
sensors

Article

Locust Inspired Algorithm for Cloudlet Scheduling in Cloud
Computing Environments

Mohammed Alaa Ala’anzy 1,*,† , Mohamed Othman 1,2,*,† , Zurina Mohd Hanapi 1

and Mohamed A. Alrshah 1

����������
�������

Citation: Ala’anzy, M.A.;

Othman, M.; Hanapi, Z.M.;

Alrshah, M.A. Locust Inspired

Algorithm for Cloudlet Scheduling in

Cloud Computing Environments.

Sensors 2021, 21, 7308. https://

doi.org/10.3390/s21217308

Academic Editors: Meikang Qiu and

Cheng Zhang

Received: 27 July 2021

Accepted: 23 September 2021

Published: 3 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Communication Technology and Networks, Universiti Putra Malaysia,
Serdang 43400, Malaysia; zurinamh@upm.edu.my (Z.M.H.); mohamed.asnd@gmail.com (M.A.A.)

2 Laboratory of Computational Science and Mathematical Physics, Institute for Mathematical Research
(INSPEM), Universiti Putra Malaysia, Serdang 43400, Malaysia

* Correspondence: m.alanzy.cs@gmail.com (M.A.A.); mothman@upm.edu.my (M.O.)
† These authors contributed equally to this work.

Abstract: Cloud computing is an emerging paradigm that offers flexible and seamless services for
users based on their needs, including user budget savings. However, the involvement of a vast
number of cloud users has made the scheduling of users’ tasks (i.e., cloudlets) a challenging issue in
selecting suitable data centres, servers (hosts), and virtual machines (VMs). Cloudlet scheduling is
an NP-complete problem that can be solved using various meta-heuristic algorithms, which are quite
popular due to their effectiveness. Massive user tasks and rapid growth in cloud resources have
become increasingly complex challenges; therefore, an efficient algorithm is necessary for allocating
cloudlets efficiently to attain better execution times, resource utilisation, and waiting times. This
paper proposes a cloudlet scheduling, locust inspired algorithm to reduce the average makespan
and waiting time and to boost VM and server utilisation. The CloudSim toolkit was used to evaluate
our algorithm’s efficiency, and the obtained results revealed that our algorithm outperforms other
state-of-the-art nature-inspired algorithms, improving the average makespan, waiting time, and
resource utilisation.

Keywords: cloud computing; cloudlet scheduling; task allocation; bio-inspired; makespan; resource
utilisation; waiting time

1. Introduction

Cloud computing is an important trend that has been highlighted by users and in-
dustries in relation to cost awareness and convenience in providing computing services as
these services are run on a pay-as-you-use basis. Cloud services are known for their ease
and speed of access, and are considered ubiquitous since the data centres are distributed
all over the world. A new framework has been concurrently enabled in the emerging
cloud computing environment, which shifts the physical location of storage and compu-
tation of cloud computing networks to reduce operational and maintenance costs [1,2].
This computing model enables convenient, user-friendly, on-request network access to
a diversity of shared-pool computing resources distributed across the world, and those
resources can be expeditiously released and quickly provisioned to the end-user with
reduced effort and management costs [3]. By using virtualisation technology, the cloud
platform enables various types of business to run on it, which facilitates easy to use and
cost-effective solutions for internet-enabled businesses [4].

There are various service models in the cloud environment, such as platform as a
service (PaaS), infrastructure as a service (IaaS), software as a service (SaaS), and XaaS,
where X refers to anything as a service (e.g., security as a service) [5], and the terms of
these services should be satisfied according to the service-level agreements (SLAs) for
the upcoming tasks of the end-users. Executing these tasks requires deploying them

Sensors 2021, 21, 7308. https://doi.org/10.3390/s21217308 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0005-7037
https://orcid.org/0000-0002-5124-5759
https://orcid.org/0000-0002-8079-1791
https://orcid.org/0000-0003-2385-3287
https://doi.org/10.3390/s21217308
https://doi.org/10.3390/s21217308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217308
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217308?type=check_update&version=1

Sensors 2021, 21, 7308 2 of 19

on the VMs of a specific physical machine (PM) (i.e., a server) in the cloud computing
environment, where the VMs play a vital role in serving the users’ tasks [6–8]. Several
VMs might be initiated and terminated in the servers, since the cloud services are allocated
on a pay-as-you-use basis. Recently, Amazon has developed the elastic cloud, where all
the cloud components such as VMs, PMs, and load balancers are expanded on overload
and shrink when a machine is under-loaded (i.e., based on the incoming task loads) [9,10].
Therefore, an elastic cloud solution could resolve the resource allocation problems of
under-loaded and overloaded VMs/PMs. However, VM efficiency relies on scheduling
and load balancing techniques more than the dynamic allocation of resources for execution.
Although elasticity enhances cloud performance, these services have boundaries in terms
of heterogeneity. For instance, in a heterogeneous cloud environment, cloud resource
scaling with different system configurations must be considered. If the cloud necessitates
performing work seamlessly, then perfect resource allocation or load balancing should
play a vital role in fulfilling the above-mentioned services offered by any cloud computing
provider [11,12]. In this regard, nature-inspired techniques have had an impressive impact
on allocating resources.

In this work, we have focused on proposing a nature-inspired algorithm. Our algo-
rithm is inspired from the locust to solve a challenging problem of resource allocation
and task scheduling. Presently, scholars are paying more attention to nature-inspired
algorithms such as genetic algorithms (GAs), ant colony optimisation (ACO), practical
swarm optimisation (PSO), and the Bee Algorithm (BeeA). Such nature algorithms incorpo-
rate the unique characteristics of creatures in the world that have been keenly observed
by researchers and modelled as biologically inspired algorithms [6,9] applicable to engi-
neering problems. Studies by [13–15] revealed that better results could be obtained from
nature-inspired algorithms than from conventional algorithms.

The main contributions of the proposed methodology lie in attaining the following:

• The methodology provides for a more complete presentation of locust optimisation
procedures.

• The design of the discrete version of the locust optimisation algorithm can be imple-
mented for user task scheduling in cloud computing environments.

• Load balancing with efficient task allocation is achieved based on this locust optimisa-
tion algorithm, which can efficiently allocate and balance tasks on VMs.

• Allocating resources dynamically by utilising a novel hybrid algorithm using a meta-
heuristic (locust-inspired) algorithm allows for efficient scheduling of cloud resources
to serve the users’ tasks.

• Evaluation of the proposed method can be performed using resource utilisation,
makespan, and waiting time among VMs as performance metrics.

In this paper, our main objective in the development of the proposed task-scheduling
locust algorithm is that the tasks should be allocated on the VMs in order to minimise
the makespan and waiting time and maximise the resource utilisation. Thus, we mainly
concentrate on allocating the users’ tasks using the locust-inspired algorithm while, at
the same time, managing the cloud resources. The locust algorithm has been applied to
the energy management of cloud computing, as presented by [16–18], whereas, to the
best of our knowledge, our paper is the first to apply the locust algorithm in the task
scheduling field of cloud computing. Our locust algorithm is more efficient compared
to other bio-inspired algorithms and therefore outperforms those algorithms in terms of
average makespan, waiting time, and resource utilisation.

The remainder of this paper is organised as follows: Section 2 presents an overview
of related work. Section 3 presents the proposed algorithm methodology and algorithm
modelling. Section 4 describes the simulation tool, simulation configuration, and presents
the obtained results with a discussion on the performance evaluation. Finally, we outline
the conclusion of our work and the scope of future development in Section 5.

