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Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction
of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis
on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive
but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin
syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of
complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in
selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component
for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not
an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few
clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead.

1. Introduction

Autoimmune hemolytic anemia (AIHA) is a heterogeneous
group of disorders characterized by autoantibody-mediated
destruction of red blood cells (RBCs) [1–3]. AIHA can be
classified as shown in Table 1. Correct subclassification and
identification of any underlying or associated disorder are
critical for understanding the pathogenesis and for optimal
therapeutic management [3–5].

The knowledge of etiology and pathogenesis, including
details of RBC breakdown, is rapidly growing [3–7]. During
the last five decades we have learned a great deal about
the essential role of complement in subgroups of AIHA [6–
8]. This insight is still expanding and possible therapeutic
options for complement modulation are being explored [9–
11]. Furthermore, though paroxysmal nocturnal hemoglobin-
uria (PNH) is not an autoimmune disorder, the entirely
complement-dependent pathogenesis and the success of

therapeutic complement inhibition in this disease make it
possible to learn lessons from PNH that might prove useful
in treating AIHA [12].

In this review, we will address the pathogenetic mech-
anisms of AIHA, focusing in particular on the role of
complement for RBC destruction and possible implications
for the potential therapeutic use of complement modulators.
Established therapies will be briefly mentioned since they
have relevance for future therapeutic perspectives. Diagnostic
procedures will not be described as such; comprehensive
guidelines for diagnosis can be found elsewhere in the
literature [4, 5].

2. Warm-Antibody Autoimmune
Hemolytic Anemia

2.1. Etiology, Pathogenesis, and Associated Disorders. The
incidence of AIHA has been estimated to be about 1 : 100 000
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Table 1: Autoimmune hemolytic anemia.

Warm-antibody type
Primary
Secondary

Cold-antibody type
Primary chronic cold agglutinin disease
Secondary cold agglutinin syndrome
Associated with malignant disease
Acute, infection-associated

Paroxysmal cold hemoglobinuria
Mixed cold- and warm-antibody type

per year in adults [13] and even lower in children. Warm-
antibody AIHA (w-AIHA) accounts for approximately 75%
of the cases [1, 2]. The autoantibodies in w-AIHA have
temperature optimum at 37∘C and are invariably polyclonal,
even when w-AIHA complicates a clonal B-cell lymphopro-
liferative disorder [14, 15]. A general dysregulation of the
immune system with impaired distinction between self and
nonself seems essential to pathogenesis; the T-cell mediated
regulation of the humoral immune system has been shown
to play a critical role [15, 16]. Polymorphism of the gene
for the signal substance CTLA-4, which activates regulatory
T-cells (Treg-cells), seems to bring about a disposition for
autoimmunity [16]. CD4+CD25+Treg-cells are important for
immunological tolerance and, thereby, for preventing w-
AIHA and other polyclonal autoimmune disorders [16].

On this background it is not surprising that a large
number of immunological and lymphoproliferative disorders
can be associated with w-AIHA. Secondary AIHA, that is,
cases with a demonstrable associated or underlying disease,
accounts for about 50% of w-AIHA, while the remaining
50% are classified as primary. The most frequently occurring
associated lymphoproliferative disease is chronic lymphatic
leukemia (CLL), whereas w-AIHA complicating another
non-Hodgkin’s lymphoma (NHL) is less common [1, 2, 14].
Examples of immunological disorders that can be associated
with w-AIHA are systemic lupus erythematosus, rheuma-
toid arthritis, Sjögren’s syndrome, primary biliary cirrho-
sis, hypothyroidism, inflammatory bowel disease, immune
thrombocytopenia, and primary hypogammaglobulinemia
[1, 2, 15, 17]. Some patients have several associated diseases
at the same time.

