time step unrolled. However, the structure of the
recurrent networks in combination with the input data
still seems to favor an iterative convergence to the
correct answer. Furthermore, we showed that internal
representations of occluded stimuli align with those of
unoccluded objects over time and that the networks’
internal “attention” focuses on the target object through
recurrent processing. We speculate that this focusing
may also make recurrent networks more robust against
adversarial examples (Goodfellow et al., 2015), but this
topic is left for future work.

Another interesting future direction of research
would be to investigate the limits of rapid serial visual
recognition. Our experiments on perceptual hysteresis
illustrate that the recurrent networks’ output is generally
a function of the current but also previous inputs. In
line with the speed–accuracy trade-off investigated by
Spoerer et al. (2020) we suspect that this may limit
the network’s ability to rapidly recognize sequences
of distinct inputs similar to how human perception is

limited in rapid serial visual presentation and visual
masking paradigms.

In conclusion, given the improved performance of
recurrent neural network architectures for difficult
recognition problems, their greater biological
plausibility and their ability to explain various
perceptual phenomena, they seem to be the more
promising path towards understanding computations
in the primate visual system and beyond.

Keywords: recurrent neural networks, occluded object
recognition, recurrent connections, perceptual hysteresis
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Appendix A: Additional results and
figures

As mentioned in the section “Recurrent connections
improve recognition performance” we also trained our
seven network architectures on subsets of OS-YCB
corresponding to different degrees of occlusion. The
results of these experiments can be found in Table A3.
Qualitatively the results are consistent with the results
from training with the whole dataset. The architecture
B-D performs best among feedforward models, the
architecture BLT performs best among recurrent
models.

To provide a more comprehensive view of the
CAM analysis Figure A1 shows eight randomly
chosen images from the test sets of (A) OS-MNIST
and (B) OS-fMNIST. The discovered focusing
mechanism can be seen in the majority of samples.
The absence of the effect seems to correspond
with cases where the network is unable to correctly
identify the target object, highlighted by a red
frame.

The networks were implemented in PyTorch version
1.4, training was GPU-accelerated using a single
NVIDIA GeForce RTX 2070 SUPER or NVIDIA
RTX 2080 Ti. The training of a single network for

t0 t1 t2 t3

M SD M SD M SD M SD

drel,1 .883 .230 .761 .221 .704 .225 .680 .231
drel,2 .880 .230 .759 .221 .702 .223 .678 .230

Table A1. Mean and standard deviation of the relative distance
drel . Results based on N = 10, 000 samples. Corresponding
analysis shown in Figure 7B.

t0 t1 t2 t3

M SD M SD M SD M SD

Bottom-left .055 .021 .099 .052 .129 .071 .153 .089
Top-right .056 .021 .098 .049 .131 .069 .150 .083
Center .065 .024 .116 .059 .150 .079 .178 .098

Table A2. Mean and standard deviation of the Gini coefficient
gc. Results based on N = 10, 000 samples. Corresponding
analysis shown in Figure 8B.
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100 epochs with intermediate testing every five epochs
took 2 to 36 hours depending on the training set, on
the network type and GPU used. Figure A2 shows
the classification accuracy across training for different
models. Test performance saturates and training curves
do not diverge much. The first of the two cuts in
learning rate is clearly discernible at epoch 75. The
depicted learning curves are corresponding to the final
error rates of OS-MNIST shown in Figure 4A.

Appendix B: Hysteresis and leaky
integration

To put our hysteresis results in context, we compare
them to the output of a regular feedforward model
and a feedforward model whose output has been
low-pass filtered using a “leaky integrator.” A leaky
integrator can be described by the following differential

Figure A1. Additional CAMs (A) OS-MNIST, (B) OS-fMNIST. Shown stimuli are randomly sampled from the test set. CAMs are generated
by the BLT network. Cases were the network fails to correctly classify the target object are marked by a red frame.
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OS-YCB

% of occlusion B B-F B-K B-D BT BL BLT GLM

Mono 20 .152 ± .000 .071 ± .000 .074 ± .001 .031 ± .000 .048 ± .001 .039 ± .000 .036 ± .000 .046 ± .000
40 .286 ± .002 .152 ± .001 .155 ± .001 .069 ± .000 .106 ± .002 .088 ± .001 .083 ± .002 .090 ± .000
60 .515 ± .004 .339 ± .002 .349 ± .001 .185 ± .001 .256 ± .001 .222 ± .002 .203 ± .000 .215 ± .000
80 .745 ± .002 .658 ± .001 .673 ± .001 .530 ± .003 .599 ± .002 .576 ± .002 .560 ± .001 .556 ± .000