Sensors 2021, 21, 7308 3 of 19

2. Related Work

This section analyses and summarises the state-of-the-art task scheduling/allocation
algorithms in cloud computing environments using bio-inspired algorithms. Many re-
searchers have been concentrating on bio-inspired algorithms in relation to task scheduling
issues, which gets increasingly more attention due to the increasing number of cloud users.

Some researchers have used bee optimisation to enhance the task scheduling approach.
Ref. [19] proposed an independent task allocation algorithm for use in multiprocessor
system environments named bee colony optimisation (BCO), which was inspired from
honeybee foraging. They succeeded by remarkably improving the makespan metric,
outperforming the existing approaches. Ref. [20] have improved the load balancing and
makespan of cloud computing using a honeybee galvanising algorithm.

Additionally, PSO has been used by some researchers such as [21], who proposed a
mathematical model of load balancing and task scheduling (mutation) using PSO, taking
into consideration the performance metrics as constraints (makespan, transmission cost,
load balancing, reliability, execution time, and round-trip time). The mathematical models
in the algorithm proposed by [21] consist of three models. The first model is for calculating
the expected execution time (EET) of each task. The second model is for calculating the ex-
pected transmission time (ETT) of each task. The third model is for calculating the expected
round trip time (ERTT) based on the previous models (EET and ETT). The PSO algorithm
has been implemented so that in each iteration, the particle velocity is updated using ERTT
(i.e., the third model). However, the authors considered the makespan, while they ignored
measurement of resource utilisation, which is another important metric. Finally, a hybrid
PSO with a hill-climbing algorithm was presented by [22] for task scheduling to improve
the algorithm’s handling of makespan.

Other researchers have used ACO in algorithm development. For example, a multi-
objective algorithm based on ACO introduced by [23] is used to schedule user tasks onto
suitable resources, where the utilisation of the resources is calculated and the user pays
based on usage to minimise the cost in addition to increasing the makespan value. Their
methods considered two constraints: the user’s budget and the makespan. The ACO
algorithm has achieved improvements in the performance metrics of the cost, makespan,
resource utilisation, and deadline violation rate. Additionally, ref. [24] proposed multi-
type ant colony optimisation (MACO) incorporating multiple ant types to solve complex
multiple land use placement problems.

Combination algorithms are implemented to produce a single algorithm that over-
comes the drawbacks of the algorithms they are based upon. A combination algorithm
developed by [25] merged ACO with PSO into an algorithm named ACOPS for task
scheduling. Additionally, they used historical information in predicting the upcoming
workload of the cloud system. The computing time is minimised by satisfying the con-
ditions of the new input request of the tasks. The ACOPS algorithm compares the task
memory with the server memory, and if the memory is larger than the remaining memory
of the server, then the assignment is rejected. The initial process of the ACOPS algorithm is
executed based on ACO, where the ACO search module pre-assigns all the ants (tasks),
while the ants’ pheromone function is used in calculating disk utilisation, CPU utilisation,
and memory. To improve the searching result, the PSO approach is applied by updating
the ant pheromone function of the tasks based on PSO. The algorithm has outperformed
its competitors, although the authors neglected the makespan. A self-adaptive ACO algo-
rithm (SAACO) presented by [26] uses PSO to make ACO parameters self-adaptive, which
enhances the pheromone update and calculation processes to improve the makespan and
load balancing.

Ref. [5] introduced a novel hybrid bio-inspired algorithm for resource management
and task scheduling aptly named the HYBRID bio-inspired algorithm, which is based on
modified PSO (MPSO) and modified cat swarm optimisation (CSO). Since users’ tasks
are received at a rapid rate, cloud providers need an algorithm to handle those tasks in
an intelligent manner, and the HYBRID bio-inspired algorithm has been proven superior

Sensors 2021, 21, 7308 4 of 19

with benchmarking algorithms such as CSO, RR, MPSO, ACO, and the Exact algorithm
in terms of response time, utilisation, and reliability. Ref. [27] introduced the technique
of order precedence by similarity to ideal solution (TOPSIS) algorithm, which involves a
multi-criteria approach to scheduling tasks onto VMs with a PSO algorithm for calculating
the relative closeness of the algorithm criteria. TOPSIS consists of two phases. In the
first phase, the algorithm will be dependent on selected scheduling criteria to obtain the
tasks’ relative closeness, while in the second phase, the PSO algorithm will initiate the
calculation of the relative closeness of task criteria, and each task in each VM will have
a calculation for execution time, cost, and transmission-time criteria. To solve the multi-
objective task scheduling problem, the TOPSIS algorithm uses a weighted sum of cost,
execution time, and transmission time as an objective function. TOPSIS-inspired cost
efficiency, as presented by [28], is obtained using a weighted sum of communication time,
cost, and execution time to identify the optimal resource among available resources.

Another bio-inspired approach is a human-inspired method proposed by [29] to solve
the job shop scheduling problem for task scheduling in a multi-cloud environment. They
modelled a known approach, brainstorm optimisation (BSO) [30,31], by contributing self-
adaptive characteristics to develop a new algorithm named the Self-Adaptive Brainstorm
Optimisation (SA-BSO) scheme. The algorithm was evaluated by comparing it with existing
algorithms such as differential evolution (DE), BSO, PSO, and GA, which proved the SA-
BSO superior regarding several performance metrics such as makespan, resource utilisation,
and job completion rate.

On the other hand, some authors modelled novel nature-inspired algorithms such as
the multi-objective, nature-inspired Chaotic Squirrel Search Algorithm (CSSA) proposed
by [32] for task scheduling in an IaaS cloud computing environment. The algorithm has
been proven superior to benchmarking algorithms in terms of power utilisation, cost, and
execution time. Ref. [33] studied crows’ search habits in collecting food, which they at-
tempted to adapt for the cloud computing environment. The manner in which a crow keeps
monitoring its mates to discover a better food source is the inspiration for the Crow Search
Algorithm’s (CSA) methods of finding suitable VMs for tasks while reducing the execution
time of the algorithm. A hybrid meta-heuristic algorithm named FUGE was introduced
by [34], which is based on fuzzy theory and a modified version of the standard genetic
algorithm (SGA). They have proven the effectiveness of their algorithm mathematically,
where they considered VM processing speed, VM bandwidth, memory, and job length for
allocating jobs (i.e., sets of tasks) to resources. The performance evaluation is measured
based on the execution time, cost, and average degree of imbalance. Ref. [3] proposed a
novel meta-heuristic method for profit maximisation of the task scheduling for the private
cloud inspired by the bubblenet hunting technique of humpback whales, namely, the Whale
Optimisation Algorithm (WOA). Ref. [3] could attain minimum processing time, minimum
resource utilisation, high efficiency, and maximum profit of the hybrid cloud to boost
the private cloud profit while maintaining the bounded delay-tolerance of the tasks. The
experimental result showed that WOA could increase efficiency and maximise profit when
compared with ABC and GA algorithms. Ref. [35] introduced a meta-heuristic algorithm,
namely, discrete symbiotic organism search (DSOS), to solve numerical optimisation prob-
lems. Symbiotic organism search (SOS) mimics the symbiotic relationships (i.e., mutualism,
parasitism, and commensalism) of organisms in an ecosystem. New regions are explored
in the mutualism phase for better solutions. Parasite vector techniques in the parasitism
phase are presented to avoid rapid convergence. They succeeded in enhancing the response
time, and makespan and maintained the degree of imbalance in scheduling the tasks on
VMs with respect to achieving high resource utilisation with efficient makespan.