Autoantibody or complement fragment deposition on the
RBC can be detected using polyspecific and monospecific
direct antiglobulin test (DAT). The findings by monospecific
DAT reflect, although not to a completely reliable extent,
which immunoglobulin class(es) or complement fragments
are present on the RBC surface. The autoantibodies in w-
AIHA are of the immunoglobulin G (IgG) class in most cases
[4]. In up to 50% of w-AIHA, DAT is positive for complement
fragments, most often C3d and usually in combination with
IgG. IgA autoantibodies occur in 15–20% of the patients,
either in combination with IgG or, more rarely, alone [18].
Cases with IgA as the sole autoantibody class may be

misdiagnosed because reagents used in the polyspecific DAT
do not usually contain anti-IgA. Warm autoantibodies of the
IgM class have been assumed to be rare. Their frequency
remains somewhat controversial, however, because they may
have low affinity to the antigen and may have detached from
the RBC surface before they can be detected by DAT [19, 20].

In 3–10% of patients with w-AIHA, DAT is found to
be negative [4, 21]. The most established explanation is IgG
deposition on RBC below the sensitivity threshold for DAT
or, less frequently, occurrence of IgA as the only autoantibody
class [4, 18]. The hypothesis that T- or NK-cell mediated
immunity can destroy erythrocytes without involving the
humoral immune system has been supported by a few casu-
istic and experimental observations [6, 22]. Furthermore,
some evidence has been provided that Fc𝛾RI receptors on
macrophages bindmonomeric serum-IgG which can include
low-concentration specific RBC antibodies. This will create
“armed macrophages” carrying RBC antibodies whose Fab
portion can react with nonsensitized RBC [23]. “DAT-
negative AIHA” represents a diagnostic challenge. Elution
techniques and flow cytometric methods may be of some
value but in clinical practice, often, DAT-negative AIHA
remains an exclusion diagnosis. The usefulness of newer
gel centrifugation tests for IgG, IgG subclasses, and com-
plement fragments in detecting autoimmune pathogenesis
of hemolytic anemia was explored in a recent study. DAT
strength remained the best diagnostic indicator for AIHA
and had the strongest association with AIHA compared with
other commercially available immunohematology tests [24].

2.2. Mechanisms of Erythrocyte Destruction. RBCs coated
with warm-reactive autoantibodies are sequestered and
phagocytosed by macrophages, primarily in the spleen [25–
27]. The macrophage surface expresses receptors for the
Fc region of the immunoglobulin molecules, which enables
trapping and ingestion of the opsonized RBCs [28, 29]. Often,
however, phagocytosis is incomplete and results in formation
of spherocytes [7, 28]. This has been explained in part by
the removal of more membranes than volume. In addition,
ectoenzymes on the macrophage surface cause microperfo-
rations of the RBC membrane, increasing its permeability
and thereby promoting the transition from a biconcave to a
spherical shape of the cell [7, 25, 28]. Spherocytes are prone to
further destruction during subsequent passages through the
spleen. The severity of hemolysis correlates with the degree
of spherocytosis, but not with the strength of DAT positivity
[4, 7, 26].

On RBCs heavily coated with immunoglobulin, the
amount of antigen-antibody complex can be sufficient for
binding complement protein complex C1 and, thereby, for
activation of the classical complement pathway (Figure 1)
[30–32]. Unlike IgG, IgM is a potent complement activator
but, as previously mentioned, is usually not found on the
RBC surface by DAT in w-AIHA [19]. Regarding the IgG
subclasses, IgG3 activates complement more efficiently than
does IgG1, while IgG2 is a weak activator and there is no
good evidence for complement activation by IgG4 [33, 34].
IgA does not probably activate complement. Despite this,
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Figure 1: The complement cascade, simplified. Only components
relevant for this paper are shown. The lectin and alternative
pathways, converging with the classical pathway at the C3 activation
level, are indicated but not shown in detail. Physiological inhibitors
and positive feedback loops are not shown. C: complement protein;
MAC: membrane attack complex.

however, IgA-deposition on RBC can lead to fulminant
hemolysis [18, 35]. A probable explanation is involvement of
IgM even in some cases where only IgG or IgA is detected,
since IgM will often detach from the RBC before it can be
detected by DAT [20]. At least in IgA-induced hemolysis,
hemagglutination per se has also been shown to play a role.
Upon complement activation in w-AIHA, phagocytosis of
C3b-opsonized erythrocytes by Kupfer cells in the liver is
responsible for most of the RBC destruction, while full-
blown intravascular hemolysis mediated by the terminal
complement pathway is usually not prominent [4, 7, 31]. The
explanation for this is probably the modest activation of the
complement pathway, combined with the protective effect of
the physiological cell surface complement inhibitors CD55
and CD59 which, unlike in PNH, are intact in AIHA.