Stereo 20 .072 ± .001 .039 ± .001 .042 ± .001 .016 ± .000 .025 ± .000 .019 ± .000 .019 ± .000 .033 ± .000
40 .140 ± .001 .068 ± .001 .075 ± .002 .031 ± .001 .051 ± .000 .041 ± .001 .038 ± .001 .052 ± .000
60 .260 ± .003 .137 ± .002 .146 ± .002 .072 ± .001 .104 ± .000 .085 ± .001 .083 ± .001 .095 ± .001
80 .433 ± .003 .279 ± .002 .285 ± .002 .167 ± .002 .213 ± .001 .182 ± .001 .175 ± .001 .198 ± .001

Table A3. Error rates for subsets of OS-YCB and all model architectures. Standard error based on five independent training runs.
Training occurred for 100 epochs, batchsize 500. Best two performances per dataset are highlighted in bold.

t0 t1 t2 t3

M SD M SD M SD M SD

Background 0.097 0.001 0.094 0.004 0.092 0.005 0.090 0.006
Occluder 0.096 0.003 0.094 0.005 0.094 0.007 0.092 0.008
Overlap 0.098 0.018 0.131 0.048 0.154 0.067 0.170 0.083
Target 0.112 0.027 0.161 0.063 0.190 0.087 0.209 0.104

Table A4. Mean and standard deviation of the activation mass percentage. Results based on N = 10, 000
samples. Corresponding analysis shown in Figure 8C.

Figure A2. Image classification accuracy across training for different model types. (A) Feedforward models and (B) recurrent models.
Solid lines correspond to test accuracy, shaded lines depict training accuracy averaged over five independent runs. OS-MNIST random
target, monocular input.

equation:

d
dτ

x(τ ) = −λ (x(τ ) − u(τ )) , (B1)

where λ is a leak rate, x is the time-dependent output
and, u is the time-dependent input signal. Because our

network operates in discrete time steps, we use the
discrete time formulation:

x(t + 1) = λ · u(t) + (1 − λ) · x(t), t = 0, 1, 2, . . . . (B2)

Figure B1 depicts an additional analysis of the hysteresis
curves shown in the main text. Figure B1A compares
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Figure B1. Hysteresis in comparison with a feedforward and a leaky integrator model. (A) Hysteresis curve for the transition 8 ↔ 0,
similar to Figure 9 (grey), in comparison with a feedforward B network output (blue). (B) Feedforward signal, (C) Step function (black)
coupled to a leaky integrator with different time constants λ.

BLT BL BT

M SD M SD M SD

Morphed 5.870 1.191 9.421 2.160 8.870 2.213
Blended 5.741 1.350 9.696 2.422 11.826 2.681

Table B1. Mean and standard deviation of hysteresis curve
width. Results based on N = 19 − 26 samples. Corresponding
analysis shown in Figure B2.

the hysteresis curve produced by the recurrent network
BLT (gray) with the output of the feedforward network
B (blue). Because the feedforward classifier does not
incorporate more than one time step, each stimulus
has a definite output. Thus, the curves for the forward
and backward passes collapse to a single line. To test
whether the hysteresis curve of the recurrent network is
a trivial phenomenon that can be replicated by a linear
model lagging behind the current input, we augment
the feedforward classifier with our leaky integrator
model. The results for different leak rates can be seen
in Figure B1B. Although this approach does indeed
generate different predictions for the forward and the
backward pass, the curves significantly differ from what
is observed for the recurrent network. For none of the
time constants the model replicates the shape of the

hysteresis curves of the BLT network. For a comparable
hysteresis width of the curve, the leak rate has to be low,
which directly corresponds with a very shallow slope.
Note that the example shown is taken from the BLT
network, which tends to display the smallest width of
the hysteresis curves. The leaky integrator model also
fails to explain the long uninterrupted stable predictions
between the vertical decision boundaries.

Figure B1C depicts a more idealized scenario, where
instead of the B model we consider the output of a
perfect discriminator, that is, a step-function. Here
we see the exponential rise and decay that constitutes
the solution to the leaky integrator for constant input.
Again, the model is incapable of reproducing a curve
similar to the observed ones, which suggests that the
recurrent network has a persistent memory of the
past that stabilizes the internal dynamics for a certain
amount of time.

Figure B2 depicts the distributions corresponding
to the width of hysteresis curves for different recurrent
network architectures. To compare the distributions a
one-way ANOVAwas performed. The ANOVA revealed
that there was a statistically significant difference in
hysteresis curve width between at least two groups for
morphed stimuli, F (2, 62) = 21.222, p < .001, as well
as for blended stimuli, F (2, 70) = 48.185, p < .001.
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Figure B2. Hysteresis curve width with respect to recurrent models Hysteresis curve width for the three recurrent networks BLT, BL,
and BT evaluated on (A) morphed MNIST stimuli (B) blended (linearly superimposed) MNIST stimuli. Distributions were compared
using two-sided t-tests.