Authors’ algorithms have also been inspired from genetics, such as the independent
task scheduling based on GA proposed in [36]. Two criteria are considered as a bi-objective
minimisation problem in their algorithm: the makespan and energy consumption. They
used dynamic voltage scaling (DVS) to reduce the energy consumption, while the unified
and double fitness algorithms were proposed for individual selection and to define the

Sensors 2021, 21, 7308 5 of 19

fitness function. The main steps of the algorithm are chromosome coding, fitness function
calculation, population initialisation, individual selection, mutation operator, and crossover.
Hence, they improved the energy consumption and the makespan; however, the degree
of imbalance became worse. A hybrid task scheduling algorithm using GA and ACO
(GAACO) was proposed [37,38], where [37] considered reliability and time consumption
to improve load balancing and makespan. They considered the quality of service (QoS)
for the GA as a fitness function. The scheduling process was optimised by combining two
bio-inspired algorithms (i.e., GA and ACO). Novel incorporation between GA and ACO
for multiple sequence alignment has introduced by [38].

Bacteria algorithms have also been investigated by cloud computing researchers.
In [39], a meta-heuristic algorithm for swarm intelligence inspired by bacteria’s foraging
and chemotactic behaviour was proposed. The algorithm consists of three main event
steps: the chemotaxis event, duplicate event, and elimination-dispersal event. In the
chemotaxis step, the two steps used are tumble and move, as those steps are followed
periodically during the process of bacterial foraging. Bacterial foraging optimisation could
efficiently minimise the VMs’ idle time, energy consumption, degree of imbalance, runtime,
and makespan.

Ref. [40] introduced the chaotic social spider algorithm to find the best optimal solu-
tion for makespan and utilisation, while [41] proposed a novel task scheduling algorithm
inspired by the social spider-mating strategy with respect to QoS awareness. Addition-
ally, the placement of resources was also improved; therefore, they reduced the resource
migration with the aim of minimising the cost and execution time while improving other
performance matrices such as throughput, reliability, utilisation, turnaround time, exe-
cution time, availability, waiting time, execution cost, and convergence when compared
with PSO, ABC, and ACO. However, cloudlet parameters were not given consideration,
although they are core issues in task scheduling. Moreover, the implementation suffers
from cubic time complexities (O(n3)).

Refs. [16,17] modelled a server consolidation algorithm based on locust biology,
namely, the Locust-Inspired Scheduling Algorithm for Reducing Consumed Energy (LACE).
The LACE algorithm is inspired by locust nutrition, regarding which, the algorithm has
two phases: solitary and gregarious. The algorithm developed by [16] consolidates VMs
on a minimum number of servers, allocates the VMs on a first-come-first-serve basis, and
then triggers the migration phase to reallocate the servers that are causing wastage in
resources and high execution times; due to the massive number of VM migrations. Ref. [17]
improved the CPU utilisation and waiting time. However, the [17] algorithm has the same
drawbacks of the LACE algorithm. Ref. [18] presented great improvements on the previous
works of [16,17] that were inspired by locusts. They succeeded in enhancing the algorithm
in terms of energy consumption, resource utilisation, and VM migrations; however, the
algorithm focuses on consolidating the servers.

In this paper, we focus on the scheduling task on the VMs. Our work improves the
scheduling of users’ tasks on VMs to obtain full VM/PM utilisation. Previous works [16–18]
applied the locust algorithm to maintain the energy consumption of the servers, while
ours applies locust attributes to schedule users’ tasks and choose the most fitting VMs
to handle the users’ tasks. Table 1 illustrates nature-inspired algorithms inspired from
different biological phenomena. To the best of our knowledge, no other paper has applied
a locust algorithm in task scheduling. Therefore, our paper may be considered the first
paper that has applied the locust algorithm on users’ tasks to implement task scheduling
inspired by locust behaviour.

Sensors 2021, 21, 7308 6 of 19

Table 1. Related work summarisation.

Ref. Year Algorithm Type
Improvement Types Metrics

TS SC MS WT U

[19] 2012 BCO X X
[20] 2015 ABC X X

[21] 2015 PSO X X X
[22] 2018 PSO & hill-climbing X X

[23] 2015 ACO X X X
[24] 2012 MACO X X X

[25] 2015 ACO with PSO (ACOPS) X X
[26] 2015 ACO & PSO to generate SA-ACO (self-adaptive) X X
[5] 2017 MPSO & CSO X X X

[27] 2019 TOPSIS (PSO based) X X X
[28] 2020 TOPSIS (PSO based) X X

[31] 2011 BSO X X X
[30] 2017 BSO X X X
[29] 2020 SA-BSO X X X

[32] 2020 CSSA X X
[33] 2020 CSA X X
[34] 2015 Fuzzy & SGA (FUGE) X X
[3] 2020 Bubble-net hunting of humpback wales (WOA) X X X

[35] 2016 DSOS X X X

[36] 2012 GA X X
[38] 2008 GA & ACO X X
[37] 2015 GA & ACO X X

[39] 2020 Bacteria & chemotactic phenomenon X X

[40] 2019 Chaotic social spider X X X
[41] 2020 social spider-mating (SSRPA) X X X X

[16] 2018 Locust X X
[17] 2019 Locust X X X
[18] 2021 Locust X

Our algorithm 2021 Locust X X X X

Note: TS refers to task scheduling, SC = server consolidation, MS = makespan, WT = waiting time, U = resource utilisation. The table is
sorted/divided based on the algorithm type.

3. Methodology
3.1. Algorithm Modelling

Cloud computing data centres mimic locust swarms in that any data centre contains a
large number of heterogeneous VMs which might consist of hundreds or thousands of VMs
with different VM specs. Each VM can handle a limited number of heterogeneous tasks,
starting from the allocation phase for new task requests. Powerful VMs behave greedily,
while weak VMs or unnecessary VMs can serve fewer tasks. A locust algorithm mimics
how a locust swarm corresponds to a VM. Locusts consume grass and enervated locusts or
grasshoppers when in the swarm phase and mating phase, while a VM allocates tasks from
new tasks in the request queue (or from a weak VM when a powerful VM is involved).
In the same way as these life-cycle phases of locusts correspond to VM task allocation
phases, a scheduling algorithm may be modelled based on locusts’ solitary, mating, and
gregarious phases of nutritional consumption. Solitary locusts ordinarily eat grass when
they need food, and mating is finding a suitable adult locust, while locusts in a swarm
feed gluttonously on grasses, enervated locusts, and grasshoppers. A small swarm might
consume more than a ton of crops [42,43].

Sensors 2021, 21, 7308 7 of 19

This feeding behaviour depends on a local search by locusts that are looking for food.
Additionally, the mating and gregarious phases are represented as the social interactions of
locusts, and the rate of change in the position of a locust can be represented mathematically.
We used the following mathematical model to simulate the swarm behaviour of locusts [44]:

ẋi = Si + vg + va (1)

There are N locusts in the group, which represents the cloudlets, and the ith locust has
position xi. xi as the locust position, the social interactions Si, gravity vg, and downwind
advection va are each represented in the three phases of the proposed algorithm. The
allocation problem of cloudlets can be solved while achieving significant improvements in
the makespan, waiting time, and utilisation metrics.