The pathways of RBC destruction in w-AIHA are sum-
marized in Figure 2. In conclusion, complement activation
does occur to some extent, at least in a proportion of the
patients, but is hardly essential for hemolysis in w-AIHA.
DAT positivity for C3 fragments is a marker of complement
involvement.

2.3. Therapy. The cornerstone of established pharmacolog-
ical therapy for w-AIHA is unspecific immunosuppression.
Corticosteroids remain first-line treatment. However, high
initial doses are required, responses are often achieved slowly,
and the rate of sustained remissions following weaning
of steroids is only 15–30% unless second-line therapy is
administered [3, 4, 36]. Combination with rituximab in the
first-line setting has been shown to significantly increase
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Figure 2: Mechanisms of erythrocyte destruction in warm-
antibody autoimmune hemolytic anemia. Ig: immunoglobulin; C:
complement protein.

response rate and duration [36], although rituximab has not
gained general acceptance by most authors as part of first-
line therapy [37]. The concern of adverse effects of rituximab
in the AIHA setting will be discussed below in the context of
therapy for CAD.

Since most RBC destruction occurs in the spleen, it is not
surprising that splenectomy is a reasonably efficient second-
line treatment, resulting in response in about two-thirds of
the patients [4]. An alternative, safe, and efficient second-line
option, if not used as part of combination therapy in the first
line, is infusions of rituximab [38]. In the third-line situation,
one may use immunosuppressive drugs such as danazol,
azathioprine, cyclophosphamide, or cyclosporine [3, 4, 39],
although response rates are poorly documented and most
publications are case reports or small retrospective series.
High-dose cyclophosphamide or alemtuzumabhas been used
with success in refractory cases [37]. In w-AIHA secondary
to lymphoproliferative diseases, therapy for the underlying
disorder is often essential and should be considered at an
early stage. The future possibilities of complement-directed
therapy will be addressed below. Transfusion in w-AIHA is
an important and complex issue which has been compre-
hensively discussed elsewhere [4, 40, 41]. To avoid severe
transfusion reactions and alloimmunization with increasing
transfusion problems, indications should be restrictive and
specific precautions undertaken. The risk of alloimmuniza-
tion should be reduced by extended blood group phenotyping
or the use of prophylactic antigen-matched donor blood and
a bed-side biological compatibility test should be performed
[40, 42, 43].

3. Primary Chronic Cold Agglutinin Disease

3.1. Etiology and Pathogenesis. We should distinguish
between primary cold agglutinin disease (CAD) and
secondary cold agglutinin syndrome (CAS) [5]. As will
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be further explained below, CAD is a precisely defined
clinicopathological entity and should, therefore, be called a
disease, not syndrome [44]. Secondary CAS, on the other
hand, is a syndrome complicating a variety of infectious
and neoplastic disorders, not a well-defined disease. In a
Norwegian population-based study, the prevalence of CAD
was 16 per million and the incidence was about 1 per million
per year, making CAD account for approximately 15% of
AIHA [1, 2, 45].

Cold agglutinins (CA) are autoantibodies that agglutinate
RBCs with a temperature optimum of 3-4∘C but may also
act in a warmer environment, depending on the thermal
amplitude of the CA [5, 46]. If the thermal amplitude exceeds
28–30∘C, the CA will be pathogenic. Low-affinity CA also
occur in many healthy individuals; these nonpathogenic CA
are polyclonal, have low thermal amplitude, and are present
in low titers, not higher than 256 and usually lower than 64.
More than 90% of pathogenic CA are of the IgM class and
these IgM macromolecules can be pentameric or hexameric
[45, 47, 48].

In general, monoclonal CA are more pathogenic than
polyclonal CA and hexameric IgM is more pathogenic than
pentameric IgM [5, 48, 49]. It has been known for decades
that, in patients with CAD, IgM-antibodies with CA-activity
aremonoclonal and, inmore than 90% of the patients, show 𝜅
light chain restriction [50]. Accordingly, CAD patients must
have a clonal B-cell lymphoproliferative disorder which has
not been fully elucidated until the last years. Two large, ret-
rospective studies of consecutive patients with primary CAD
found signs of a bone marrow clonal lymphoproliferation in
most patients, but in both series the individual hematological
and histological diagnoses showed a striking heterogeneity
[45, 51]. In one of the series, lymphoplasmacytic lymphoma
(LPL) was the most frequent finding, while marginal zone
lymphoma (MZL), unclassified clonal lymphoproliferation,
and reactive lymphocytosis were also frequently reported
[45]. The explanation for this perceived heterogeneity was
probably revealed by a recent study in which bone marrow
biopsy samples and aspirates from 54 patients with CAD
were systematically reexamined by a group of lymphoma
pathologists, using a standardized panel of morphologi-
cal, immunohistochemical, flow cytometric, and molecular
methods [44]. The bone marrow findings in these patients
were consistent with a surprisingly homogeneous disorder
termed “primary CA-associated lymphoproliferative disease”
by the authors and distinct from LPL, MZL, and other
previously recognized lymphoma entities.TheMYD88L265P
somatic mutation, typical for LPL, could not be detected in
the samples from patients with CAD [44, 52].

3.2. Mechanisms of Erythrocyte Destruction. CA are usually
directed against the Ii blood group system, most CA in
CAD being specific for the I carbohydrate antigen [53–55].
Cooling of blood during passage through acral parts of the
circulation allows CA to bind to RBC and cause agglutination
(Figure 3). Being a strong complement activator, antigen-
bound IgM-CA on the cell surface binds C1 and thereby
initiates the classical complement pathway [8, 56, 57]. C1

C2, C4
CA

C3b

C3b

Liver Phagocytosis

C5b6789
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Figure 3: Immune-initiated, complement-mediated erythrocyte
destruction in cold agglutinin disease (CAD) and cold agglutinin
syndrome (CAS). See text for further explanation. Black arrows:
major pathway; gray/dotted arrows: minor pathway; CA: cold
agglutinin; C: complement protein.

esterase activates C4 andC2, generatingC3 convertase, which
results in the cleavage of C3 to C3a and C3b. Upon returning
to central parts of the body with a temperature of 37∘C,
IgM-CA detaches from the cell surface, allowing agglutinated
erythrocytes to separate from each other, while C3b remains
bound. A proportion of the C3b-coated RBCs is sequestered
by macrophages of the reticuloendothelial system, mainly
Kupfer cells in the liver. On the surface of the surviving
RBCs, C3b is cleaved, leaving high numbers of C3dmolecules
on the cell surface. These mechanisms explain why the
monospecific DAT is strongly positive for C3d in patients
with CA-mediated hemolysis and, in the majority, negative
for IgM and IgG [45].

Complement activation may proceed beyond the C3b
formation step, resulting in C5 activation, formation of
the membrane attack complex (MAC), and intravascular
hemolysis. Due to surface-bound regulatory proteins such
as CD55 and CD59, however, the complement activation
is usually not sufficient to produce clinically significant
activation of the terminal complement pathway. The major
mechanism of hemolysis in stable disease, therefore, is the
extravascular destruction of C3b-coated erythrocytes [10, 31,
57]. Obviously, however, C5-mediated intravascular hemol-
ysis does occur in severe acute exacerbations and in some
profoundly hemolytic patients, as evidenced by the finding of
hemoglobinuria in 15% of the patients and the observation
of a beneficial effect of C5 inhibition in at least occasional
patients [45, 51, 58, 59].