3.2. System Model

The extensible modelling of the system is presented in this subsection in addition
to the simulation tools of the cloud computing environment. The cloud simulator used
in the research was CloudSim, which is a simulation toolkit that provides an excellent
framework for both system and behaviour modelling in cloud computing. It evolved from
GridSim by GRIDS Laboratory, The University of Melbourne, Australia [45,46]. It is one of
the most popular open-source cloud computing simulators and incorporates various Java-
based packages. Hence, developers and researchers have proven CloudSim’s efficiency
in simulating real cloud computing components in examinations of cloud computing
systems. CloudSim toolkit involves numerous components such as its Cloud Information
Service (CIS), and components to examine VMs, hosts, data centres, and user-tasks, where
the user-tasks are represented in CloudSim as Cloudlets, as depicted in Figure 1. The
processes of each VM have their own resources, which are parallel or independent [47].
The components of CloudSim in Figure 1 are summarised as follows:

• Cloud Information Service (CIS): This is the main core entity involved as a registry
created by default when the simulation in CloudSim is running. The data centre
characteristics are saved in it such as resource availability. The CloudSim broker
interacts with it to get resource updates.

• SimEntity: This entity is responsible for handling and sending messages to other
entities for each event in the simulation.

• Data Centre (DC): A cloud resource comprising a pool of heterogeneous or homoge-
neous resources. A DC contains a set of hosts/servers, and its resources are provided
to the VMs when required.

• Data Centre Broker: Defined as a VM management handler, the data centre broker acts
on behalf of the user as a broker. It handles the processes of creation and destruction
of VMs as well as handling task submissions to VMs.

• Physical Machine (PM): This represents a cloud computing server that executes actions
related to VM management such as defining policies for bandwidth, memory, and VM
processor provisions, and moreover, the creation and destruction processing for VMs.

• Virtual Machine (VM): This is a common means for cloud companies to increase the
ability of their servers by running multiple systems on the same physical machine. A
VM is given all the system functionalities to execute the end-users’ tasks (cloudlets)
through a cloudlet scheduler.

• Processing Element (PE): This acts as a processor unit, which can be {1,2,3, . . . }.
• Utilisation Model: This parameter is a determiner of the resource utilisation of the

processor (e.g., if it is set to full, then the task will utilise all available resources of the
VM, whereas if it is set to stochastic, then a random utilisation will be generated every
time span).

Sensors 2021, 21, 7308 8 of 19

Sim Entity Cloud Information Service

Data Centre Broker Data Centre

Virtual Machine Host

PE

Cloudlet Scheduler

Cloudlet

Resource

Utilisation Model
(RAM, CPU, Bandwidth)

0..*

0..*

0..1
0..*

Figure 1. CloudSim component overview.

The scheduling system consists of three modules [48], as illustrated in Figure 2. The
cloudlets (i.e., tasks) represent the application in the scheduling system, which is the first
module, while the second module is the scheduling algorithm that controls the cloudlet
allocation (i.e., how and where the cloudlets should be allocated onto the VMs) by estimat-
ing the time required and through other calculations. The third module comprises the VMs
that are used to handle the tasks and perform the operations requested by users.

Scheduling algorithm

𝑉𝑀𝑖 𝑉𝑀2 𝑉𝑀1

Application

Figure 2. Scheduling system overview.

3.3. The Proposed Algorithm

This paper focuses on the problem of scheduling tasks on virtual machines to minimise
the task scheduling execution time. The algorithm efficiency can be presented by measuring
the maximum time consumed for each VM to complete the assigned tasks within a given
time frame or set of tasks that have been sent to the host, which is called the makespan for
that VM or the VM completion time [49]. The of average makespan of all VMs represents
the average makespan of a specific host. The proposed algorithm architecture is illustrated
in Figure 3.

The system initially receives a set of m virtual machines, VM = {VM1, VM2, . . . , VMm}
that are occupied by set of n tasks T, where T = {T1, T2, . . . , Tn}, m, n ∈ Z+. The VMs should
process n tasks.

Sensors 2021, 21, 7308 9 of 19

Task
predictor

Users

Cloudlets

Global queue

Broker

Data centre

Servers

...

Sets of VMs

...

Sets of VMs

......

... ...

Effective scheduling system

User
tasks
User
tasks

...

User
tasks

...

Resource
monitor

Task scheduler

Task scheduling

Primary
assignment
of the VMs
to cloudlets
after doing

the
necessary

calculations

VM
availability
checking

Assigning the
remining tasks
based on the

minimum
finishing time

required

CPU
RAM

Storage
Network

CPU
RAM

Storage
Network

VMs

...

Figure 3. Proposed algorithm architecture.

The virtual machines are parallel and independent, and the scheduler allocates inde-
pendent tasks to these VMs. Additionally, processing a task on a VM cannot be interrupted
(i.e., non-preemption). Reducing the makespan is considered the main objective of the task
scheduling for cloud computing. The makespan is the highest completion time in the VM.
The completion time is defined as follows:

Definition 1. Let CT be a set of completion times where CT = {CT1, CT2, . . . , CTn}, such that
each Ti on VMj has a different CTi, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Hence, the makespan for
VMj is defined using Equation (2):

Makespanj = max(CTi) | 1 ≤ i ≤ n and 1 ≤ j ≤ m, (2)

where the average makespan is defined using Equation (3):

AverageMakespan(MS) =
∑m

j=1 Makespanj

m
. (3)

The common source of user dissatisfaction is the waiting time, which should be
maintained at the lowest level by the service providers throughout providing enough
services acted on by the VMs or servers. Additionally, the service providers must be willing
to reimburse the users once the waiting time has exceeded a certain limit. The waiting time
gets increased when the targeted VMs get too busy to handle the cloudlets. The waiting
time of VMj is defined using Equation (4):

WaitingTimej =
x

∑
i=1

PTi, ∀ x ∈ T, (4)

Sensors 2021, 21, 7308 10 of 19

where j is the number of VMs and PTi is the processing time of Ti. The average waiting
time is defined using Equation (5):

Average WaitingTime(WT) =
∑m

j=1 WaitingTimej

m
. (5)

The output of the proposed algorithm is the execution time plan, which, when enforced,
would result in a minimum average makespan for all VMs. It is one of our vital motivations
to reduce the average makespan and average waiting time, while utilisation and load
balancing are other factors that will be maintained. Therefore, the objective function of the
proposed algorithm is as follows:

f = max
(

U +
1
|MS| +

1
|WT|

)
, ∀ U ≤ 1.0, (6)

where MS is the average makespan and WT is the average waiting time for the execution
time plan, U is the VM utilisation. f is inversely proportional to MS and WT and directly
proportional to the VM utilisation. The higher the average of makespan and waiting time,
the smaller the value of f , while the larger the utilisation (U) value is, the larger the value
of f will be.

Next, we sort the VMs based on their processing speed in case the VMs have different
processing speeds. The processing speed in simulation-based is measured in MIPS units
denoting a million instructions per second. Our algorithm consists of three phases, which
are described in the following subsections in more detail.

3.3.1. Preliminary Selection of VMs

The first step in the algorithm is to select an outfit VM for each cloudlet based on
cloudlet length. Initially, the data centre broker (DCB) will perform intensive computations
to bind a cloudlet with a VM. Hence, to determine a suitable VM, we need to compute the
phase parameters as illustrated below:

1. Computing the maximum and minimum cloudlet length (Tmax and Tmin, respectively).
2. Finding the total processing speed of all VMs represented in MIPS units as in

Equation (7).

TotalVMsSpeed =
m

∑
j=1

mipsj (7)

3. Computing the difference (x) between Tmax and Tmin over the total of mips as in
Equation (8).

x =
(Tmax − Tmin)

TotalVMsSpeed
(8)

4. If the VMs have different processing speeds, they will be sorted in increasing order
based on their processing speeds (i.e., VM MIPSj+1 > VM MIPSj).

5. We will assume αi is a MIPS of VMj to find the acceptance range, as illustrated in
Figure 4.

6. Computing the lower and upper cloudlet-length boundaries for each VM (i.e., each
VM has an accepted length range of cloudlets) with a linear sequential equation as
per Equation (9) and Equation (10), respectively:

Tmin + α0x + α1x + · · ·+ αm−1x + 1 (9)

Tmin + α0x + α1x + · · ·+ αmx (10)

The acceptance range equations for VMs are illustrated in Table 2.

Sensors 2021, 21, 7308 11 of 19

...𝑻𝒎𝒊𝒏 𝑻𝒎𝒊𝒏 + 𝜶𝟎𝒙 𝑻𝒎𝒊𝒏 + 𝜶𝟎𝒙 + 𝜶𝟏𝒙 𝑻𝒎𝒊𝒏 + 𝜶𝟎𝒙+ 𝜶𝟏𝒙+ 𝜶𝟏𝒙+ 𝜶𝟐𝒙 𝑻𝒎𝒂𝒙

Figure 4. Range distributions of cloudlets among VMs.

Table 2. The acceptability ranges of the cloudlet length.

#VM Minimum T Length Maximum T Length

VM0 Tmin Tmin + α0x
VM1 Tmin + α0x + 1 Tmin + α0x + α1x

. . .

. . .

. . .
VMm Tmin + α0x + α1x + · · ·+ αm−1x + 1 Tmin + α0x + α1x + · · ·+ αmx = Tmax

To this end, each cloudlet will initially be identified according to the targeted VM it
is to be served on. When the lower and upper boundaries are set, the DCB will allow the
stream of cloudlets to flow into the VMs.

3.3.2. Checking VM Utilisation

In this phase, the DCB will check the assigned VM availability and the total processor
utilisation. The checking of the VMs will start from the next following VM if these were
unavailable because of high utilisation. Once all VMs that follow the targeted VM are
checked, and they are unavailable or highly utilised, then the VMs prior to the targeted
one will be checked too. For instance, if the targeted VM was VMj, then the DCB will
be started from VMj+1 to VMj+m, and if they are all underutilised, then the DCB starts
checking from VMj−1 to VM0. To this end, if there are cloudlets still unallocated, then the
following phase must find suitable VMs for them.

3.3.3. Earlier Cloudlet Handling

This phase can eliminate all unassigned cloudlets by finding the VM that can accom-
plish its cloudlet processing and the coming cloudlets. For example, #cloudlet10 should be
assigned to #VM8, but if #VM8 is busy with processing other cloudlets, then #cloudlet10
will check #VM9, #VM10, . . . , #VMm. Once all are busy, then #VM7, #VM6, . . . will be
checked until finding a free VM to handle that cloudlet. If all are busy, the algorithm
will compute the required finishing time of that cloudlet on all VMs while taking into
consideration that each VM has a set of cloudlets in their queues that are waiting to be
handled. Therefore, the computation of the finishing time will be based on measuring the
finishing time for all cloudlets of the specific VM plus the finishing time of #cloudlet10.
Equation (11) calculates the current finishing time required for a specific cloudlet (Ty).
After obtaining all the current finishing times of all VMs for #cloudlet10, then the smallest
finishing time required will be selected as a handling VM for that cloudlet.

FinishingTimeVmj =
x

∑
i=1

PTi + Ty | WaitingTimej + Ty s.t. 1 ≤ x ≤ n and 1 ≤ y ≤ n. (11)

This phase is the most vital phase in the algorithm, where it can maintain the VM loads
and make the VMs more flexible to accommodate the cloudlets, where the accommodation
of cloudlets will be based on VM processing speed (i.e., high VM processing speed can
accommodate a high number of cloudlets). Thus, fair scheduling can result in high VM
utilisation in addition to getting the best finishing time for all VMs (i.e., best makespan
overall). Algorithm 1 shows the pseudocode for our algorithm.

Sensors 2021, 21, 7308 12 of 19

Algorithm 1: Locust scheduling algorithm.
Input : VM configurations; cloudlet configurations
Output : Optimised allocation

1 Precondition: Identify
Tmax, Tmin, TotalMIPSVM (7), x (8), α, lowerlimits (9) & upperlimits (10) ;

2 for i← 0 to CloudletList.length do
3 Assigning targeted VM for each cloudlet tentatively;
4 utilisation=vm.getTotalUtilizationOfCpu(CloudSim.clock());
5 if Targeted vmi utilisation==0 then
6 SubmitCloudlet;
7 else
8 vmi = vmmain;
9 while Targeted vmi utilisation 6= 0 do

10 if VMList checked == false then
11 Targeted vmj = vmj+1;
12 vmjutilisation;
13 if vmjutilisation == 0 then
14 SubmitCloudlet;
15 VMchecked == true;
16 else
17 Repeat vmj = vmj+1 and check the utilisation Until

vmj = vmj+m;
18 if vmjutilisation == 0 then SubmitCloudlet;
19 VMchecked == true;
20 end
21 vmmain = vmj;
22 if vmmain To vmj+m 6= 0 then
23 vmj = vmj−1;
24 if vmjutilisation == 0 then SubmitCloudlet;
25 VMchecked == true;
26 else
27 Repeat vmj = vmj−1 and check the utilisation Until vmj = vm0;
28 When vmjutilisation==0 then
29 SubmitCloudlet;
30 end
31 if VMList utilistion 6= 0 then VMList checked == ture;
32 else
33 FinishingTimeList=FinishingTimeVm0 To FinishingTimeVmm (11);
34 Targeted vm = FinishingTimeList().getSmallestVmFinishingTime;
35 SubmitCloudlet;
36 end
37 Function SubmitCloudlet
38 Check the Cloudlet parameters;
39 BindCloudletToVM();
40 end
41 return SubmittedCloudletList();
42 end
43 end
44 end

Sensors 2021, 21, 7308 13 of 19

4. Experimental Results

In this section, we present the experimental results, the simulation parameters, and
the simulation’s data. For the purpose of comparison, 10 separate runs were made to obtain
the statistical results.

4.1. Simulation Tool

Providing facilities for modelling and simulating network connectivity and resources
requires various configurations, capabilities, and domains, which can be provided by the
CloudSim toolkit. Additionally, interfaces, information services, and the primitives for
application composition are supported for assigning cloudlets to resources. We used the
CloudSim toolkit for simulating our algorithm due to the many advantages of it, such as
those referred to by [47,50]:

• CloudSim allows the modelling of heterogeneous resources.
• The number of cloudlets that represent user applications is unlimited.
• Many of the cloud computing entities require simultaneous handling.
• CloudSim analysis methods can register all the required operations and calculate the

statistics of the selected metrics.
• The simulator supports both static and dynamic schedulers.