Febrile infections, major trauma, or major surgery can
result in acute exacerbation of hemolytic anemia in at least
two-thirds of patients with CAD [45, 58, 60].The explanation
for this paradoxical exacerbation is that, during steady-state
chronic disease, most patients are complement-depleted with
low levels of C3 and often undetectable levels of C4. During
acute phase reactions, C3 and C4 are repleted and exacerba-
tion of complement-induced hemolysis ensues [55, 58].
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3.3. Therapy. In textbooks and review articles, it is often pos-
tulated that typical patients with CAD are just slightly anemic
and do not need pharmacological therapy. This holds true
for a minority only; the median hemoglobin level in affected
individuals is 9.0 g/dL and the lower tertile is 8.0 g/dL [45].
Furthermore, at least 90% of the patients experience cold-
induced circulatory symptoms caused by RBC agglutination,
most often in the form of acrocyanosis and/or Reynaud-
phenomena that can range from slight to disabling [45]. In
many patients, therefore, CAD is not an indolent disease
in terms of major clinical symptoms and quality of life. In
Norway as well as the United States, drug therapy had been
attempted in 70–80% of unselected patients studied in two
relatively large retrospective series [45, 51]. In contrast to w-
AIHA, corticosteroids and other unspecific immunosuppres-
sive drugs are of little or no value in CAD [45, 61].

The relative success in therapy for CAD during the last
10–12 years has been achieved by targeting the pathogenic B-
cell clone [62]. Rituximab monotherapy has been shown in
prospective studies to induce remission in approximately half
of the patients, although complete remissions are unusual and
the median response duration is only about 1 year [63, 64].
In both studies, events of cytokine-related reactions to rit-
uximab were few and readily treatable. The studies found no
significant problems with infectious complications due to the
induced B-cell lymphopenia and hypogammaglobulinemia
[45, 63, 64]. Data from rituximab maintenance in follicu-
lar lymphoma indicate that, in adults, even prolonged or
repeated administration is safe with regard to infections [65].
Very rare cases of progressive multifocal leukoencephalopa-
thy and hepatitis B reactivation have been reported, however,
in patients receiving rituximab for polyclonal autoimmune
disorders. Any causal associations are uncertain because
of concomitant immunosuppressive therapies and immune
dysregulation as part of the autoimmune disease itself [66].

In amore recent prospective trial, combined therapy with
rituximab and fludarabine produced very high response rates
(remission in 75% of the patients, including 20% complete
remissions) and the median response duration was more
than 66 months [67]. This regimen was, however, found to
be significantly more toxic than rituximab monotherapy. No
other immunochemotherapy regimens have been studied in
published clinical trials. According to single case reports,
favorable outcome has been observed following bortezomib-
based regimens [68] and rituximab-bendamustine combina-
tion therapy [69].

Transfusion can safely be given in CAD provided specific
precautions are undertaken, although these precautions are
entirely different from those required in w-AIHA. Such
requirements have been extensively described elsewhere [5,
70].The perspective for future therapeutic use of complement
inhibitors will be addressed below.

4. Secondary Cold Agglutinin Syndrome

Secondary CAS is far more uncommon than primary CAD.
Among 295 consecutive individuals with AIHA described
retrospectively by Dacie in a single-center series, 7 patients

(2.4%) were classified as having CAS secondary to malignant
disease [1]. CAS has been described in patients diagnosed
with diffuse large B-cell lymphoma, Hodgkin’s lymphoma,
carcinomas, sarcomas, metastatic melanoma, and chronic
myeloproliferative disorders [2]. Some of these associations
have been poorly documented [5], and the most convincing
association with malignant disease has been described with
non-Hodgkin’s lymphoma [71–74]. In CAS complicating
aggressive lymphoma, the CA are monoclonal, most often
IgM, and have anti-I specificity. In contrast to CA found in
primary CAD, however, the light chain restriction can be 𝜆
as well as 𝜅 [71, 74].

Polyclonal anti-I specific CA of the IgM class are pro-
duced as part of the physiological immune response in
Mycoplasma pneumoniae pneumonia. They do not usually
give rise to significant hemolysis. In occasional patients,
however, production of high-titer, high-thermal amplitude
CA results in hemolytic anemia which is transient but can be
severe [5, 75, 76]. CAS complicatingMycoplasma pneumoniae
infection has been reported to account for approximately 8%
of AIHA [1]. Still more uncommon but less severe, polyclonal
anti-i specific CA of the IgM or IgG class can result in CAS in
Epstein-Barr virus infection [5, 77]. Transient CAS has also
been described following cytomegalovirus infection, vari-
cella, rubella, adenovirus infection, influenza A, Legionella
pneumophila pneumonia, listeriosis, and pneumonia caused
by Chlamydia species [5].