Heterogeneity is the main feature of the cloudlet application, which can be represented
by I/O intensive or processors.

4.2. Simulation Configurations and Parameters

Due to the cost of practical experimentation and the variance in cloud computing
environments, the CloudSim Simulator based on the Java programming language was used
to validate our algorithm. The proposed algorithm was evaluated and compared with other
algorithms using different parameters for PMs, VMs, and cloudlets. The locust parameters
are shown in Table 3. We used up to 40 cloudlets in the first experiment in order to calculate
metrics such as the average makespan, waiting time, and resource utilisation. In the second
experiment, we used up to 500 cloudlets and compared our algorithm with different nature-
inspired algorithms regarding the makespan metric. Makespan improvement can prove
the system efficiency as it confirms the ability to accomplish the cloudlet processes on time,
which can assure users’ satisfaction with the cloud provider service.

Table 3. Simulation parameters.

Parameter Value

No. of Cloudlets 10–40
Cloudlet length (100–2500) MI

No. of VMs 10
VM MIPS 2400 MIPS

Task scheduler Time-shared

No. of hosts 1
Host(s) Storage 1,000,000 MB
Host(s) memory 4096 MB

No. of data centres 1
pesNumber (No. of CPUs) 5
num_user (No. of users) 1

Utilisation model Full utilisation
System architecture X86
Operating system Linux

VMM Xen

Sensors 2021, 21, 7308 14 of 19

4.3. Comparison Results

To study the algorithm performance and to validate its efficiency, vital metrics were
chosen to evaluate the algorithm performance, such as average makespan, average waiting
time, and resources utilisation. Two types of experiments were used to provide the attained
results, which are discussed below.

4.3.1. Type 1 Experiment (Locust Inspired Algorithm vs. TOPSIS–PSO)

For the first type of experiment, we compared our approach with the state-of-the-art
algorithm TOPSIS-PSO in terms of average makespan, average waiting time, and resource
utilisation. The parameter settings are provided in Table 3.

Analysis of Makespan

The makespan metric is defined as the highest completion time of a cloudlet in
the VM. In other words, it is the execution time required to process all the cloudlets in
a VM queue [8,49]. The behaviour of the proposed algorithm is shown in Figure 5 as
compared with a state-of-the-art algorithm TOPSIS–PSO [27]. The TOPSIS–PSO algorithm
was inspired by the Practical Swarm Optimisation Algorithm, becoming a replacement for
the traditional PSO algorithm. Therefore, we chose TOPSIS–PSO [27] for our comparison.
Figure 5 shows an immense improvement in the average makespan of our algorithm, where
as much as the cloudlet was increased, the makespan improvement was increased, too, due
to the efficient utilisation of the VM resources.

Figure 5. Average makespan.

Also, the third phase of the algorithm aided in maintaining the makespan to keep
it as low as possible. Since the makespan is related to the overall execution time of the
algorithm, getting the lowest makespan is better.

Analysis of Waiting Time

The waiting time metric is the period of time that the cloudlet will be waiting until it
gets processed. Figure 6 shows the average waiting time of the cloudlets to be submitted to
the VMs, where our algorithm overcomes the efficiency of TOPSIS-PSO due to selecting
the best VM to process a cloudlet. The algorithm was run in TimeShareScheculing type ,
which means a set of cloudlets was running in parallel, depending on the VM resources
capability and scheduling policy. Therefore, when there are a number of cloudlets sub-
mitted to a VM, all of them would be running at the same time and the waiting time for
them would be equal to 0, especially if the scheduling achieved efficient load balancing for
all VMs.

Sensors 2021, 21, 7308 15 of 19

Figure 6. Average waiting time.

Analysis of Resource Utilisation

The resource utilisation is that which the cloudlets will consume from the VMs. An
efficient scheduling algorithm can allocate cloudlets on VMs in a way that assures the
perfect placement of each cloudlet on a VM that could result in improving in the system
performance. At the same time, the algorithm should assure the highest level of exploitation
of the resources. Figure 7 shows the utilisation percentage of the VMs were at the highest
levels of VM utilisation. Additionally, the scheduling policy achieved a high level of load
balancing leading to efficiently utilising the VM resources, as well.

Figure 7. VM utilisation.

4.3.2. Type 2 Experiment (Locust Inspired Algorithm vs. State-of-the-Art Algorithms)

In the second experiment, we chose the makespan as a performance evaluation met-
ric since it is considered a vital metric in the cloudlet scheduling area. We used up to
500 cloudlets and compared our algorithm with different nature-inspired algorithms re-
garding the makespan metric. Makespan improvement can prove system efficiency due to
its ability to accomplish the cloudlet processing on time, which can assure user satisfaction
with the cloud provider service.

Our algorithm was compared with different existing and state-of-the-art algorithms
such as TOPSIS–PSO [27], FUGE [34], ACO [51], and MACO [52]. Table 4 shows the
CloudSim configurations for the second experiment. The obtained results for the average
makespan with respect to executed tasks are illustrated Figure 8. The results of the proposed

Sensors 2021, 21, 7308 16 of 19

algorithm show an efficiency improvement due to the efficient allocation of the users’ tasks,
where all incoming tasks were allocated according to the lowest waiting time for a VM.
Therefore, the tasks were executed as quickly as possible.

Table 4. Simulation parameters for type 2 experiment.

Parameter Value

Total number of tasks 100–500
Length of tasks 1000–20,000

Total number of VMs 50
VM memory (RAM) 256–2048

VM bandwidth 500–1000
Number of PEs required 1–4

Number of DCs 10
Number of hosts 2–6

Figure 8. Average makespan.

5. Conclusions and Future Work

This article has presented a biological algorithm inspired by locusts for use in re-
solving cloudlet scheduling problems in the cloud computing environment. The use of a
locust algorithm is considered novel in this area (i.e., cloudlet scheduling area). Cloudlet
scheduling plays a key role in delivering good service to cloud computing users. The
algorithm consists of three phases to efficiently allocate the users’ tasks onto VMs and
maintain load balancing of the VMs and PMs. In the first phase, preliminary selection of
the VMs is made and then a VM monitoring approach is initiated to keep all the servers
under control. Once the VMs are busy with handling the tasks, the earliest finishing times
of the tasks, including the times required for the coming tasks, are computed to find the
minimum required time needed to assign a cloudlet to a VM. The results obtained by the
proposed algorithm were proven more efficient in comparison with other nature-inspired
algorithms. We used the makespan as the main performance metric, while in addition, the
waiting time and resource utilisation where metrics used to prove the algorithm’s efficiency
would achieve user satisfaction. Finally, our results show that cloudlet scheduling using
the proposed algorithm was done successfully with the optimisation of resource usage and
outperformed other state-of-the-art algorithms.

In the future, a non-linear optimisation technique associated with soft computing
will be developed in another version of the proposed algorithm. The use of a learning
mechanism will deal with the cloudlet scheduling challenges in an intelligent way by
predicting the fluctuations of VM resources that may occur during or after submitting
cloudlets to a VM. Additionally, we will present the performance evaluation for different
metrics of the locust algorithm.