In CAS secondary to infection or aggressive lymphoma,
the RBC breakdown is complement-dependent, mediated by
exactly the same mechanisms as in primary CAD (Figure 3)
[5, 7]. Treatment of the underlying disease, if relevant and
available, is often the only possible drug therapy for the
hemolytic complication. Corticosteroid therapy has been
used but is not evidence-based. In severely anemic patients,
transfusions can safely be given provided the same precau-
tions are carefully observed as in primary CAD [5].

5. Paroxysmal Cold Hemoglobinuria

In paroxysmal cold hemoglobinuria (PCH), polyclonal cold-
reactive IgG-antibodies bind to the RBC surface protein
antigen termed P but do not agglutinate the erythrocytes.
The resulting hemolysis is entirely complement-dependent
and the temperature optimum for complement activation is
at 37∘C [78, 79]. Such biphasic antibodies are called Donath-
Landsteiner hemolysins. In Donath-Landsteiner’s test, one
sample of patient blood is incubated at 4∘C and then at
37∘C, while another sample is incubated at 37∘C without
having been preincubated in the cold [78, 79]. If biphasic
autoantibodies are present, hemolysis will be observed only
in the sample preincubated at 4∘C. The sensitivity is limited
because the patient blood is often complement-depleted, and,
in more sensitive modifications of the test, complement is
added and/or papain pretreated RBCs are used [79].

Fifty to 100 years ago, PCH was associated with tertiary
syphilis, but this form is hardly seen anymore. In the 21th cen-
tury, PCH occurs almost exclusively in children and accounts
for 1–5% of childhood AIHA, making it a rare disease [80].
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It appears as an acute, postinfectious complication, in most
cases following a virus infection [79]. Single cases have
also been reported in Haemophilus influenzae infection and,
recently, visceral leishmaniasis [80, 81].

TheP-anti-P complex is a very strong complement trigger,
resulting in full-blown activation of the classical and terminal
pathways (Figure 4). The hemolysis, therefore, is intravascu-
lar and massive; the onset is usually sudden and the clinical
features include fever, pallor, jaundice, severe anemia, and
macroscopic hemoglobinuria [79, 81]. Even though PCH is
a transient complication with good prognosis, most patients
will need transfusions, which can safely be given provided the
same precautions are undertaken as in other cold-antibody
AIHA [5]. Apart from therapy for any treatable underlying
infection, no disease-modifying intervention has been docu-
mented. Although the administration of corticosteroids has
been followed by improvement in some reported cases, the
effect remains anecdotal and unproven [79, 81].

6. Mixed-Type Autoimmune
Hemolytic Anemia

Mixed warm- and cold-antibody AIHA is probably very rare.
The diagnostic work-up is complex and the condition is
supposed to be overdiagnosed [82]. There are two obvious
sources of error. First, patients with w-AIHA can, like healthy
individuals, produce low-titer, low-thermal amplitude CA of
no clinical significance. Second, up to 20% of patients with
CADhave IgGon the RBC surface in addition toC3d [45, 82].

7. Complement Modulation for
the Treatment of AIHA

7.1. Available Substances and Experimental Studies. The
potential of pharmacological complement modulation for

the treatment of AIHA will depend on (a) the type of AIHA
and extent and level of complement involvement, (b) the
availability, safety, and efficacy of complement-modulating
drugs, and (c) the specific level of complement inhibition by
these drugs.The search for targeted, therapeutic inhibitors of
the complement cascade has been going on for 30–40 years,
with few examples of success so far [9]. New in vitro and in
vivo models for testing the impact of specific complement
inhibition on immune hemolysis are, however, still being
developed [10, 83].

Plasma-derived or recombinantC1-esterase inhibitor (C1-
INH) has been available for decades and has been successfully
used for the treatment of hereditary angioedema (HAE)
[84]. Although not a complement-mediated disorder, HAE
is caused by lack or deficiency of endogenous C1-INH and
replacement therapy has been well studied. In AIHA, on
the other hand, endogenous C1-INH production is normal,
indicating that physiological concentrations of the inhibitor
will not block complement-mediated hemolysis.

Eculizumab, a humanized monoclonal C5-antibody, has
been shown to efficiently inhibit complement at the C5
level and, thereby, block the terminal pathway and prevent
intravascular hemolysis by MAC. Therapy with eculizumab
has been a great success in PNH, although complement-
mediated hemolysis is not completely prevented [85]. The
explanation for this is probably that patients with PNH
lack physiological inhibitors both at a downstream level
in the terminal pathway (CD59) and at an upstream level
in the classical pathway (CD55). In consequence, a slight
to moderate hemolysis mediated by phagocytosis of C3b-
opsonized RBC will still occur along the same pathway as
described in CAD, independent of C5 activation or inhibition
[12].

Some newer complement-modulating drugs have been
studied with promising results in preclinical experiments but
not yet in the in vivo setting. Compstatin Cp40 is a low-
molecular weight peptide complement inhibitor that blocks
cleavage of C3 and has been found to efficiently prevent
hemolysis of RBC from PNH patients in vitro [86].

TNT003, a mouse monoclonal anti-C1s antibody
(Figure 5), has recently been shown to completely inhibit
in vitro hemolysis induced by CA [10]. This antibody
targets C1s serine protease activity. Using CA samples from
40 patients with CAD, the authors found that TNT003
prevented CA-induced deposition of C3 fragments on the
RBC at the same concentration of antibody that stopped
hemolysis. Furthermore, C1s inhibition by TNT003 resulted
in prevention of in vitro erythrophagocytosis by a phagocytic
cell line. The classical-pathway-driven production of
anaphylotoxins C4a, C3a, and C5a was also inhibited [10].

7.2. Complement Inhibition in Subtypes of AIHA: Future
Perspective. In w-AIHA, as described above, complement
activation plays some role but is not essential for pathogenesis
in most patients. Complement modulation may be expected,
therefore, to be of limited therapeutic value in w-AIHA in
general and of no value if DAT is negative for C3 fragments.
According to a recent, well-described case report, however,
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Figure 5: In vitro effects of anti-C1s antibody TNT003 on phagocytosis (black columns, left 𝑦-axis) and complement fragment deposition
(red columns, right 𝑦-axis) on red blood cells after addition of normal human plasma and cold agglutinin-rich plasma (under blue bar),
respectively. TNT003 inhibits phagocytosis and complement deposition, while anti-C5 has no impact. CAD: primary chronic cold agglutinin
disease; NHS: normal human serum; IC: isotype control. Reproduced from Blood (Shi et al. 2014, [10]) with permission. Copyright: Blood,
the Journal of the American Society of Hematology.

Wouters and colleagues observed favorable effect of plasma-
derived C1-INH in a patient with a C3d-positive, therapy-
resistant severe w-AIHA secondary to an aggressive non-
Hodgkin’s lymphoma [87]. Although very high doses of
C1-INH were required, hemolysis was efficiently controlled
and the efficacy of RBC transfusion dramatically improved
following treatment. No other clinical observations on the
results of complement inhibition have been published in w-
AIHA. In patients with a positive DAT for C3d and very
severe hemolysis, further studies of complement inhibition
even at a more downstream level would be of interest, mainly
as an attempt to temporarily control hemolysis.

Given that hemolysis in CAD is entirely complement-
dependent, studies of complement inhibition would be
relevant in CAD. A case report by Röth and coauthors
described favorable effect of therapy with eculizumab [59].
This observation may seem somewhat surprising, since the
predominant hemolytic pathway in CAD is not C5/MAC-
mediated. A probable explanation is that activation of the
terminal complement pathway does occur, after all, in acute
exacerbations, in the chronic state of some severely affected
patients and, possibly, as aminor pathway also in less severely
affected patients. Further studies will be of interest.