Sensors 2021, 21, 7308 17 of 19

Author Contributions: Methodology, M.A.A. (Mohammed Alaa Ala’anzy); Supervision, M.O.,
M.A.A. (Mohamed A. Alrshah) and Z.M.H.; Writing—original draft, M.A.A. (Mohammed Alaa
Ala’anzy); Writing—review and editing, M.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported in part by the Malaysian Ministry of Education under Research
Management Centre (RMC), Universiti Putra Malaysia, Putra Grant scheme with High Impact Factor
and also it is supported in part using grant UPM PUTRA BERIMPAK 9659400.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors are so thankful for the anonymous reviewers for their time and
value comments. Also, we would like to thank Zurina Mohd Hanapi for supporting using her grant
“UPM PUTRA BERIMPAK 9659400” for copy editing this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farid, M.; Latip, R.; Hussin, M.; Hamid, N.A.W.A. Scheduling scientific workflow using multi-objective algorithm with fuzzy

resource utilization in multi-cloud environment. IEEE Access 2020, 8, 24309–24322. [CrossRef]
2. Kamalinia, A.; Ghaffari, A. Hybrid task scheduling method for cloud computing by genetic and DE algorithms. Wirel. Pers.

Commun. 2017, 97, 6301–6323. [CrossRef]
3. Ms, S.; PM, J.P.; Alappatt, V. Profit maximization based task scheduling in hybrid clouds using whale optimization technique. Inf.

Secur. J. Glob. Perspect. 2020, 29, 155–168. [CrossRef]
4. Jena, R. Task scheduling in cloud environment: A multi-objective ABC framework. J. Inf. Optim. Sci. 2017, 38, 1–19. [CrossRef]
5. Domanal, S.G.; Guddeti, R.M.; Buyya, R. A hybrid bio-inspired algorithm for scheduling and resource management in cloud

environment. IEEE Trans. Serv. Comput. 2017, 13, 3–15. [CrossRef]
6. Yu, S.; Wang, C.; Ren, K.; Lou, W. Achieving secure, scalable, and fine-grained data access control in cloud computing. In

Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9.
7. Duffield, N.G.; Goyal, P.; Greenberg, A.; Mishra, P.; Ramakrishnan, K.; Van der Merwe, J.E. Resource management with hoses:

point-to-cloud services for virtual private networks. IEEE/ACM Trans. Netw. 2002, 10, 679–692. [CrossRef]
8. Alanzy, M.; Latip, R.; Muhammed, A. Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud

environment. JPhCS 2018, 1018, 012018. [CrossRef]
9. Xiao, Z.; Song, W.; Chen, Q. Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans.

Parallel Distrib. Syst. 2012, 24, 1107–1117. [CrossRef]
10. Guan, B.; Wu, J.; Wang, Y.; Khan, S.U. CIVSched: A communication-aware inter-VM scheduling technique for decreased network

latency between co-located VMs. IEEE Trans. Cloud Comput. 2014, 2, 320–332. [CrossRef]
11. Zhang, Q.; Zhani, M.F.; Boutaba, R.; Hellerstein, J.L. Dynamic heterogeneity-aware resource provisioning in the cloud. IEEE

Trans. Cloud Comput. 2014, 2, 14–28. [CrossRef]
12. Ala’anzy, M.; Othman, M. Load balancing and server consolidation in cloud computing environments: A meta-study. IEEE

Access 2019, 7, 141868–141887. [CrossRef]
13. Ala’anzy, M.A.; Othman, M.; Hasan, S.; Ghaleb, S.M.; Latip, R. Optimising Cloud Servers Utilisation Based on Locust-Inspired

Algorithm. In Proceedings of the 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), Stockholm,
Sweden, 14–15 November 2020; pp. 23–27.

14. Kumar, P.M.; Manogaran, G.; Sundarasekar, R.; Chilamkurti, N.; Varatharajan, R. Ant colony optimization algorithm with internet
of vehicles for intelligent traffic control system. Comput. Netw. 2018, 144, 154–162. [CrossRef]

15. Yang, X.S. Nature-Inspired Optimization Algorithms; Elsevier, Mara Conner: London, UK, 2014.
16. Kurdi, H.A.; Alismail, S.M.; Hassan, M.M. LACE: A locust-inspired scheduling algorithm to reduce energy consumption in cloud

datacenters. IEEE Access 2018, 6, 35435–35448. [CrossRef]
17. Alhassan, S.; Abdulghani, M. A bio-inspired algorithm for virtual machines allocation in public clouds. Procedia Comput. Sci.

2019, 151, 1072–1077. [CrossRef]
18. Ala’anzy, M.A.; Othman, M. Mapping and Consolidation of VMs Using Locust-Inspired Algorithms for Green Cloud Computing.

Neural Process. Lett. 2021, 1–17. [CrossRef]
19. Davidović, T.; Šelmić, M.; Teodorović, D.; Ramljak, D. Bee colony optimization for scheduling independent tasks to identical

processors. J. Heuristics 2012, 18, 549–569. [CrossRef]
20. Rathore, M.; Rai, S.; Saluja, N. Load balancing of virtual machine using honey bee galvanizing algorithm in cloud. IJCSIT 2015,

6, 4128–4132.

http://doi.org/10.1109/ACCESS.2020.2970475
http://dx.doi.org/10.1007/s11277-017-4839-2
http://dx.doi.org/10.1080/19393555.2020.1716116
http://dx.doi.org/10.1080/02522667.2016.1250460
http://dx.doi.org/10.1109/TSC.2017.2679738
http://dx.doi.org/10.1109/TNET.2002.803918
http://dx.doi.org/10.1088/1742-6596/1018/1/012018
http://dx.doi.org/10.1109/TPDS.2012.283
http://dx.doi.org/10.1109/TCC.2014.2328582
http://dx.doi.org/10.1109/TCC.2014.2306427
http://dx.doi.org/10.1109/ACCESS.2019.2944420
http://dx.doi.org/10.1016/j.comnet.2018.07.001
http://dx.doi.org/10.1109/ACCESS.2018.2839028
http://dx.doi.org/10.1016/j.procs.2019.04.152
http://dx.doi.org/10.1007/s11063-021-10637-0
http://dx.doi.org/10.1007/s10732-012-9197-3

Sensors 2021, 21, 7308 18 of 19

21. Awad, A.; El-Hefnawy, N.; Abdel_kader, H. Enhanced particle swarm optimization for task scheduling in cloud computing
environments. Procedia Comput. Sci. 2015, 65, 920–929. [CrossRef]

22. Dordaie, N.; Navimipour, N.J. A hybrid particle swarm optimization and hill climbing algorithm for task scheduling in the cloud
environments. ICT Express 2018, 4, 199–202. [CrossRef]

23. Zuo, L.; Shu, L.; Dong, S.; Zhu, C.; Hara, T. A multi-objective optimization scheduling method based on the ant colony algorithm
in cloud computing. IEEE Access 2015, 3, 2687–2699. [CrossRef]

24. Liu, X.; Li, X.; Shi, X.; Huang, K.; Liu, Y. A multi-type ant colony optimization (MACO) method for optimal land use allocation in
large areas. Int. J. Geogr. Inf. Sci. 2012, 26, 1325–1343. [CrossRef]

25. Cho, K.M.; Tsai, P.W.; Tsai, C.W.; Yang, C.S. A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud
computing. Neural Comput. Appl. 2015, 26, 1297–1309. [CrossRef]

26. Sun, W.; Ji, Z.; Sun, J.; Zhang, N.; Hu, Y. SAACO: a self adaptive ant colony optimization in cloud computing. In Proceedings of
the 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, Dalian, China, 26–28 August 2015; pp. 148–153.

27. Panwar, N.; Negi, S.; Rauthan, M.M.S.; Vaisla, K.S. Topsis–pso inspired non-preemptive tasks scheduling algorithm in cloud
environment. Clust. Comput. 2019, 22, 1379–1396. [CrossRef]

28. Chakravarthi, K.K.; Shyamala, L.; Vaidehi, V. TOPSIS inspired cost-efficient concurrent workflow scheduling algorithm in cloud.
J. King Saud-Univ.-Comput. Inf. Sci. 2020. [CrossRef]

29. Bhatt, A.; Dimri, P.; Aggarwal, A. Self-adaptive brainstorming for jobshop scheduling in multicloud environment. Softw. Pract.
Exp. 2020, 50, 1381–1398. [CrossRef]

30. El-Abd, M. Global-best brain storm optimization algorithm. Swarm Evol. Comput. 2017, 37, 27–44. [CrossRef]
31. Shi, Y. Brain storm optimization algorithm. In International Conference in Swarm Intelligence; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 303–309.
32. Sanaj, M.; Prathap, P.J. Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS

cloud computing atmosphere. Eng. Sci. Technol. Int. J. 2020, 23, 891–902. [CrossRef]
33. Kumar, K.P.; Kousalya, K. Amelioration of task scheduling in cloud computing using crow search algorithm. Neural Comput.

Appl. 2020, 32, 5901–5907. [CrossRef]
34. Shojafar, M.; Javanmardi, S.; Abolfazli, S.; Cordeschi, N. FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm

using fuzzy theory and a genetic method. Clust. Comput. 2015, 18, 829–844. [CrossRef]
35. Abdullahi, M.; Ngadi, M.A. Symbiotic Organism Search optimization based task scheduling in cloud computing environment.

Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]
36. Changtian, Y.; Jiong, Y. Energy-aware genetic algorithms for task scheduling in cloud computing. In Proceedings of the 2012

Seventh ChinaGrid Annual Conference, Beijing, China, 20–23 September 2012; pp. 43–48.
37. Dai, Y.; Lou, Y.; Lu, X. A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with

multi-QoS constraints in cloud computing. In Proceedings of the 7th International Conference on Intelligent Human-Machine
Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; Volume 2, pp. 428–431.

38. Lee, Z.J.; Su, S.F.; Chuang, C.C.; Liu, K.H. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence
alignment. Appl. Soft Comput. 2008, 8, 55–78. [CrossRef]

39. Milan, S.T.; Rajabion, L.; Darwesh, A.; Hosseinzadeh, M.; Navimipour, N.J. Priority-based task scheduling method over cloudlet
using a swarm intelligence algorithm. Clust. Comput. 2020, 23, 663–671. [CrossRef]

40. Xavier, V.A.; Annadurai, S. Chaotic social spider algorithm for load balance aware task scheduling in cloud computing. Clust.
Comput. 2019, 22, 287–297.

41. Abrol, P.; Gupta, S.; Singh, S. A QoS Aware Resource Placement Approach Inspired on the Behavior of the Social Spider Mating
Strategy in the Cloud Environment. Wirel. Pers. Commun. 2020, 113, 2027–2065. [CrossRef]

42. Guttal, V.; Romanczuk, P.; Simpson, S.J.; Sword, G.A.; Couzin, I.D. Cannibalism can drive the evolution of behavioural phase
polyphenism in locusts. Ecol. Lett. 2012, 15, 1158–1166. [CrossRef] [PubMed]

43. Ariel, G.; Ayali, A. Locust collective motion and its modeling. PLoS Comput. Biol. 2015, 11, e1004522. [CrossRef]
44. Topaz, C.M.; Bernoff, A.J.; Logan, S.; Toolson, W. A model for rolling swarms of locusts. Eur. Phys. J. Spec. Top. 2008, 157, 93–109.

[CrossRef]
45. Buyya, R.; Murshed, M. Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling

for grid computing. Concurr. Comput. Pract. Exp. 2002, 14, 1175–1220. [CrossRef]
46. Lin, W.; Liang, C.; Wang, J.Z.; Buyya, R. Bandwidth-aware divisible task scheduling for cloud computing. Softw. Pract. Exp. 2014,

44, 163–174. [CrossRef]
47. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]
48. Al-Maamari, A.; Omara, F.A. Task scheduling using PSO algorithm in cloud computing environments. Int. J. Grid Distrib. Comput.

2015, 8, 245–256. [CrossRef]
49. Alboaneen, D.; Tianfield, H.; Zhang, Y.; Pranggono, B. A metaheuristic method for joint task scheduling and virtual machine

placement in cloud data centers. Future Gener. Comput. Syst. 2021, 115, 201–212. [CrossRef]
50. Muthulakshmi, B.; Somasundaram, K. A hybrid ABC-SA based optimized scheduling and resource allocation for cloud

environment. Clust. Comput. 2019, 22, 10769–10777. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2015.09.064
http://dx.doi.org/10.1016/j.icte.2017.08.001
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.1080/13658816.2011.635594
http://dx.doi.org/10.1007/s00521-014-1804-9
http://dx.doi.org/10.1007/s10586-019-02915-3
http://dx.doi.org/10.1016/j.jksuci.2020.02.006
http://dx.doi.org/10.1002/spe.2819
http://dx.doi.org/10.1016/j.swevo.2017.05.001
http://dx.doi.org/10.1016/j.jestch.2019.11.002
http://dx.doi.org/10.1007/s00521-019-04067-2
http://dx.doi.org/10.1007/s10586-014-0420-x
http://dx.doi.org/10.1016/j.future.2015.08.006
http://dx.doi.org/10.1016/j.asoc.2006.10.012
http://dx.doi.org/10.1007/s10586-019-02951-z
http://dx.doi.org/10.1007/s11277-020-07306-1
http://dx.doi.org/10.1111/j.1461-0248.2012.01840.x
http://www.ncbi.nlm.nih.gov/pubmed/22882379
http://dx.doi.org/10.1371/journal.pcbi.1004522
http://dx.doi.org/10.1140/epjst/e2008-00633-y
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/spe.2163
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.14257/ijgdc.2015.8.5.24
http://dx.doi.org/10.1016/j.future.2020.08.036
http://dx.doi.org/10.1007/s10586-017-1174-z

Sensors 2021, 21, 7308 19 of 19

51. Tawfeek, M.A.; El-Sisi, A.; Keshk, A.E.; Torkey, F.A. Cloud task scheduling based on ant colony optimization. In Proceedings
of the 2013 8th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 26–28 November 2013;
pp. 64–69.

52. Yonggui, W.; Ruilian, H. Study on cloud computing task schedule strategy based on MACO algorithm. Comput. Meas. Control.
2011, 5, 1203–1204.

	Introduction
	Related Work
	Methodology
	Algorithm Modelling
	System Model
	The Proposed Algorithm
	Preliminary Selection of VMs
	Checking VM Utilisation
	Earlier Cloudlet Handling

	Experimental Results
	Simulation Tool
	Simulation Configurations and Parameters
	Comparison Results
	Type 1 Experiment (Locust Inspired Algorithm vs. TOPSIS–PSO)
	Type 2 Experiment (Locust Inspired Algorithm vs. State-of-the-Art Algorithms)

	Conclusions and Future Work
	References