In theory, complement inhibition at the C1 level should be
very promising in CAD because this will block the classical-
pathway-dependent, C3b-mediated extravascular hemolysis
without compromising the alternative and lectin complement
pathways. The published in vitro study of TNT003 is highly
interesting, therefore, and it is to be hoped that a correspond-
ing humanized antibody can be developed and further tested
in the preclinical and clinical setting [10, 11].

Given that immunochemotherapy directed at the
pathogenic B-cell clone is efficient and requires administra-
tion only for a limited period of time, do we actually need
complement-modulating therapies for CAD? First, in at least

25% of the patients, immunochemotherapy is unsuccessful
because of treatment failure or toxicity [67]. Second, rapidly
acting therapies should be developed for some specific
clinical situations, for example, acute severe exacerbations
induced by infections, trauma, or major surgery and,
possibly, before cardiac surgery in selected patients.

In the uncommon cases of CAS secondary to specific
infection, there is often no need for therapy for the CAS per
se. However, this is not always the case. Particularly in CAS
following Mycoplasma pneumoniae pneumonia, the patients
can be profoundly anemic and transfusion dependent for
weeks until spontaneous resolution occurs [5]. Clinicians and
patients would welcome a possibility for temporary control of
this situation by complement inhibition along the same lines
that may be developed in primary CAD. Systematic studies
would be interesting but probably difficult to performbecause
of the rarity of the disorder.

In the rare cases of postinfectious PCH in children,
measures for temporary control of the hemolysis will be
valuable if such therapies can be developed. Since the ter-
minal complement pathway is heavily involved, we do not
necessarily need new substances; exploring the efficacy of
eculizumab would be of great interest. Probably, however,
prospective trials will never be performed because there are
too few patients for such studies.

Present and future possibilities for therapeutic comple-
ment inhibition in AIHA are summarized in Figure 6. It is
important to ask whether such therapy will be dangerous.
The complement system is, after all, an essential part of the
innate immune system. Based on studies of eculizumab in
PNH, we already have extensive information on the risk
of severe infection following C5 inhibition. Provided the
patients can be efficiently protected against meningococci,
studies and clinical experience have shown that the risk of
infection is negligible [85]. Complement inhibition at the C3
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Figure 6: Future perspective on complement modulation in AIHA.
Inhibitors and levels of inhibition. Black arrows: major pathway in
cold agglutinin disease (CAD); gray/dotted arrows: minor pathway
in CAD and major pathway in paroxysmal cold hemoglobinuria; Ig:
immunoglobulin; C: complement protein; TNT003: mouse mon-
oclonal C1s antibody; C1-INH: C1 esterase inhibitor. Previously
published in Blood (Berentsen 2014, [11]), reused with permission.
Copyright: Blood, the Journal of the American Society of Hematol-
ogy.

levelmay carry amuchhigher risk because efficient inhibition
of C3 will completely block complement activation beyond
this level, whether initiated by the classical, alternative, or
lectin pathway [11, 86]. Interestingly, however, the still more
proximal blockade at the C1 level achieved by TNT003 will
selectively affect the classical pathway as required for control
of hemolysis in CAD, while the lectin and alternative path-
ways will remain intact. Probably, therefore, these pathways
will still enable the system to generate anaphylotoxins C3a
and C5a in response to microbial stimuli, even though the
production of these anaphylotoxins induced by the classical
pathwaywill be blocked [10, 11]. Although this selectivitymay,
theoretically, reduce the risk of infection, careful studies will
be required to address this issue.

8. Conclusion

The mechanism of RBC destruction differs considerably
among the various types of AIHA, and so do the extent, level,

and details of complement involvement.The theoretical back-
ground for therapeutic complement inhibition in selected
subgroups of patients is very strong in CAD, CAS, and PCH
but more limited in w-AIHA. Complement modulation is
not an established or evidence-based therapymodality in any
type of AIHA, but a number of experimental and preclinical
studies are in progress and a few clinical observations have
been reported. It will be important to carefully address safety
issues. Clinical studies of new complement inhibitors are
probably not far ahead.
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